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1 Exercises

1. Let K = Q(a), where a is a root of a3 = 2. Let L = K(b), where b is
a root of b2 = −3.

(a) Find the minimal polynomial of a/b over K, and over Q
(b) Same for a+ b

(c) What is [L : Q]?

Solution:

(a) By writing 1, a/b, (a/b)2 using the basis 1, b for L as a K-vector
space, we find linear relations between the coefficent vectors and
get that x2 + 1/3 ∗ a2 is the minimal polynomial for a/b over K.
If we instead use the basis 1, a, a2, b, ab, a2b for L as a Q-vector
space, we get that x6 + 4/27 is the minimal polynomial over Q.
Alternatively: (a/b)6 = −4/27, so the minimal polynomial over
Q divides x6 + 4/27. But 27x6 + 4 is irreducible, hence so is
x6 + 4/27. Similarly, (a/b)2 = −a2/3 so the minimal polynomial
over Q(a) divides x2 + a2/3. This polynomial has no zeroes in
Q(a), hence it is irreducible.

(b) x2 − 2 ∗ a ∗ x+ a2 + 3 over K and

x6 + 9 ∗ x4 − 4 ∗ x3 + 27 ∗ x2 + 36 ∗ x+ 31

over Q.
We can show this by first proving that Q(a + b) = Q(a, b). Put
u = a+ b, then a = u− b so

2 = a3 = (u− b)3 = u3 − 3u2b+ 3ub2 + b3 = u3 − 3u2b− 9u− 4b

hence
2− u3 − 9u = b(−3u2 − 4)
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from which we get that b ∈ Q(u). Then a ∈ Q(u), as well.
Since [Q(a, b) : Q] = [Q(a, b) : Q(a)][Q(a) : Q] = 3 ∗ 2 = 6, the
minimal polynomial of u over must have degree 6. Hence, the
relation

(2− u3 − 9u)2 = (b(−3u2 − 4))2 = −3(−3u2 − 4)2

yields the minimal polynomial over Q.
Over Q(a) we use that

−3 = b2 = (u− a)2 = u2 − 2a+ a2

(c) [K : Q] = 3 and b ̸∈ K, so [L : K] = 2. Hence, by the tower
theorem, [L : Q] = 6.

2. Let f(x) = x4 + x2 + x+ 1 ∈ Z3[x].

(a) Show that f is irreducible over Z3, then factor f over K = Z3[x]
(f(x))

(b) Consider the element a = x + (f(x)) ∈ K. What is its (multi-
plicative) order? Does it generate K∗?

(c) Find a generator of K∗.

Solution:

(a) f has no zeroes over Z3, easy check. It can not be factored as

x4 + x2 + x+ 1 = (x2 + c1x+ c0)(x
2 + d1x+ d2).

To see this, equate coefficients for like powers of x, and show that
the resulting linear system of equations is not solvable. Hence, f
is irreducible.
We put K = Z3(a) with a satisfying the relation a4 = −a2−a−1.
Then (x − a) must divide f ; in fact, f must split in K. Indeed,
we see that (recall that 2 = −1)

f = (x+2∗a)∗(x+2∗a2+2∗a+1)∗(x+a3+a2+2∗a+2)∗(x+2∗a3)

(b) Since |K∗| = 34−1 = 80, the order of a is a divisor of 80 = 24∗5, so
1,2,4,5,8,10,16,20,40, or 80. Using the relation a4 = −a2 − a− 1,
and calculating powers of a, we see that the order of a is 40.
Hence, a is not a generator of the cyclic group K∗.

(c) There are ϕ(80) = 32 generators of K∗, so picking an element at
random and checking its multiplicative order has a good chance
of working. A better method is to chose an element b with b2 = a.
One such is b = a2 + a3.
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3. Find the splitting fields of the following polynomials. Factor the poly-
nomial in this field, and find the degree of the extension. Prove all
your results in excruciating detail! The best way to ensure correctness
is to construct a tower of Kronecker extensions.

(a) f(x) = x3 + 2x2 + 3x+ 1 ∈ Q[x]

(b) g(x) = x3 + 2x2 + 3x+ 1 ∈ Z7[x]

(c) h(x) = x3 + 2x2 + 3x+ 1 ∈ Z13[x]

Solution:

(a) The polynomial f has no rational zeroes, since such a zero would
have to be 1 or -1, by the rational root theorem.
We thus put K = Q(b) = Q[x]

(x3+2x2+3x+1)
. Then f factors in K[x]

as
(x− b) ∗ (x2 + (b+ 2) ∗ x+ b2 + 2 ∗ b+ 3)

The latter factor has no zeroes in K, hence it is irreducible. We
can alternatively think as follows: the original polynomial f has a
single real zero r, and K is isomorphic to Q(r) ⊂ R. The complex
zeroes are as yet uncaptured.
We need to go on; we put

L = K[x]/(x2 + (b+ 2) ∗ x+ b2 + 2 ∗ b+ 3) = K(c).

Then f splits over L:

f = (x+ c+ b+ 2) ∗ (x− c) ∗ (x− b).

We get that the degree of the splitting field is

[L : Q] = [L : K][K : Q] = 2 ∗ 3 = 6.

(b) Over Z7 we have that f(1) = 0, so x− 1 is a factor; indeed

f = (x+ 6)(x2 + 3 ∗ x+ 6)

Hence, the splitting field is Z7[x]/(x
2 + 3x + 6) = Z7(c), over

which f splits as

f = (x+ 6) ∗ (x+ c+ 3) ∗ (x+ 6 ∗ c)

The splitting field has degree 2 over the prime subfield.
(c) f has no zeroes in Z13, so since it has degree 3 it is irreducible.

We form
K = Z13[x]/(x

3 + 3x+ 6) = Z13(c)

and factor f as

f = (x+ 12 ∗ c) ∗ (x+ 2 ∗ c2 + 2) ∗ (x+ 11 ∗ c2 + c)

So K is the splitting field; it has degree 3 over the prime subfield.
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4. Let n be a positive integer, and let Mn be the set of n × n-matrices
with entries in Z3. Let Gn denote the subset of invertible matrices.

(a) Calculate |Mn| and |Gn|.
(b) Calculate the number of matrices in Mn and in Gn with determi-

nant [2]3.

(c) Calculate the fraction |Gn|
|Mn| .

Solution: Obviously Mn has 3(n
2) elements. A matrix is in Gn if its

first row is non-zero, 3n−1 choices, the second row is not parallell with
the first, 3n − 3 choices, and so on; the k’th row must not lie in the
span of the k − 1 previous rows, so there are 3n − 3k−1 valid choices.
Hence,

|Gn| =
n∏

k=1

(3n − 3k−1).

An invertible matrix has determinant [1]3 or [2]3. The map that ex-
changes the first and second row of an invertible matrix is a bijection
on Gn which changes the sign of the determinant. This shows that
there are as many matrices in Gn with determinant 1 as with deter-
minant −1, in other words, |Gn|/2 of each. Of course, every matrix in
Mn with determinant -1 is in Gn, so there are |Gn|/2 of these, as well.

Finally, we calculate

Gn

Mn
= 3−(n2)

n∏
k=1

(3n − 3k−1)

=

n∏
k=1

3−n
n∏

k=1

(3n − 3k−1)

=

n∏
k=1

(1− 3k−1−n)

=

n∏
ℓ=1

(1− 3−ℓ)

This is a Pochhammar symbol, which approaches the limit

n∏
ℓ=1

(1− 3−ℓ) ≈ 0.5601

which is an evaluation of Euler’s function, see for instance Wikipedia.
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