Solutions to Exercises for TATA55, batch 5, 2023

December 27, 2023

1. (3p) Provide an explicit ring isomorphism $\frac{\mathbb{Z}[x]}{(4,6,3 x, 5 x)} \simeq \mathbb{Z}_{2}$.

Solution: The defining ideal of the qutient ring is $I=(2, x)$. The surjective ring homomorphism

$$
\begin{aligned}
& \phi: \mathbb{Z}[\mathrm{x}] \rightarrow \mathbb{Z}_{2} \\
& \phi(\mathrm{f}(\mathrm{x}))=[\mathrm{f}(0)]_{2}
\end{aligned}
$$

has kernel I, so the first isomorphism theorem shows that

$$
\frac{\mathbb{Z}[\mathrm{x}]}{\mathrm{I}} \ni \mathrm{f}(\mathrm{x})+\mathrm{I} \mapsto[\mathrm{f}(0)]_{2}
$$

is well-defined, and a ring isomorphism.
2. (3p) Solve the equation (in $\mathbb{Q}[x]$)

$$
f(x)\left(2 x^{3}+3 x^{2}+7 x+1\right)+g(x)\left(5 x^{4}+x+1\right)=x+3
$$

Solution: Put $a(x)=2 x^{3}+3 x^{2}+7 x+1, b(x)=5 x^{4}+x+1, c(x)=x+3$. Let $d(x)=\operatorname{gcd}(a(x), b(x)$. Then Euclides extended algorithm gives that

$$
d(x)=1=u(x) a(x)+v(x) \mathfrak{b}(x)
$$

with

$$
\begin{aligned}
& u(x)=-\frac{8088}{8539} x^{3}+\frac{1453}{8539} x^{2}-\frac{393}{8539} x-\frac{10348}{42695} \\
& v(x)=\frac{16176}{42695} x^{2}+\frac{21358}{42695} x+\frac{53043}{42695}
\end{aligned}
$$

So

$$
\mathfrak{c}(x)=\mathfrak{c}(x) \mathfrak{u}(x) \mathfrak{a}(x)+c(x) v(x) b(x) .
$$

Since $a(x)$ and $b(x)$ are relatively prime, the solutions to the homogeneous equation

$$
f_{h}(x) a(x)+g_{h}(x) b(x)=0
$$

are given by

$$
\left(f_{h}(x), g_{h}(x)\right)=\mathfrak{n}(x)(-b(x), a(x)),
$$

where $\mathfrak{n}(x)$ is an arbitrary polynomial. All solutions to the original equation are therefore

$$
(f(x), g(x))=c(x) *(u(x), v(x))+\mathfrak{n}(x) *(-b(x), a(x)) .
$$

Remark: similar to linear Diophantine equations over \mathbb{Z}, we should scale u, v by c , but we should not scale the homogeneous solutions $(-b(x), a(x))$ by $\mathfrak{n}(x) c(x)$ but rather by the general $\mathfrak{n}(x)$, lest we lose solutions.
3. (4p) List all ideals in $S=\mathbb{Z}_{7}[x] /(h(x))$ where $h(x)=x^{4}+2 x^{2}+2$. Is S an integral domain?
Solution: Since $h(x)=f(x) g(x)$ with $f(x)=x^{2}+5 x+3, g(x)=x^{2}+$ $2 x+3$, both irreducible, $I=(h)$ is not a prime ideal, and $S=\mathbb{Z}_{7}[x] / I$ is not a domain. By the correspondence theorem the ideals in S correspond to those in $\mathbb{Z}_{7}[x]$ that contain I, and those are precisely the principal ideals on factors of h. So the ideals in S are

$$
(0),(f)+\mathrm{I},(\mathrm{~g})+\mathrm{I}, \mathrm{~S} .
$$

4. (3p) Factor $11 y^{5}-55 y^{4}+85 y^{3}-30 y^{2}-35 y+39 \in \mathbb{Z}[x]$. (Hint: try a linear substitution)
Solution: Call the polynomial $f(y)$, then

$$
f(y+1)=11 y^{5}-25 y^{3}+5 y^{2}-5 y+15
$$

which is irreducible by Eisensteins criteria. Hence, $f(y)$ is irreducible, as well.
5. (4p) Let $\mathrm{R}=\mathbb{Q}[u, v, w] /\left(u^{2} v^{2}-w^{3}\right)$. Find a finitely many monomials $x^{a_{j}} y^{b_{j}}$ in $S=\mathbb{Q}[x, y]$ such that $R \simeq \mathbb{Q}\left[x^{a_{1}} y^{b_{1}}, \ldots, x^{a_{r}} y^{b_{r}}\right]$.
Solution: Define a surjective ring homomorphism

$$
\phi: \mathbb{Q}[u, v, w] \rightarrow \mathbb{Q}[x, y]
$$

by specifying that

$$
\begin{aligned}
\phi(u) & =x^{2} y \\
\phi(v) & =x y^{2} \\
\phi(w) & =x^{2} y^{2}
\end{aligned}
$$

end then extending this in the unique way that satisfies the rules for a ring homomorphism, i.e.,
$\phi\left(\sum \mathrm{c}_{a, b, c} u^{a} v^{b} w^{c}\right)=\sum \mathrm{c}_{\mathrm{a}, \mathrm{b}, \mathrm{c}} \phi\left(u^{\mathrm{a}} v^{\mathrm{b}} w^{\mathrm{c}}\right)=\sum \mathrm{c}_{a, b, c} \phi(u)^{\mathrm{a}} \phi(v)^{\mathrm{b}} \phi(w)^{\mathrm{c}}$
Then clearly $u^{2} v^{2}-w^{3} \in \operatorname{ker} \phi$. Let us introduce the integer matrix

$$
A=\left(\begin{array}{lll}
2 & 1 & 2 \\
1 & 2 & 2
\end{array}\right)
$$

Then a monomial in u, v, w with exponent vector (a, b, c) gets mapped to the monomial in x, y with exponent vector $A *(u, v, w)^{t}$, so a binomial $u^{a} v^{b} w^{c}-u^{d} v^{e} w^{f}$ gets mapped zero iff $A *(a, b, c)^{t}=A *(d, e, f)$, i.e. if $(a, b, c)-(d, e, f)$ lies in the (right) nullspace of A. This nullspace is

$$
\left\{n(2,2,-3)^{\mathrm{t}} \mid n \in \mathbb{Z}\right\}
$$

so since the kernel of the ring homomorphism ϕ is obviously a binomial ideal, it is precisely $\left(u^{2} v^{2}-w^{3}\right)$.

The first isomorphism theorem then gives that R is isomorphic to the image of ϕ, which is the subring (noth the ideal!) generated by $x^{2} y, x y^{2}, x^{2} y^{2}$.
6. (6p) Show that
(a) not every function from \mathbb{Z}_{2}^{n} to \mathbb{Z}_{2} is \mathbb{Z}_{2}-linear,
(b) but all such functions are polynomial,
(c) and they correspond bijectively to cosets of the ideal

$$
\left(x_{1}^{2}+x_{1}, x_{2}^{2}+x_{2}, \ldots, x_{n}^{2}+x_{n}\right) \subset \mathbb{Z}_{2}\left[x_{1}, \ldots, x_{n}\right] .
$$

Solution: $A \mathbb{Z}_{2}$ linear function must map zero to zero; the constant 1 function does not.

Let $\mathrm{f}: \mathbb{Z}_{2}^{\mathrm{n}} \rightarrow \mathbb{Z}_{2}$. Each $\mathbf{u} \in \mathbb{Z}_{2}^{n}$ correspond to a subset $\mathrm{S} \subseteq[\mathrm{n}]=$ $\{1,2, \ldots, n\}$, and to a squarefree monomial $m_{S}=\prod_{i \in S} x_{i} \in \mathbb{Z}_{2}\left[x_{1}, \ldots, x_{n}\right]$.

Let $p=\sum_{\{S \subseteq[n] \mid f(S)=1\}} m_{S}$. Then evaluating the polynomial p gives the function f.

As an example, if

$$
f\left(\left(x_{1}, x_{2}, x_{3}\right)\right)= \begin{cases}1 & \text { if } x_{1}+x_{2}+x_{3}=1 \in \mathbb{Z}_{2} \\ 0 & \text { otherwise }\end{cases}
$$

then the corresponding polynomial is

$$
p=x_{1}+x_{2}+x_{3}+x_{1} x_{2} x_{3} .
$$

Finally, two polynomials p, q give the same evaluation function iff $p-q$ is constantly zero. Put $I=\left(x_{1}^{2}+x_{1}, \ldots, x_{n}^{2}+x_{n}\right)$. Then clearly every polynomial in I evaluates to the constant zero function.
Conversely, let $p\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}_{2}\left[x_{1}, \ldots, x_{n}\right]$. Since $x_{j}^{k}+x_{j}$ is constantly zero, any x_{j}^{k}-term may be replaced with x_{j} in p without changing the corresponding evaluation function. Thus p is equivalent in this sense to a polynomial with squarefree monomials. All squarefree monomials correspond to the characteristic function on the corresponding subset of [n], for which a value may be freely prescribed - hence all polynomials with only squarefree monomials in their support yield different evaluations. The conclusion follows.

