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1. (3p) If N and M are normal subgroups of G show that also

NM = {nm : n ∈ N, m ∈ M }

is a normal subgroup of G.

Solution: First, note that 1 ∈ NM. Secondly we show that NM = MN. Take n ∈ N,m ∈ M.
Since M is normal, mn = nn−1mn = nm2 ∈ NM with m2 ∈ M. Hence MN ⊆ NM, and
the reverse inclusion follows similarly.

Thirdly, if n1, n2 ∈ N, m1,m2 ∈ M then

(n1m1)(n2m2) = n1(m1n2)m2 = n1(n3m3)m2 ∈ NM

where we used that MN = NM.

Fourthly, if n ∈ N,m ∈ M then (nm)−1 = m−1n−1 ∈ MN = NM since M,N are closed
under inverses.

Finally, if n ∈ N,m ∈ M,g ∈ G then

gnmg−1 = gng−1gmg−1 = (gng−1)(gmg−1) = n2m2 ∈ NM

sine N,M are normal subgroups.

2. (3p) Let N be a normal subgroup of the finite group G, and let a ∈ G. Show that the order
o(aN) of the coset aN ∈ G/N divides the order o(a) of a in G.

Solution: Let n = o(a). Then an = 1, so (aN)n = anN = 1N = N. For any group it holds
that if xn = 1 then o(x) |n . Hence the order of aN divides n.

3. (3p) It is an important theorem that for n > 4, the normal subgroups of Sn are the trivial group
1, Sn, and An, with corresponding quotients Sn, 1, and C2. But what about n = 4?

Solution: The conjugacy classes of S4 are

{()}, {(12), (13), (23), (14), (24), (34)},

{(12)(34), (13)(24), (14)(23)}, {(123), (124), (134), (234)},

{(1234), (1243), (1324), (1342), (1423), (1432)}

Normal subgroups are union of conjugacy classes, but if we include transpositions, they gener-
ate S4. Same with the fourcycles. The threecycles generata all even permutations, thus give the
normal subgroup A4. However, we can also take

N = {()} ∪ {(12)(34), (13)(24), (14)(23)}
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which is a normal subgroup of index 6. Putting a = (12), b = (13) we observe that the
commutator

aba−1b−1 = abab = (123) ̸∈ N,

so the quotient S4/N is non-abelian. Up to isomorphism, there are but two groups of order 6,
namely C6 and S3, so S4/N ≃ S3.

4. (3p) What are the possible orders o(f) for a bijection f : Z → Z, regarded as an element of SZ?
What if we know, in addition, that f fixes a countably subset of Z, the complement of which is
also countable?

Solution: The bijection

an(k) =



k k ≤ 0 or k > n

2 k = 1
...

...
n k = n− 1

1 k = n

has order n. The bijection n 7→ n+ 1 has infinite order.

Now for examples with countable fixpointset with countable complement. The bijection

bn(k) =

{
k k odd
k+ 2 k even

has infinite order, and fixes precisely the odd integers.

The followng bijection gn fixes precisely the non-positive integers, and has order n:

gn(k) =



k k ≤ 0

2 k = 1
...

...
n k = n− 1

1 k = n

n+ 2 k = n+ 1
...

...
2n k = 2n− 1

n+ 1 k = 2n

2n+ 2 k = 2n+ 1
...

...

So, any order, finite or not, can be achieved, even in the restricted scenario.

5. (3p) The punctured complex plane C∗ = C \ {0} is a group under multiplication. Show that any
non-trivial disc

B(z0, r) = { z ∈ C∗ : |z− z0| < r }

generates C∗ as a group, i.e. that ⟨B(z0, r)⟩ = C∗.
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Solution: First recall that ⟨S⟩ contains all finite products of elements of S and their inverses, as
well as the identity. So

1

zo
B(z0, r) = B(1, r) ⊆ ⟨B(z0, r)⟩.

Next, take any positive s ∈ R such that eis ∈ B(1, r). Then there is a δ > 0 and a positive
integer N such that

∪n
j=0e

ijsB(1, r) ⊇ { z ∈ C∗ : 1− s < |z| < 1+ s } =: Annulus(1− s, 1+ s)

However,

Annulus(1− s, 1+ s) ∗ Annulus(1− s, 1+ s) ⊇ Annulus((1− s)2, (1+ s)2)

et cetera, and these ever increasing annuli cover C∗.

6. (3p) Show that subgroups of C∗ invariant under all rotations around the origin correspond bi-
jectively to subgroups of the group of positive real numbers under multiplication.

Solution: Consider the surjective map

F : C∗ → R>0

F(z) = |z|

Since |zw| = |z||w|, this is a group homomorphism from C∗ to the group of positive real
numbers, under multiplication.

The kernel is the circle group T = { z ∈ C∗ : |z| = 1 }. So, by the correspondence theorem,
subgroups of R>0 correspond to subgroups of C∗ that contain T .

Now, if a subgroup G ≤ C∗ is invariant under all rotations, for any z ∈ G the whole circle
{w ∈ C∗ : |w| = |z| } must be contained in G. In particular, T ⊆ G.

Conversely, if T ⊆ G, then for any z ∈ G, and any eiϕ ∈ T , it holds that eiϕz ∈ G. Thus, G is
invariant under rotations.
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