Solutions to exercises for TATA55, batch 3, 2023

November 5, 2023

1. (3p) If N and M are normal subgroups of G show that also

$$\mathsf{N}\mathsf{M} = \{\mathsf{n}\mathfrak{m} : \mathsf{n} \in \mathsf{N}, \mathsf{m} \in \mathsf{M}\}$$

is a normal subgroup of G.

Solution: First, note that $1 \in NM$. Secondly we show that NM = MN. Take $n \in N$, $m \in M$. Since M is normal, $mn = nn^{-1}mn = nm_2 \in NM$ with $m_2 \in M$. Hence $MN \subseteq NM$, and the reverse inclusion follows similarly.

Thirdly, if $n_1, n_2 \in N$, $m_1, m_2 \in M$ then

$$(n_1m_1)(n_2m_2) = n_1(m_1n_2)m_2 = n_1(n_3m_3)m_2 \in NM$$

where we used that MN = NM.

Fourthly, if $n \in N$, $m \in M$ then $(nm)^{-1} = m^{-1}n^{-1} \in MN = NM$ since M, N are closed under inverses.

Finally, if $n \in N, m \in M, g \in G$ then

$$gnmg^{-1} = gng^{-1}gmg^{-1} = (gng^{-1})(gmg^{-1}) = n_2m_2 \in NM$$

sine N, M are normal subgroups.

2. (3p) Let N be a normal subgroup of the finite group G, and let $a \in G$. Show that the order o(aN) of the coset $aN \in G/N$ divides the order o(a) of a in G.

Solution: Let n = o(a). Then $a^n = 1$, so $(aN)^n = a^nN = 1N = N$. For any group it holds that if $x^n = 1$ then o(x) | n. Hence the order of aN divides n.

3. (3p) It is an important theorem that for n > 4, the normal subgroups of S_n are the trivial group 1, S_n , and A_n , with corresponding quotients S_n , 1, and C_2 . But what about n = 4?

Solution: The conjugacy classes of S₄ are

$$\{(1)\}, \quad \{(12), (13), (23), (14), (24), (34)\}, \\ \{(12)(34), (13)(24), (14)(23)\}, \quad \{(123), (124), (134), (234)\}, \\ \{(1234), (1243), (1324), (1342), (1423), (1432)\}$$

Normal subgroups are union of conjugacy classes, but if we include transpositions, they generate S_4 . Same with the fourcycles. The threecycles generata all even permutations, thus give the normal subgroup A_4 . However, we can also take

$$N = \{()\} \cup \{(12)(34), (13)(24), (14)(23)\}$$

which is a normal subgroup of index 6. Putting a = (12), b = (13) we observe that the commutator

$$aba^{-1}b^{-1} = abab = (123) \notin N$$
,

so the quotient S_4/N is non-abelian. Up to isomorphism, there are but two groups of order 6, namely C_6 and S_3 , so $S_4/N \simeq S_3$.

4. (3p) What are the possible orders o(f) for a bijection $f : \mathbb{Z} \to \mathbb{Z}$, regarded as an element of $S_{\mathbb{Z}}$? What if we know, in addition, that f fixes a countably subset of \mathbb{Z} , the complement of which is also countable?

Solution: The bijection

$$a_{n}(k) = \begin{cases} k & k \leq 0 \text{ or } k > n \\ 2 & k = 1 \\ \vdots & \vdots \\ n & k = n - 1 \\ 1 & k = n \end{cases}$$

has order n. The bijection $n \mapsto n + 1$ has infinite order.

Now for examples with countable fixpointset with countable complement. The bijection

$$b_{n}(k) = \begin{cases} k & k \text{ odd} \\ k+2 & k \text{ even} \end{cases}$$

has infinite order, and fixes precisely the odd integers.

The following bijection g_n fixes precisely the non-positive integers, and has order n:

$$g_n(k) = \begin{cases} k & k \leq 0 \\ 2 & k = 1 \\ \vdots & \vdots \\ n & k = n - 1 \\ 1 & k = n \\ n + 2 & k = n + 1 \\ \vdots & \vdots \\ 2n & k = 2n - 1 \\ n + 1 & k = 2n \\ 2n + 2 & k = 2n + 1 \\ \vdots & \vdots \end{cases}$$

So, any order, finite or not, can be achieved, even in the restricted scenario.

5. (3p) The punctured complex plane $C^* = \mathbb{C} \setminus \{0\}$ is a group under multiplication. Show that any non-trivial disc

$$B(z_0, r) = \{ z \in \mathbb{C}^* : |z - z_0| < r \}$$

generates \mathbb{C}^* as a group, i.e. that $\langle B(z_0, r) \rangle = \mathbb{C}^*$.

Solution: First recall that $\langle S \rangle$ contains all finite products of elements of S and their inverses, as well as the identity. So

$$\frac{1}{z_0}\mathrm{B}(z_0,\mathbf{r})=\mathrm{B}(1,\mathbf{r})\subseteq \langle \mathrm{B}(z_0,\mathbf{r})\rangle.$$

Next, take any positive $s \in \mathbb{R}$ such that $e^{is} \in B(1,r)$. Then there is a $\delta > 0$ and a positive integer N such that

$$\cup_{j=0}^{n} e^{ijs} B(1,r) \supseteq \{ z \in \mathbb{C}^{*} : 1-s < |z| < 1+s \} =: Annulus(1-s, 1+s)$$

However,

Annulus
$$(1 - s, 1 + s) *$$
 Annulus $(1 - s, 1 + s) \supseteq$ Annulus $((1 - s)^2, (1 + s)^2)$

et cetera, and these ever increasing annuli cover \mathbb{C}^* .

6. (3p) Show that subgroups of \mathbb{C}^* invariant under all rotations around the origin correspond bijectively to subgroups of the group of positive real numbers under multiplication.

Solution: Consider the surjective map

$$F: \mathbb{C}^* \to \mathbb{R}_{>0}$$
$$F(z) = |z|$$

Since |zw| = |z||w|, this is a group homomorphism from \mathbb{C}^* to the group of positive real numbers, under multiplication.

The kernel is the circle group $\mathcal{T} = \{z \in \mathbb{C}^* : |z| = 1\}$. So, by the correspondence theorem, subgroups of $\mathbb{R}_{>0}$ correspond to subgroups of \mathbb{C}^* that contain \mathcal{T} .

Now, if a subgroup $G \leq C^*$ is invariant under <u>all</u> rotations, for any $z \in G$ the whole circle $\{w \in \mathbb{C}^* : |w| = |z|\}$ must be contained in G. In particular, $\mathcal{T} \subseteq G$.

Conversely, if $\mathcal{T} \subseteq G$, then for any $z \in G$, and any $e^{i\varphi} \in \mathcal{T}$, it holds that $e^{i\varphi}z \in G$. Thus, G is invariant under rotations.