Solutions to exercises for TATA55, batch 3, 2023

November 5, 2023

1. (3p) If N and M are normal subgroups of G show that also

$$
N M=\{n m: n \in N, m \in M\}
$$

is a normal subgroup of G.
Solution: First, note that $1 \in N M$. Secondly we show that $N M=M N$. Take $n \in N, m \in M$. Since M is normal, $\mathfrak{m n}=\mathfrak{n n}^{-1} \mathfrak{m n}=\mathfrak{n m}_{2} \in N M$ with $m_{2} \in M$. Hence $M N \subseteq N M$, and the reverse inclusion follows similarly.
Thirdly, if $\mathfrak{n}_{1}, n_{2} \in N, m_{1}, m_{2} \in M$ then

$$
\left(n_{1} m_{1}\right)\left(n_{2} m_{2}\right)=n_{1}\left(m_{1} n_{2}\right) m_{2}=n_{1}\left(n_{3} m_{3}\right) m_{2} \in N M
$$

where we used that $M N=N M$.
Fourthly, if $n \in N, m \in M$ then $(n m)^{-1}=m^{-1} n^{-1} \in M N=N M$ since M, N are closed under inverses.
Finally, if $n \in N, m \in M, g \in G$ then

$$
\mathrm{gnmg}^{-1}=\mathrm{gng}^{-1} \mathrm{gmg}^{-1}=\left(\mathrm{gng}^{-1}\right)\left(\mathrm{gmg}^{-1}\right)=\mathfrak{n}_{2} \mathrm{~m}_{2} \in \mathrm{NM}
$$

sine N, M are normal subgroups.
2. (3p) Let N be a normal subgroup of the finite group G, and let $a \in G$. Show that the order $o(a N)$ of the coset $a N \in G / N$ divides the order $o(a)$ of a in G.
Solution: Let $n=o(a)$. Then $a^{n}=1$, so $(a N)^{n}=a^{n} N=1 N=N$. For any group it holds that if $x^{n}=1$ then $o(x) \mid n$. Hence the order of $a N$ divides n.
3. (3p) It is an important theorem that for $n>4$, the normal subgroups of S_{n} are the trivial group $1, S_{n}$, and A_{n}, with corresponding quotients $S_{n}, 1$, and C_{2}. But what about $n=4$?
Solution: The conjugacy classes of S_{4} are

$$
\begin{array}{ll}
\{()\}, \quad\{(12),(13),(23),(14),(24),(34)\}, & \\
& \{(12)(34),(13)(24),(14)(23)\}, \\
& \{(123),(124),(134),(234)\},(1243),(1324),(1342),(1423),(1432)\}
\end{array}
$$

Normal subgroups are union of conjugacy classes, but if we include transpositions, they generate S_{4}. Same with the fourcycles. The threecycles generata all even permutations, thus give the normal subgroup A_{4}. However, we can also take

$$
N=\{()\} \cup\{(12)(34),(13)(24),(14)(23)\}
$$

which is a normal subgroup of index 6 . Putting $a=(12), b=$ (13) we observe that the commutator

$$
a b a^{-1} b^{-1}=a b a b=(123) \notin N
$$

so the quotient S_{4} / N is non-abelian. Up to isomorphism, there are but two groups of order 6, namely C_{6} and S_{3}, so $S_{4} / N \simeq S_{3}$.
4. (3p) What are the possible orders o(f) for a bijection $f: \mathbb{Z} \rightarrow \mathbb{Z}$, regarded as an element of $S_{\mathbb{Z}}$? What if we know, in addition, that f fixes a countably subset of \mathbb{Z}, the complement of which is also countable?

Solution: The bijection

$$
a_{n}(k)= \begin{cases}k & k \leq 0 \text { or } k>n \\ 2 & k=1 \\ \vdots & \vdots \\ n & k=n-1 \\ 1 & k=n\end{cases}
$$

has order n. The bijection $n \mapsto n+1$ has infinite order.
Now for examples with countable fixpointset with countable complement. The bijection

$$
b_{n}(k)= \begin{cases}k & k \text { odd } \\ k+2 & k \text { even }\end{cases}
$$

has infinite order, and fixes precisely the odd integers.
The followng bijection g_{n} fixes precisely the non-positive integers, and has order n :

$$
g_{n}(k)= \begin{cases}k & k \leq 0 \\ 2 & k=1 \\ \vdots & \vdots \\ n & k=n-1 \\ 1 & k=n \\ n+2 & k=n+1 \\ \vdots & \vdots \\ 2 n & k=2 n-1 \\ n+1 & k=2 n \\ 2 n+2 & k=2 n+1 \\ \vdots & \vdots\end{cases}
$$

So, any order, finite or not, can be achieved, even in the restricted scenario.
5. (3p) The punctured complex plane $C^{*}=\mathbb{C} \backslash\{0\}$ is a group under multiplication. Show that any non-trivial disc

$$
\mathrm{B}\left(z_{0}, r\right)=\left\{z \in \mathbb{C}^{*}:\left|z-z_{0}\right|<r\right\}
$$

generates \mathbb{C}^{*} as a group, i.e. that $\left\langle\mathrm{B}\left(z_{0}, r\right)\right\rangle=\mathbb{C}^{*}$.

Solution: First recall that $\langle S\rangle$ contains all finite products of elements of S and their inverses, as well as the identity. So

$$
\frac{1}{z_{0}} \mathrm{~B}\left(z_{0}, r\right)=\mathrm{B}(1, r) \subseteq\left\langle\mathrm{B}\left(z_{0}, r\right)\right\rangle
$$

Next, take any positive $s \in \mathbb{R}$ such that $e^{i s} \in B(1, r)$. Then there is a $\delta>0$ and a positive integer N such that

$$
\cup_{j=0}^{n} e^{i j s} B(1, r) \supseteq\left\{z \in \mathbb{C}^{*}: 1-s<|z|<1+s\right\}=: \text { Annulus }(1-s, 1+s)
$$

However,

$$
\operatorname{Annulus}(1-s, 1+s) * \operatorname{Annulus}(1-s, 1+s) \supseteq \operatorname{Annulus}\left((1-s)^{2},(1+s)^{2}\right)
$$

et cetera, and these ever increasing annuli cover \mathbb{C}^{*}.
6. (3p) Show that subgroups of \mathbb{C}^{*} invariant under all rotations around the origin correspond bijectively to subgroups of the group of positive real numbers under multiplication.

Solution: Consider the surjective map

$$
\begin{gathered}
\mathrm{F}: \mathbb{C}^{*} \rightarrow \mathbb{R}_{>0} \\
\mathrm{~F}(z)=|z|
\end{gathered}
$$

Since $|z w|=|z||w|$, this is a group homomorphism from \mathbb{C}^{*} to the group of positive real numbers, under multiplication.
The kernel is the circle group $\mathcal{T}=\left\{z \in \mathbb{C}^{*}:|z|=1\right\}$. So, by the correspondence theorem, subgroups of $\mathbb{R}_{>0}$ correspond to subgroups of \mathbb{C}^{*} that contain \mathcal{T}.
Now, if a subgroup $G \leq C^{*}$ is invariant under all rotations, for any $z \in G$ the whole circle $\left\{w \in \mathbb{C}^{*}:|w|=|z|\right\}$ must be contained in G. In particular, $\mathcal{T} \subseteq \mathrm{G}$.
Conversely, if $\mathcal{T} \subseteq G$, then for any $z \in G$, and any $e^{i \phi} \in \mathcal{T}$, it holds that $e^{i \phi} z \in G$. Thus, G is invariant under rotations.

