

Types of ideals Ideal calculus Ideals in \mathbb{Z}

Abstract Algebra, Lecture 11 Ideals in commutative, unitary rings

Jan Snellman¹

¹Matematiska Institutionen Linköpings Universitet

Linköping, fall 2019

Lecture notes availabe at course homepage http://courses.mai.liu.se/GU/TATA55/

Types of ideals Ideal calculus Ideals in $\mathbb Z$

1 Types of ideals

Principal ideals Prime ideals Maximal ideals Ideal calculus

Sum of ideals

Monomial ideals Intersection of ideals Product of ideals Radicals of ideals Primary ideals deals in Z

Summary

Types of ideals Ideal calculus Ideals in $\mathbb Z$

1 Types of ideals

Principal ideals Prime ideals Maximal ideals 2 Ideal calculus Sum of ideals Summary

Monomial ideals

Intersection of ideals Product of ideals Radicals of ideals Primary ideals

Types of ideals Ideal calculus Ideals in $\mathbb Z$

1 Types of ideals

Principal ideals Prime ideals Maximal ideals 2 Ideal calculus Sum of ideals Monomial ideals Intersection of ideals Product of ideals Radicals of ideals Primary ideals 3 Ideals in Z

Summary

Jan Snellman

Types of ideals

Principal ideals

Maximal ideals

Ideal calculus Ideals in \mathbb{Z}

Throughout this lecture, R, S will denote commutative, unitary rings, and I, J will denote ideals.

Definition

If $a \in R$ then $(a) = aR = \{ ar | r \in R \}$ is the *principal ideal* generated by a. The ring R is a principal ideal ring if all ideals in it are principal.

Theorem

The ring \mathbb{Z} is a PID.

Proof.

All ideals are also additive subgroups; for Z, those subgroups are $n\mathbb{Z}$.

Jan Snellman

Types of ideals

Principal ideals

Prime ideals Maximal ideals

Ideal calculus Ideals in \mathbb{Z}

Theorem

Any quotient of a PID is a PID.

Proof.

If *L* is an ideal of R/I, then, by the correspondence theorem, L = J/I for some ideal $J \supseteq I$. This ideal is of the form J = (b) since *R* is a PID. Take a coset $c + I \in J/I \subset R/I$. Then $c \in J$, so c = rb for some $r \in R$, hence c + I = rb + I = rb + rI = r(b + I). This shows that L = (b + I).

Example

The ring $\mathbb{Z}_{12} = \frac{\mathbb{Z}}{12\mathbb{Z}}$ is a PID. The ideal $L = \{[0]_{12}, [4]_{12}, [8]_{12}\}$ lifts to $4\mathbb{Z} \supset 12\mathbb{Z}$. We have that $4\mathbb{Z} = (4)$. Consequently, $L = ([4]_{12})$.

Jan Snellman

Types of ideals

Principal ideals

Prime ideals Maximal ideals

Ideal calculus Ideals in \mathbb{Z}

Theorem

The polynomial ring $\mathbb{Z}[x]$ is not a PID.

Proof.

Let $I = (2, x) = \{2f(x) + xg(x) | f(x), g(x) \in \mathbb{Z}[x]\}$. Suppose, towards a contradiction, that I = (h(x)). Since $2 \in I$, 2 = a(x)h(x). So h(x) is a constant, say h(x) = h. Since $x \in I$, x = b(x)h. So b(x) = cx + d, and in fact d = 0, $c = \pm 1$, $h = \pm 1$. But then $(h(x)) = \mathbb{Z}[x]$, a contradiction.

Types of ideals Principal ideals

Prime ideals

Maximal ideals

Ideal calculus Ideals in \mathbb{Z}

Definition

I is a *prime ideal* if

 $xy \in I \implies x \in I \text{ or } y \in I.$

Lemma

(0) is a prime ideal iff R is a domain.

Proof.

If xy = 0 but $x, y \neq 0$ then x is a non-zero zero-divisor, and R is not a domain.

If R is not a domain, it has a non-zero zero-divisor x, so that xy = 0 for $y \neq 0$, thus (0) is not prime.

Types of ideals Principal ideals Prime ideals

Maximal ideals

Ideal calculus

Ideals in \mathbb{Z}

Theorem

In \mathbb{Z} , the zero ideal is prime, as is (p) with p prime. Other ideals are non-prime.

Proof.

If n = ab with 1 < a, b < n then $ab \in (n)$ but $a, b \notin (n)$, so (n) is not prime.

If p is prime then $n \in (p)$ iff p|n; hence $ab \in (p)$ iff p|ab iff p|a or p|b.

Types of ideals

Principal ideals Prime ideals

Maximal ideals

Ideal calculus Ideals in \mathbb{Z}

Theorem

I is prime iff R/I is a domain.

Proof.

 $xy \in I$ iff (x + I)(y + I) = (0 + I).

Lemma

Let $n \geq 2$. $\mathbb{Z}_n = \frac{\mathbb{Z}}{n\mathbb{Z}}$ is a domain iff n is prime.

Jan Snellman

Types of ideals Principal ideals Prime ideals Maximal ideals

Ideal calculus Ideals in \mathbb{Z}

Definition

I is maximal if it is a proper ideal not properly contained in any other proper ideal.

Example

Consider again (we gave this example to illustrate the correspondence theorem) the proper ideals of \mathbb{Z}_{12} . These are all principal, namely

 $\begin{aligned} ([3]_{12}) &= \{ [0]_{12}, [3]_{12}, [6]_{12}, [9]_{12} \}, \\ ([2]_{12}) &= \{ [0]_{12}, [4]_{12}, [6]_{12}, [8]_{12}, [10]_{12} \}, \\ ([6]_{12}) &= \{ [0]_{12}, [6]_{12} \}, \quad ([4]_{12}) = \{ [0]_{12}, [4]_{12}, [8]_{12} \}, \quad ([0]_{12}) = \{ [0]_{12} \} \end{aligned}$

and are contained in each other as follows:

Jan Snellman

Types of ideals Principal ideals Prime ideals Maximal ideals

Ideal calculus Ideals in \mathbb{Z}

Types of ideals Principal ideals Prime ideals Maximal ideals

iviaximar ideais

Ideal calculus Ideals in \mathbb{Z}

Theorem

If I contains a unit, then I = R.

Proof.

```
Let r \in I be a unit. Then 1 = r^{-1}r \in I. Hence, for any s \in R, s = 1s \in I.
```

Jan Snellman

Types of ideals Principal ideals Prime ideals Maximal ideals

Ideal calculus Ideals in $\mathbb Z$

Theorem

R is a field iff its only ideals are (0), (1).

Proof.

Suppose R field, and $I \neq (0)$ an ideal. Then I contains a unit, so I = (1). Conversely, suppose that (0), (1) are the only ideals in R. Take $r \neq 0$. The ideal I = (r) is non-zero, so I = (1). Since $1 \in I$, 1 = sr for some $s \in R$. Hence r is a unit.

Corollary

R is a field iff (0) is maximal.

Jan Snellman

Types of ideals

Principal ideals Prime ideals Maximal ideals

Ideal calculus Ideals in \mathbb{Z}

Theorem

I is maximal iff R/I is a field.

Proof.

R/I is a field iff its only proper ideal is the zero ideal. By the correspondence theorem, this happens iff the only proper ideal containing I is I.

Theorem

The maximal ideals in \mathbb{Z} are (p) for p prime.

Types of ideals Principal ideals Prime ideals Maximal ideals

Ideal calculus Ideals in \mathbb{Z}

Theorem

Any maximal ideal is prime. If R is finite, then any prime ideal is maximal.

Proof.

Fields are domains; finite domains are fields.

Types of ideals Principal ideals Prime ideals Maximal ideals

Ideal calculus Ideals in \mathbb{Z}

Definition

R is local if it has a unique maximal ideal.

Example

 $\mathbb Z$ is not local; $\mathbb Z_4$ is.

Example

Any field is local.

Types of ideals Principal ideals Prime ideals Maximal ideals

Ideal calculus

Ideals in \mathbb{Z}

Theorem

If the set of non-units in R form an ideal I, then I is maximal, and R is local.

Proof.

If $I \subsetneq J$, take $r \in J \setminus I$. Then r is a unit, so J = R. Hence I is maximal. If L is any proper ideal in R it consists exclusively of non-units, hence is contained in I.

Types of ideals Principal ideals Prime ideals

Maximal ideals

Ideal calculus

Ideals in $\ensuremath{\mathbb{Z}}$

Example

Let $R = \mathbb{Q}[[x]]$, the set of formal power series in one indeterminate, with coefficients in \mathbb{Q} . A general element is

$$F(x) = a_0 + a_1 x + a_2 x^2 + \dots, \qquad a_j \in \mathbb{Q}$$

We have that

$$(1 + x + x^2 + x^3 + \dots)(1 - x) = 1,$$

so $(1-x)^{-1} = 1 + x + x^2 + x^3 + \ldots$, and $(1 + x + x^2 + x^3 + \ldots)^{-1} = 1 - x$. In general, we claim that f(x) is invertible iff $a_0 \neq 0$.

Types of ideals

Principal ideals Prime ideals Maximal ideals

Ideal calculus

Ideals in \mathbb{Z}

Example (cont)

To see this, consider

$$(a_0 + a_1x + a_2x^2 + \dots)(b_0 + b_1x + b_2x^2 + \dots) = 1$$

This is solvable for the b_i 's iff $a_0 \neq 0$; collecting powers of x we have

$$a_0 b_0 = 1$$

 $a_1 b_0 + a_0 b_1 = 0$
 $a_2 b_0 + a_1 b_1 + a_0 b_2 = 0$

which can be solved inductively iff $a_0 \neq 0$. Let *I* denote the set of power series with zero constant term. Then I = (x), a principal ideal. So *I* is maximal, and *R* is local.

Example

Jan Snellman

Types of ideals Principal ideals Prime ideals Maximal ideals

Ideal calculus Ideals in \mathbb{Z}

Let $R = \mathbb{Q}[x]$, and let $I = (x^2 + 1)$. Then I is prime. Put $T = \left\{ \frac{f(x)}{g(x)} \middle| f(x) \in R, g(x) \in R \setminus I \right\}$. Check that this is a ring! We claim that T is local, with the unique maximal ideal

$$J = \left\{ \left. \frac{f(x)}{g(x)} \right| f(x) \in I, \, g(x) \in R \setminus I \right\}$$

1 If $f(x), g(x) \notin I$ then $\frac{1}{\frac{f(x)}{g(x)}} = \frac{g(x)}{f(x)}$, so anything outside J is invertible.

2 If $\frac{f(x)}{g(x)}$, with $g(x) \notin J$, is invertible then exists $\frac{h(x)}{k(x)}$ with $k(x) \notin J$ such that

$$\frac{f(x)h(x)}{g(x)k(x)} = 1 \implies f(x)h(x) = g(x)k(x).$$

Since $g(x)k(x) \notin I$ we have that $f(x) \notin I$. So anything invertible is outside J.

Since J consists precisely of the non-units, and is an ideal, it is the unique maximal ideal.

Jan Snellman

Types of ideals

Ideal calculus

Sum of ideals

Monomial ideals Intersection of ideals Product of ideals Radicals of ideals Primary ideals

Ideals in $\ensuremath{\mathbb{Z}}$

Definition

If I, J are ideals in R, then their sum

$$I + J = \{ i + j | i \in I, j \in J \}$$

is the smallest ideal containing both. When I = (i), J = (j) are both principal, we write

$$(i) + (j) = (i,j),$$

and similarly for *finitely generated* ideals.

Example

In $\mathbb{C}[x,y]$ we have that $(x^3,xy) + (x^2y,y^4) = (x^3,xy,y^4)$ (picture)

Jan Snellman

Types of ideals

Ideal calculus

Sum of ideals Monomial ideals

Intersection of ideals Product of ideals Radicals of ideals Primary ideals

Ideals in $\ensuremath{\mathbb{Z}}$

Definition

If $R = K[x_1, ..., x_n]$, where K is a field, then a monomial is an element of the form $x_1^{a_1} \cdots x_n^{a_n}$, and a monomial ideal is an ideal I which satisfies the following equivalent conditions:

- $I = (m_1, \ldots, m_r)$ where the m_i 's are monomials
- If $f = \sum_{m} c_m m \in R$ then $f \in I$ iff all monomials $m \in I$.
- As a K-vector space, I has a basis consisting of monomials.

So a monomial ideal is determined by the monomials contain therein; in fact, those monomials form a monoid ideal of the monoid of monomials (under multiplication).

Types of ideals

Ideal calculus Sum of ideals Monomial ideals Intersection of ideals Product of ideals Radicals of ideals Primary ideals

Ideals in \mathbb{Z}

Jan Snellman

Types of ideals

Ideal calculus

Sum of ideals Monomial ideals Intersection of ideals Product of ideals Radicals of ideals Primary ideals

Ideals in \mathbb{Z}

Types of ideals

Ideal calculus

Sum of ideals Monomial ideals Intersection of ideals Product of ideals Radicals of ideals

Primary ideals

Ideals in $\ensuremath{\mathbb{Z}}$

Definition

If I, J are ideals in R, then their intersection $I \cap J$ is the largest ideal contained in both.

Example

In $\mathbb{C}[x, y]$ we have that

$$(x^3, xy) \cap (x^2y, y^4) = (xy^4, x^2y)$$

(picture)

Jan Snellman

Types of ideals

Ideal calculus

Sum of ideals Monomial ideals Intersection of ideals **Product of ideals** Radicals of ideals

Radicals of ide Primary ideals

Ideals in \mathbb{Z}

Definition

If I, J are ideals in R, then, by abuse of notation, IJ denotes the ideal generated by the set IJ, i.e., all finite sums of elements in IJ:

$$\left\{ \left| \sum_{k=1}^{r} i_k j_k \right| 1 \le r < \infty, \ i_k \in I, \ j_k \in J \right\}$$

Lemma

 $IJ \subseteq I \cap J.$

Example

In $\mathbb{C}[x, y]$ we have that

$$(x^3, xy)(x^2y, y^4) = (x^5y, xy^5, x^3y^2)$$

Jan Snellman

Types of ideals

Ideal calculus

Sum of ideals Monomial ideals Intersection of ideals Product of ideals Radicals of ideals Primary ideals

Ideals in $\ensuremath{\mathbb{Z}}$

Definition

If I is an ideal in R, then its radical is

$$\sqrt{I} = \{ r \in R | r^n \in I \text{ for some } n > 0 \}$$

The ideal *I* is radical if it equals its radical.

Theorem

•
$$I \subseteq \sqrt{I} = \sqrt{\sqrt{I}}$$

• I is radical if and only if R/I is reduced, i.e., lacks nilpotent elements

Example

In $\mathbb{C}[x, y]$ we have that

$$\sqrt{(x^3, xy)} = (x)$$

Types of ideals

Ideal calculus

Sum of ideals Monomial ideals Intersection of ideals Product of ideals Radicals of ideals Primary ideals

Ideals in \mathbb{Z}

Definition

I is a primary ideal if

$$xy \in I \implies x \in I \text{ or } y \in \sqrt{I}$$

Lemma

I is primary iff all zero-divisors of R/I are nilpotent.

Example

In $\mathbb{C}[x, y]$ we have that (x^3, xy) is not primary, since $x * y \in I$, $x \notin I$, $y \notin \sqrt{I}$. However, the ideal can be decomposed as an intersection of primary ones:

$$(x^3, xy) = (x) \cap (x^3, y)$$

Jan Snellman

Types of ideals Ideal calculus Ideals in Z

Recall that all ideals in $\ensuremath{\mathbb{Z}}$ are principal.

Theorem

- For non-zero ideals of $\mathbb Z$ it holds that
 - $(n) \subseteq (m) \text{ iff } m | n$
 - **2** $(n) + (m) = (\gcd(n, m))$
 - **3** $(n) \cap (m) = (lcm(n,m))$
 - **4** (n)(m) = (nm)
 - **5** $\sqrt{(p_1^{a_1} \cdots p_r^{a_r})} = (p_1 \cdots p_r)$
 - **(***n***)** *is prime iff* (*n***)** *is maximal iff n is a prime number.*
 - (*n*) is radical iff *n* is square-free
 - **(**n) is primary iff n is a prime power

Jan Snellman

Types of ideals Ideal calculus Ideals in \mathbb{Z}

Proof.

1 If n = ms then $n \in (m)$ hence $(n) \subseteq (m)$. Conversely if $(n) \subseteq (m)$ then $n \in (m)$ hence n = ms.

Put d = gcd(n, m). Then d|n, d|m, so (n) ⊆ (d), (m) ⊆ (d). But (n) + (m) is the smallest ideal containing (n) and (m), so (n) + (m) ⊆ (d).
Conversely, by Bezout, d = xn + ym ∈ (n) + (m), so (d) ⊆ (n) + (m).

3 Put $\ell = \text{lcm}(n, m)$. Then $\ell = an$, $\ell = bm$, so $\ell \in (n) \cap (m)$, hence $(\ell) \subseteq (n) \cap (m)$.

Conversely, if $s \in (n) \cap (m)$ then s = xn, s = ym so it is a common multiple of n and m, hence divisible by ℓ . It follows that $s \in (\ell)$.