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Throughout this lecture, R, S will denote commutative, unitary rings, and

I , J will denote ideals.

Definition

If a ∈ R then (a) = aR = { ar r ∈ R } is the principal ideal generated by a.

The ring R is a principal ideal ring if all ideals in it are principal.

Theorem

The ring Z is a PID.

Proof.

All ideals are also additive subgroups; for Z , those subgroups are nZ.
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Theorem

Any quotient of a PID is a PID.

Proof.

If L is an ideal of R/I , then, by the correspondence theorem, L = J/I for

some ideal J ⊇ I . This ideal is of the form J = (b) since R is a PID. Take

a coset c + I ∈ J/I ⊂ R/I . Then c ∈ J, so c = rb for some r ∈ R, hence

c + I = rb + I = rb + rI = r(b + I ). This shows that L = (b + I ).

Example

The ring Z12 =
Z

12Z is a PID. The ideal L = {[0]12, [4]12, [8]12} lifts to

4Z ⊃ 12Z. We have that 4Z = (4). Consequently, L = ([4]12).
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Theorem

The polynomial ring Z[x ] is not a PID.

Proof.

Let I = (2, x) = { 2f (x) + xg(x) f (x), g(x) ∈ Z[x ] }. Suppose, towards a

contradiction, that I = (h(x)).

Since 2 ∈ I , 2 = a(x)h(x). So h(x) is a constant, say h(x) = h.

Since x ∈ I , x = b(x)h. So b(x) = cx + d , and in fact d = 0, c = ±1,

h = ±1. But then (h(x)) = Z[x ], a contradiction.
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Definition

I is a prime ideal if

xy ∈ I =⇒ x ∈ I or y ∈ I .

Lemma

(0) is a prime ideal iff R is a domain.

Proof.

If xy = 0 but x , y 6= 0 then x is a non-zero zero-divisor, and R is not a

domain.

If R is not a domain, it has a non-zero zero-divisor x , so that xy = 0 for

y 6= 0, thus (0) is not prime.
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Theorem

In Z, the zero ideal is prime, as is (p) with p prime. Other ideals are

non-prime.

Proof.

If n = ab with 1 < a, b < n then ab ∈ (n) but a, b 6∈ (n), so (n) is not

prime.

If p is prime then n ∈ (p) iff p|n; hence ab ∈ (p) iff p|ab iff p|a or p|b.
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Theorem

I is prime iff R/I is a domain.

Proof.

xy ∈ I iff (x + I )(y + I ) = (0 + I ).

Lemma

Let n ≥ 2. Zn = Z
nZ is a domain iff n is prime.
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Definition

I is maximal if it is a proper ideal not properly contained in any other

proper ideal.

Example

Consider again (we gave this example to illustrate the correspondence

theorem) the proper ideals of Z12. These are all principal, namely

([3]12) = {[0]12, [3]12, [6]12, [9]12} ,

([2]12) = {[0]12, [4]12, [6]12, [8]12, [10]12} ,

([6]12) = {[0]12, [6]12} , ([4]12) = {[0]12, [4]12, [8]12} , ([0]12) = {[0]12}

and are contained in each other as follows:
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Example (contd.)

([3]12) ([2]12)

([6]12) ([4]12)

([0]12)

The maximal ideals are ([3]12) and ([2]12).
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Theorem

If I contains a unit, then I = R.

Proof.

Let r ∈ I be a unit. Then 1 = r−1r ∈ I . Hence, for any s ∈ R,

s = 1s ∈ I .
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Theorem

R is a field iff its only ideals are (0), (1).

Proof.

Suppose R field, and I 6= (0) an ideal. Then I contains a unit, so I = (1).

Conversely, suppose that (0), (1) are the only ideals in R. Take r 6= 0. The

ideal I = (r) is non-zero, so I = (1). Since 1 ∈ I , 1 = sr for some s ∈ R.

Hence r is a unit.

Corollary

R is a field iff (0) is maximal.
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Theorem

I is maximal iff R/I is a field.

Proof.

R/I is a field iff its only proper ideal is the zero ideal. By the

correspondence theorem, this happens iff the only proper ideal containing

I is I .

Theorem

The maximal ideals in Z are (p) for p prime.
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Theorem

Any maximal ideal is prime. If R is finite, then any prime ideal is maximal.

Proof.

Fields are domains; finite domains are fields.
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Definition

R is local if it has a unique maximal ideal.

Example

Z is not local; Z4 is.

Example

Any field is local.
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Theorem

If the set of non-units in R form an ideal I , then I is maximal, and R is

local.

Proof.

If I ( J, take r ∈ J \ I . Then r is a unit, so J = R. Hence I is maximal.

If L is any proper ideal in R it consists exclusively of non-units, hence is

contained in I .
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Example

Let R = Q[[x ]], the set of formal power series in one indeterminate, with

coefficients in Q. A general element is

f (x) = a0 + a1x + a2x
2 + . . . , aj ∈ Q

We have that

(1 + x + x2 + x3 + . . . )(1 − x) = 1,

so (1− x)−1 = 1+ x + x2+ x3+ . . ., and (1+ x + x2+ x3+ . . . )−1 = 1− x .

In general, we claim that f (x) is invertible iff a0 6= 0.



Abstract Algebra, Lecture 11

Jan Snellman

Types of ideals
Principal ideals

Prime ideals

Maximal ideals

Ideal calculus

Ideals in Z

Example (cont)

To see this, consider

(a0 + a1x + a2x
2 + . . . )(b0 + b1x + b2x

2 + . . . ) = 1

This is solvable for the bi ’s iff a0 6= 0; collecting powers of x we have

a0b0 = 1

a1b0 + a0b1 = 0

a2b0 + a1b1 + a0b2 = 0

...

which can be solved inductively iff a0 6= 0.

Let I denote the set of power series with zero constant term. Then

I = (x), a principal ideal. So I is maximal, and R is local.
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Example

Let R = Q[x ], and let I = (x2 + 1). Then I is prime. Put

T =
{

f (x)
g(x) f (x) ∈ R, g(x) ∈ R \ I

}
. Check that this is a ring! We claim that T

is local, with the unique maximal ideal

J =

{
f (x)

g(x)
f (x) ∈ I , g(x) ∈ R \ I

}

1 If f (x), g(x) 6∈ I then 1
f (x)
g(x)

= g(x)
f (x) , so anything outside J is invertible.

2 If f (x)
g(x) , with g(x) 6∈ J, is invertible then exists h(x)

k(x) with k(x) 6∈ J such that

f (x)h(x)

g(x)k(x)
= 1 =⇒ f (x)h(x) = g(x)k(x).

Since g(x)k(x) 6∈ I we have that f (x) 6∈ I . So anything invertible is outside

J.

Since J consists precisely of the non-units, and is an ideal, it is the unique

maximal ideal.
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Definition

If I , J are ideals in R, then their sum

I + J = { i + j i ∈ I , j ∈ J }

is the smallest ideal containing both. When I = (i), J = (j) are both

principal, we write

(i) + (j) = (i , j),

and similarly for finitely generated ideals.

Example

In C[x , y ] we have that (x3, xy) + (x2y , y4) = (x3, xy , y4) (picture)
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Definition

If R = K [x1, . . . , xn], where K is a field, then a monomial is an element of

the form xa11 · · · xann , and a monomial ideal is an ideal I which satisfies the

following equivalent conditions:

• I = (m1, . . . ,mr ) where the mi ’s are monomials

• If f =
∑

m cmm ∈ R then f ∈ I iff all monomials m ∈ I .

• As a K -vector space, I has a basis consisting of monomials.

So a monomial ideal is determined by the monomials contain therein; in

fact, those monomials form a monoid ideal of the monoid of monomials

(under multiplication).
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Definition

If I , J are ideals in R, then their intersection I ∩ J is the largest ideal

contained in both.

Example

In C[x , y ] we have that

(x3, xy) ∩ (x2y , y4) = (xy4, x2y)

(picture)



Abstract Algebra, Lecture 11

Jan Snellman

Types of ideals

Ideal calculus
Sum of ideals

Monomial ideals

Intersection of ideals

Product of ideals

Radicals of ideals

Primary ideals

Ideals in Z

Definition

If I , J are ideals in R, then, by abuse of notation, IJ denotes the ideal

generated by the set IJ, i.e., all finite sums of elements in IJ:{
r∑

k=1

ik jk 1 ≤ r <∞, ik ∈ I , jk ∈ J

}

Lemma

IJ ⊆ I ∩ J.

Example

In C[x , y ] we have that

(x3, xy)(x2y , y4) = (x5y , xy5, x3y2)
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Definition

If I is an ideal in R, then its radical is

√
I = { r ∈ R rn ∈ I for some n > 0 }

The ideal I is radical if it equals its radical.

Theorem

• I ⊆
√
I =

√√
I

• I is radical if and only if R/I is reduced, i.e., lacks nilpotent elements

Example

In C[x , y ] we have that √
(x3, xy) = (x)
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Definition

I is a primary ideal if

xy ∈ I =⇒ x ∈ I or y ∈
√
I

Lemma

I is primary iff all zero-divisors of R/I are nilpotent.

Example

In C[x , y ] we have that (x3, xy) is not primary, since x ∗ y ∈ I , x 6∈ I ,

y 6∈
√
I . However, the ideal can be decomposed as an intersection of

primary ones:

(x3, xy) = (x) ∩ (x3, y)
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Recall that all ideals in Z are principal.

Theorem

For non-zero ideals of Z it holds that

1 (n) ⊆ (m) iff m|n
2 (n) + (m) = (gcd(n,m))

3 (n) ∩ (m) = (lcm(n,m))

4 (n)(m) = (nm)

5
√

(pa11 · · · p
ar
r ) = (p1 · · · pr )

6 (n) is prime iff (n) is maximal iff n is a prime number.

7 (n) is radical iff n is square-free

8 (n) is primary iff n is a prime power
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Proof.

1 If n = ms then n ∈ (m) hence (n) ⊆ (m). Conversely if (n) ⊆ (m)

then n ∈ (m) hence n = ms.

2 Put d = gcd(n,m). Then d |n, d |m, so (n) ⊆ (d), (m) ⊆ (d). But

(n) + (m) is the smallest ideal containing (n) and (m), so

(n) + (m) ⊆ (d).

Conversely, by Bezout, d = xn+ ym ∈ (n) + (m), so (d) ⊆ (n) + (m).

3 Put ` = lcm(n,m). Then ` = an, ` = bm, so ` ∈ (n) ∩ (m), hence

(`) ⊆ (n) ∩ (m).

Conversely, if s ∈ (n) ∩ (m) then s = xn, s = ym so it is a common

multiple of n and m, hence divisible by `. It follows that s ∈ (`).
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