Solutions for Exercises for TATA55, batch 4, 2023

December 2, 2023

1. (4p) Let $N=2 n$ with n a positive integer, and let $[N]=\{1,2, \ldots, N\}$. The symmetric group S_{N} acts on $[N]$ in the natural way. Show that this induces an action on $\binom{N}{n}$, subsets of $[N]$ of cardinality n, by

$$
\sigma .\left\{a_{1}, \ldots, a_{n}\right\}=\left\{\sigma\left(a_{1}\right), \ldots, \sigma\left(a_{n}\right)\right\},
$$

and thus on the set

$$
X=\{\{A, B\}|A \cap B=\emptyset, A \cup B=[N],|A|=|B|=\mathfrak{n}\}
$$

Use this to prove that

$$
K=\left\{\sigma \in S_{N} \mid \sigma \cdot V=V \text { for all } V \in X\right\}
$$

is a normal subgroup of S_{N}. Find this subgroup for $n=2,3$ and describe it, and the corresponding quotient S_{N} / K.
Solution: The verifications of the group actions beeing group actions are routine.
For $n=2, N=4$, we recall the exercise from B3 and that the normal subgroups of S_{4} are S_{4}, $A_{4}, 0$, and

$$
\mathrm{N}=\{()\} \cup\{(12)(34),(13)(24),(14)(23)\} .
$$

Since kernels are normal subgroups, the kernel is one of these. We check that (123) $\in A_{4}$ is not in the kernel, since

$$
(123) \cdot\{\{1,2\},\{3,4\}\}=\{\{2,3\},\{1,4\}\}
$$

On the other hand, (12)(34) is, since

$$
\begin{align*}
& (12)(34) \cdot\{\{1,2\},\{3,4\}\}=\{\{2,1\},\{4,3\}\} \tag{1}\\
& (12)(34) \cdot\{\{1,3\},\{2,4\}\}=\{\{2,4\},\{1,3\}\} \tag{2}\\
& (12)(34) \cdot\{\{1,4\},\{2,3\}\}=\{\{2,3\},\{1,4\}\} \tag{3}
\end{align*}
$$

So the kernel K is not trivial, nor does it contain A_{4}, so it is N. We saw in B3 that $S_{4} / N \simeq S_{3}$. For $n=3, N=6$, the possible normal subgroups are $0, A_{6}, S_{6}$. Again we check that (123) \in A_{6} is not in the kernel, since

$$
(123) .\{\{1,2,4\},\{3,5,6\}\}=\{\{2,3,4\},\{1,5,6\}\}
$$

Thus the kernel K is trivial.
2. (6p) The tiles of a 4×4 chessboard are colored either red or blue. How many non-equivalent colorings are there, under the symmetries induced by
(a) Cyclic permutation of columns
(b) Simultaneous cyclic permutations of rows and columns
(c) dihedral symmetry?

Solution: In (a), the group is $C_{4}=\langle g\rangle$ and $X=2^{4 \times 4}$, so $|X|=2^{16}=65536$ If the board is

$$
\left(\begin{array}{cccc}
a & b & c & d \\
e & f & g & h \\
i & j & k & l \\
m & n & o & p
\end{array}\right)
$$

then the action of C_{4} gives the following subgroup of S_{X} :

$$
\begin{aligned}
& g^{0} \rightarrow() \\
& g^{1} \rightarrow(\text { abcd })(\text { efgh })(i j k l)(\text { mnop }) \\
& g^{2} \rightarrow(a c)(b d)(e g)(f h)(i k)(j l)(m o)(n p) \\
& g^{3} \rightarrow(a d c b)(\text { ehgf })(i l k j)(\text { mpon })
\end{aligned}
$$

Polya/Burnside now gives the number of orbits as

$$
\frac{1}{4}\left(2^{16}+2 * 2^{4}+2^{8}\right)=2^{14}+2^{6}+2^{3}=16456
$$

In (b), we have the same group acting on X, but it is expressed as permutations on the board elements in a different way. Here

$$
\begin{aligned}
& g^{0} \rightarrow() \\
& g^{1} \rightarrow(\text { afkp })(\text { bglm })(\text { chin })(\text { dejo }) \\
& g^{2} \rightarrow(\text { ak })(\mathrm{fp})(\mathrm{bl})(\mathrm{gm})(\mathrm{ci})(\mathrm{hn})(\mathrm{dj})(\mathrm{eo}) \\
& \mathrm{g}^{3} \rightarrow(\text { ahkn })(\text { belo })(\text { cfip })(\text { dgjm })
\end{aligned}
$$

So the number of orbits is once again

$$
\frac{1}{4}\left(2^{16}+2 * 2^{4}+2^{8}\right)=16456
$$

In (c), the dihedral group D_{4} induces

$$
\begin{aligned}
() & \rightarrow() \\
\mathrm{r} & \rightarrow(\text { ampd })(\text { bioh })(\text { cenh })(\mathrm{fjkg}) \\
\mathrm{r}^{2} & \rightarrow(\mathrm{ap})(\mathrm{md})(\mathrm{bo})(\mathrm{ih})(\mathrm{cn})(\mathrm{eh})(\mathrm{fk})(\mathrm{jg}) \\
\mathrm{r}^{3} & \rightarrow(\text { adpm })(\text { bhoi })(\text { chne })(\mathrm{fgkj}) \\
\mathrm{s} & \rightarrow(\mathrm{~m})(\mathrm{j})(\mathrm{g})(\mathrm{d})(\mathrm{ch})(\mathrm{bl})(\mathrm{fk})(\mathrm{ap})(\mathrm{ej})(\mathrm{in}) \\
\mathrm{s}_{2} & \rightarrow(\mathrm{bc})(\mathrm{fg})(\mathrm{jk})(\mathrm{no})(\mathrm{ad})(\mathrm{eh})(\mathrm{il})(\mathrm{mp}) \\
\mathrm{s}_{3} & \rightarrow \text { type } 1^{4} 2^{6} \\
s_{4} & \rightarrow \text { type } 2^{8}
\end{aligned}
$$

Hence the number of orbits is now

$$
\frac{1}{8}\left(2^{16}+2 * 2^{4}+2^{8}+2 * 2^{10}+2 * 2^{8}\right)=8548
$$

3. (3p) A simple graph on a finite set X is determined by its edge set $E \subseteq\binom{X}{2}$. Two such graphs are isomorphic if there is a permutation $\sigma \in S_{X}$ such that

$$
E_{2}=\sigma . E_{1}=\left\{\{\sigma(a), \sigma(b)\} \mid\{a, b\} \in E_{1}\right\} .
$$

How many isomorphism classes of simple graphs are there, if $|X|=4$? If $|X|=5$?
Solution: We add the line

```
print(f'n={n}: {len(graphsiso)} graphs\n')
```

to the code on the homepage and get 11 graphs on 4 vertices, and 34 on 5 vertices. My supercomputer at home was able to calculate that there is a whooping 156 graphs on 6 vertices!
4. (3p) We can generalize the concept of a simple graph on X be coloring the edges with k colors. Such a k-colored graph can be described by a map $f:\binom{X}{2} \rightarrow[k]$; one of the colors is used to indicate that the potential edge is not present in the graph. To such graphs f, g are ismorphic if there is a $\sigma \in S_{X}$ such that $f=g \circ \sigma$.

How many isomorphisms classes of k-colored graphs are there on two vertices? On three vertices?

Solution: : On two vertices there is a single potential edge, which can be given any of the k colors. No need for computer calculations!
On three vertices the code on the homepage calculates the cycle index for S_{3} as

$$
1 / 6 * x_{0}^{3}+1 / 2 * x_{0} * x_{1}+1 / 3 * x_{2}
$$

i.e. there is one permutation of cycle type $1^{3}, 3$ of type $1^{1} 2^{1}$, and 2 of type 3^{1}. Polya's theorem tells us that specializing $x_{i} \rightarrow k$ gives us the number of k-colorings, we get

$$
1 / 6 * k^{3}+1 / 2 * k^{2}+1 / 3 * k
$$

When $k=2$ this is 4 . We go back to the previous program and check that, yes, the number of graphs on 3 vertices is 4 .
Now we boldly go one step beyond what was asked of us and plug in $n=4$. We get

$$
1 / 24 * \mathrm{k}^{6}+3 / 8 * \mathrm{k}^{4}+7 / 12 * \mathrm{k}^{2}
$$

colorings, for $k=2$ this is 11 , and we have already calculated that there are 11 graphs on 4 vertices.

