Exercises for TATA55, batch 3, 2023

October 12, 2023

Solutions to the exercises below should be handed in no later than November xxx, 2023.

1. (3p) If N and M are normal subgroups of G show that also

$$
N M=\{\mathfrak{n m} \mid n \in N, m \in M\}
$$

is a normal subgroup of G.
2. (3p) Let N be a normal subgroup of the finite group G, and let $a \in G$. Show that the order $o(a N)$ of the coset $a N \in G / N$ divides the order $o(a)$ of a in G.
3. (3p) It is an important theorem that for $\mathfrak{n}>4$, the normal subgroups of S_{n} are the trivial group $1, S_{n}$, and A_{n}, with corresponding quotients $S_{n}, 1$, and C_{2}. But what about $\mathrm{n}=4$?
4. (3p) What are the possible orders o(f) for a bijection $f: \mathbb{Z} \rightarrow \mathbb{Z}$, regarded as an element of $S_{\mathbb{Z}}$? What if we know, in addition, that f fixes a countably subset of \mathbb{Z}, the complement of which is also countable?
5. (3p) The punctured complex plane $\mathbb{C}^{*}=\mathbb{C} \backslash\{0\}$ is a group under multiplication. Show that any non-trivial disc

$$
\mathrm{B}\left(z_{0}, \mathrm{r}\right)=\left\{z \in \mathbb{C}^{*}| | z-z_{0} \mid<\mathrm{r}\right\}
$$

generates \mathbb{C}^{*} as a group, i.e. that $\left\langle\mathrm{B}\left(z_{0}, r\right)\right\rangle=\mathbb{C}^{*}$.
6. (3p) Show that subgroups of \mathbb{C}^{*} invariant under all rotations around the origin correspond bijectively to subgroups of the group of positive real numbers under multiplication.

