
Solutions for Exercises for TATA55, batch 4, 2023

December 2, 2023

1. (4p) Let N = 2n with n a positive integer, and let [N] = {1, 2, . . . ,N}. The symmetric group
SN acts on [N] in the natural way. Show that this induces an action on

(
N
n

)
, subsets of [N] of

cardinality n, by
σ.{a1, . . . , an} = {σ(a1), . . . , σ(an)},

and thus on the set

X = { {A,B} A ∩ B = ∅, A ∪ B = [N], |A| = |B| = n }

Use this to prove that
K = {σ ∈ SN σ.V = V for all V ∈ X }

is a normal subgroup of SN. Find this subgroup for n = 2, 3 and describe it, and the corre-
sponding quotient SN/K.

Solution: The verifications of the group actions beeing group actions are routine.

For n = 2, N = 4, we recall the exercise from B3 and that the normal subgroups of S4 are S4,
A4, 0, and

N = {()} ∪ {(12)(34), (13)(24), (14)(23)}.

Since kernels are normal subgroups, the kernel is one of these. We check that (123) ∈ A4 is
not in the kernel, since

(123).{{1, 2}, {3, 4}} = {{2, 3}, {1, 4}}

On the other hand, (12)(34) is, since

(12)(34).{{1, 2}, {3, 4}} = {{2, 1}, {4, 3}} (1)

(12)(34).{{1, 3}, {2, 4}} = {{2, 4}, {1, 3}} (2)

(12)(34).{{1, 4}, {2, 3}} = {{2, 3}, {1, 4}} (3)

So the kernel K is not trivial, nor does it contain A4, so it is N. We saw in B3 that S4/N ≃ S3.

For n = 3, N = 6, the possible normal subgroups are 0, A6, S6. Again we check that (123) ∈
A6 is not in the kernel, since

(123).{{1, 2, 4}, {3, 5, 6}} = {{2, 3, 4}, {1, 5, 6}}

Thus the kernel K is trivial.

2. (6p) The tiles of a 4x4 chessboard are colored either red or blue. How many non-equivalent
colorings are there, under the symmetries induced by

1



(a) Cyclic permutation of columns
(b) Simultaneous cyclic permutations of rows and columns
(c) dihedral symmetry?

Solution: In (a), the group is C4 = ⟨g⟩ and X = 24×4, so |X| = 216 = 65536 If the board is
a b c d

e f g h

i j k l

m n o p


then the action of C4 gives the following subgroup of SX:

g0 → ()

g1 → (abcd)(efgh)(ijkl)(mnop)

g2 → (ac)(bd)(eg)(fh)(ik)(jl)(mo)(np)

g3 → (adcb)(ehgf)(ilkj)(mpon)

Polya/Burnside now gives the number of orbits as

1

4
(216 + 2 ∗ 24 + 28) = 214 + 26 + 23 = 16456

In (b), we have the same group acting on X, but it is expressed as permutations on the board
elements in a different way. Here

g0 → ()

g1 → (afkp)(bglm)(chin)(dejo)

g2 → (ak)(fp)(bl)(gm)(ci)(hn)(dj)(eo)

g3 → (ahkn)(belo)(cfip)(dgjm)

So the number of orbits is once again

1

4
(216 + 2 ∗ 24 + 28) = 16456

In (c), the dihedral group D4 induces

() → ()

r → (ampd)(bioh)(cenh)(fjkg)

r2 → (ap)(md)(bo)(ih)(cn)(eh)(fk)(jg)

r3 → (adpm)(bhoi)(chne)(fgkj)

s → (m)(j)(g)(d)(ch)(bl)(fk)(ap)(ej)(in)

s2 → (bc)(fg)(jk)(no)(ad)(eh)(il)(mp)

s3 → type 1426

s4 → type 28

Hence the number of orbits is now
1

8
(216 + 2 ∗ 24 + 28 + 2 ∗ 210 + 2 ∗ 28) = 8548
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3. (3p) A simple graph on a finite set X is determined by its edge set E ⊆
(
X
2

)
. Two such graphs

are isomorphic if there is a permutation σ ∈ SX such that

E2 = σ.E1 = { {σ(a), σ(b)} {a, b} ∈ E1 } .

How many isomorphism classes of simple graphs are there, if |X| = 4? If |X| = 5?

Solution: We add the line

print(f’n={n}: {len(graphsiso)} graphs\n’)

to the code on the homepage and get 11 graphs on 4 vertices, and 34 on 5 vertices. My super-
computer at home was able to calculate that there is a whooping 156 graphs on 6 vertices!

4. (3p) We can generalize the concept of a simple graph on X be coloring the edges with k colors.
Such a k-colored graph can be described by a map f :

(
X
2

) → [k]; one of the colors is used to
indicate that the potential edge is not present in the graph. To such graphs f, g are ismorphic if
there is a σ ∈ SX such that f = g ◦ σ.

How many isomorphisms classes of k-colored graphs are there on two vertices? On three
vertices?

Solution: : On two vertices there is a single potential edge, which can be given any of the k

colors. No need for computer calculations!

On three vertices the code on the homepage calculates the cycle index for S3 as

1/6 ∗ x30 + 1/2 ∗ x0 ∗ x1 + 1/3 ∗ x2,

i.e. there is one permutation of cycle type 13, 3 of type 1121, and 2 of type 31. Polya’s theorem
tells us that specializing xi → k gives us the number of k-colorings, we get

1/6 ∗ k3 + 1/2 ∗ k2 + 1/3 ∗ k

When k = 2 this is 4. We go back to the previous program and check that, yes, the number of
graphs on 3 vertices is 4.

Now we boldly go one step beyond what was asked of us and plug in n = 4. We get

1/24 ∗ k6 + 3/8 ∗ k4 + 7/12 ∗ k2

colorings, for k = 2 this is 11, and we have already calculated that there are 11 graphs on 4
vertices.
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