Exercises for TATA55, batch 3, 2023

October 12, 2023

Solutions to the exercises below should be handed in no later than November xxx, 2023.

1. (3p) If N and M are normal subgroups of G show that also

$$\mathsf{N}\mathsf{M} = \{\,\mathfrak{n}\mathfrak{m} | \mathfrak{n} \in \mathsf{N}, \,\mathfrak{m} \in \mathsf{M}\,\}$$

is a normal subgroup of G.

- 2. (3p) Let N be a normal subgroup of the finite group G, and let $a \in G$. Show that the order o(aN) of the coset $aN \in G/N$ divides the order o(a) of a in G.
- (3p) It is an important theorem that for n > 4, the normal subgroups of S_n are the trivial group 1, S_n, and A_n, with corresponding quotients S_n, 1, and C₂. But what about n = 4?
- 4. (3p) What are the possible orders o(f) for a bijection $f : \mathbb{Z} \to \mathbb{Z}$, regarded as an element of $S_{\mathbb{Z}}$? What if we know, in addition, that f fixes a countably subset of \mathbb{Z} , the complement of which is also countable?
- 5. (3p) The punctured complex plane $C^* = \mathbb{C} \setminus \{0\}$ is a group under multiplication. Show that any non-trivial disc

$$B(z_0, \mathbf{r}) = \{ z \in \mathbb{C}^* | |z - z_0| < \mathbf{r} \}$$

generates \mathbb{C}^* as a group, i.e. that $\langle B(z_0, r) \rangle = \mathbb{C}^*$.

6. (3p) Show that subgroups of C^{*} invariant under all rotations around the origin correspond bijectively to subgroups of the group of positive real numbers under multiplication.