Jan Snellman

TEKNISKA HÖGSKOLAN INKÖPINGS UNIVERSITET

Types of ideals Ideal calculus

Abstract Algebra, Lecture 11

Ideals in commutative, unitary rings

Jan Snellman ${ }^{1}$
${ }^{1}$ Matematiska Institutionen
Linköpings Universitet

TEKNISKA HÖGSKOLAN
LINKOPINGS UNIVERSITET
Linköping, fall 2019

Lecture notes availabe at course homepage http://courses.mai.liu.se/GU/TATA55/

TEKNISKA HÖGSKOLAN LINKÖPINGS UNIVERSITET

Types of ideals Ideal calculus

Ideals in \mathbb{Z}
(1) Types of ideals

Principal ideals
Prime ideals Maximal ideals
(2) Ideal calculus Sum of ideals

Monomial ideals
Intersection of ideals Product of ideals Radicals of ideals Primary ideals 3) Ideals in \mathbb{Z}

Types of ideals

(1) Types of ideals

Principal ideals
Prime ideals
Maximal ideals
(2) Ideal calculus

Sum of ideals

Monomial ideals
Intersection of ideals
Product of ideals
Radicals of ideals
Primary ideals
(3) Ideals in \mathbb{Z}

Types of ideals

Monomial ideals
Intersection of ideals
Product of ideals
Radicals of ideals
Primary ideals
(3) Ideals in \mathbb{Z}

Jan Snellman

Types of ideals

Principal ideals

Prime ideals
Maximal ideals
Ideal calculus
Ideals in \mathbb{Z}

Throughout this lecture, R, S will denote commutative, unitary rings, and I, J will denote ideals.

Definition

If $a \in R$ then (a) $=a R=\{a r \mid r \in R\}$ is the principal ideal generated by a. The ring R is a principal ideal ring if all ideals in it are principal.

Theorem

The ring \mathbb{Z} is a PID.

Proof.

All ideals are also additive subgroups; for Z, those subgroups are $n \mathbb{Z}$.

Jan Snellman

Types of ideals

Principal ideals

Prime ideals
Maximal ideals
Ideal calculus
Ideals in \mathbb{Z}

Theorem

Any quotient of a PID is a PID.

Proof.

If L is an ideal of R / I, then, by the correspondence theorem, $L=J / I$ for some ideal $J \supseteq I$. This ideal is of the form $J=(b)$ since R is a PID. Take a coset $c+I \in J / I \subset R / I$. Then $c \in J$, so $c=r b$ for some $r \in R$, hence $c+I=r b+I=r b+r I=r(b+I)$. This shows that $L=(b+I)$.

Example

The ring $\mathbb{Z}_{12}=\frac{\mathbb{Z}}{12 \mathbb{Z}}$ is a PID. The ideal $L=\left\{[0]_{12},[4]_{12},[8]_{12}\right\}$ lifts to $4 \mathbb{Z} \supset 12 \mathbb{Z}$. We have that $4 \mathbb{Z}=(4)$. Consequently, $L=\left([4]_{12}\right)$.

Jan Snellman

TEKNISKA HÖGSKOLAN
LINKÖPINGS UNIVERSITET

Types of ideals
Principal ideals
Prime ideals
Maximal ideals
Ideal calculus
Ideals in \mathbb{Z}

Theorem

The polynomial ring $\mathbb{Z}[x]$ is not a PID.

Proof.

Let $I=(2, x)=\{2 f(x)+x g(x) \mid f(x), g(x) \in \mathbb{Z}[x]\}$. Suppose, towards a contradiction, that $I=(h(x))$.
Since $2 \in I, 2=a(x) h(x)$. So $h(x)$ is a constant, say $h(x)=h$.
Since $x \in I, x=b(x) h$. So $b(x)=c x+d$, and in fact $d=0, c= \pm 1$, $h= \pm 1$. But then $(h(x))=\mathbb{Z}[x]$, a contradiction.

Jan Snellman

TEKNISKA HÖGSKOLAN
LINKÖPINGS UNIVERSITET

Types of ideals

Principal ideals
Prime ideals
Maximal ideals
Ideal calculus
Ideals in \mathbb{Z}

Definition

I is a prime ideal if

$$
x y \in I \Longrightarrow x \in I \text { or } y \in I
$$

Lemma

(0) is a prime ideal iff R is a domain.

Proof.

If $x y=0$ but $x, y \neq 0$ then x is a non-zero zero-divisor, and R is not a domain.
If R is not a domain, it has a non-zero zero-divisor x, so that $x y=0$ for $y \neq 0$, thus (0) is not prime.

Jan Snellman

TEKNISKA HÖGSKOLAN LINKÖPINGS UNIVERSITET

Types of ideals

Principal ideals

Prime ideals

Maximal ideals
Ideal calculus
Ideals in \mathbb{Z}

Theorem

In \mathbb{Z}, the zero ideal is prime, as is (p) with p prime. Other ideals are non-prime.

Proof.

If $n=a b$ with $1<a, b<n$ then $a b \in(n)$ but $a, b \notin(n)$, so (n) is not prime.
If p is prime then $n \in(p)$ iff $p \mid n$; hence $a b \in(p)$ iff $p \mid a b$ iff $p \mid a$ or $p \mid b$.

Jan Snellman

TEKNISKA HÖGSKOLAN LINKÖPINGS UNIVERSITET

Types of ideals

Principal ideals

Prime ideals

 Maximal ideals Ideal calculus Ideals in \mathbb{Z}
Theorem

I is prime iff R / I is a domain.

Proof.

$x y \in I$ iff $(x+I)(y+I)=(0+I)$.

Lemma

Let $n \geq 2 . \mathbb{Z}_{n}=\frac{\mathbb{Z}}{n \mathbb{Z}}$ is a domain iff n is prime.

Jan Snellman

Definition

I is maximal if it is a proper ideal not properly contained in any other proper ideal.

Example

Consider again (we gave this example to illustrate the correspondence theorem) the proper ideals of \mathbb{Z}_{12}. These are all principal, namely

$$
\begin{aligned}
& \qquad\left([3]_{12}\right)=\left\{[0]_{12},[3]_{12},[6]_{12},[9]_{12}\right\}, \\
& \qquad\left([2]_{12}\right)=\left\{[0]_{12},[4]_{12},[6]_{12},[8]_{12},[10]_{12}\right\}, \\
& \left([6]_{12}\right)=\left\{[0]_{12},[6]_{12}\right\}, \quad\left([4]_{12}\right)=\left\{[0]_{12},[4]_{12},[8]_{12}\right\}, \quad\left([0]_{12}\right)=\left\{[0]_{12}\right\} \\
& \text { and are contained in each other as follows: }
\end{aligned}
$$

Jan Snellman

TEKNISKA HÖGSKOLAN INKÖPINGS UNIVERSITET

Types of ideals
Principal ideals Prime ideals Maximal ideals

Ideal calculus
Ideals in \mathbb{Z}

Example (contd.)

The maximal ideals are $\left([3]_{12}\right)$ and $\left([2]_{12}\right)$.

Jan Snellman

TEKNISKA HÖGSKOLAN LINKÖPINGS UNIVERSITET

Types of ideals
Principal ideals
Prime ideals
Maximal ideals
Ideal calculus
Ideals in \mathbb{Z}

Theorem

If I contains a unit, then $I=R$.

Proof.

Let $r \in I$ be a unit. Then $1=r^{-1} r \in I$. Hence, for any $s \in R$, $s=1 s \in I$.

Jan Snellman

Theorem

R is a field iff its only ideals are (0), (1).

Types of ideals

Principal ideals Prime ideals Maximal ideals Ideal calculus

Ideals in \mathbb{Z}

Proof.

Suppose R field, and $I \neq(0)$ an ideal. Then I contains a unit, so $I=(1)$. Conversely, suppose that (0), (1) are the only ideals in R. Take $r \neq 0$. The ideal $I=(r)$ is non-zero, so $I=(1)$. Since $1 \in I, 1=s r$ for some $s \in R$. Hence r is a unit.

Corollary

R is a field iff (0) is maximal.

Jan Snellman

TEKNISKA HÖGSKOLAN
INKÖPINGS UNIVERSITET

Types of ideals

Principal ideals
Prime ideals Maximal ideals

Ideal calculus
Ideals in \mathbb{Z}

Theorem

I is maximal iff R / I is a field.

Proof.

R / I is a field iff its only proper ideal is the zero ideal. By the correspondence theorem, this happens iff the only proper ideal containing I is I.

Theorem

The maximal ideals in \mathbb{Z} are (p) for p prime.

Jan Snellman

TEKNISKA HÖGSKOLAN INKÖPINGS UNIVERSITET

Types of ideals
Principal ideals Prime ideals Maximal ideals Ideal calculus

Theorem

Any maximal ideal is prime. If R is finite, then any prime ideal is maximal.

Proof.

Fields are domains; finite domains are fields.

Jan Snellman

TEKNISKA HÖGSKOLAN INKÖPINGS UNIVERSITET

Types of ideals
Principal ideals Prime ideals Maximal ideals

Ideal calculus
Ideals in \mathbb{Z}

Definition

R is local if it has a unique maximal ideal.

Example

\mathbb{Z} is not local; \mathbb{Z}_{4} is.

Example

Any field is local.

Jan Snellman

TEKNISKA HÖGSKOLAN LINKÖPINGS UNIVERSITET

Types of ideals

Principal ideals Prime ideals Maximal ideals

Ideal calculus
Ideals in \mathbb{Z}

Theorem

If the set of non-units in R form an ideal I, then I is maximal, and R is local.

Proof.

If $I \subsetneq J$, take $r \in J \backslash I$. Then r is a unit, so $J=R$. Hence I is maximal. If L is any proper ideal in R it consists exclusively of non-units, hence is contained in I.

Jan Snellman

TEKNISKA HÖGSKOLAN INKÖPINGS UNIVERSITET

Types of ideals
Principal ideals Prime ideals Maximal ideals Ideal calculus Ideals in \mathbb{Z}

Example

Let $R=\mathbb{Q}[[x]]$, the set of formal power series in one indeterminate, with coefficients in \mathbb{Q}. A general element is

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots, \quad a_{j} \in \mathbb{Q}
$$

We have that

$$
\left(1+x+x^{2}+x^{3}+\ldots\right)(1-x)=1
$$

so $(1-x)^{-1}=1+x+x^{2}+x^{3}+\ldots$, and $\left(1+x+x^{2}+x^{3}+\ldots\right)^{-1}=1-x$. In general, we claim that $f(x)$ is invertible iff $a_{0} \neq 0$.

Jan Snellman

TEKNISKA HÖGSKOLAN
LINKÖPINGS UNIVERSITET

Types of ideals
Principal ideals
Prime ideals
Maximal ideals
Ideal calculus
Ideals in \mathbb{Z}

Example (cont)

To see this, consider

$$
\left(a_{0}+a_{1} x+a_{2} x^{2}+\ldots\right)\left(b_{0}+b_{1} x+b_{2} x^{2}+\ldots\right)=1
$$

This is solvable for the b_{i} 's iff $a_{0} \neq 0$; collecting powers of x we have

$$
\begin{aligned}
a_{0} b_{0} & =1 \\
a_{1} b_{0}+a_{0} b_{1} & =0 \\
a_{2} b_{0}+a_{1} b_{1}+a_{0} b_{2} & =0
\end{aligned}
$$

which can be solved inductively iff $a_{0} \neq 0$.
Let I denote the set of power series with zero constant term. Then $I=(x)$, a principal ideal. So I is maximal, and R is local.

Jan Snellman

Example

Let $R=\mathbb{Q}[x]$, and let $I=\left(x^{2}+1\right)$. Then I is prime. Put $T=\left\{\left.\frac{f(x)}{g(x)} \right\rvert\, f(x) \in R, g(x) \in R \backslash I\right\}$. Check that this is a ring! We claim that T is local, with the unique maximal ideal

$$
J=\left\{\left.\frac{f(x)}{g(x)} \right\rvert\, f(x) \in I, g(x) \in R \backslash I\right\}
$$

(1) If $f(x), g(x) \notin I$ then $\frac{1}{\frac{f(x)}{g(x)}}=\frac{g(x)}{f(x)}$, so anything outside J is invertible.
(2) If $\frac{f(x)}{g(x)}$, with $g(x) \notin J$, is invertible then exists $\frac{h(x)}{k(x)}$ with $k(x) \notin J$ such that

$$
\frac{f(x) h(x)}{g(x) k(x)}=1 \quad \Longrightarrow f(x) h(x)=g(x) k(x)
$$

Since $g(x) k(x) \notin I$ we have that $f(x) \notin I$. So anything invertible is outside J.
Since J consists precisely of the non-units, and is an ideal, it is the unique maximal ideal.

Jan Snellman

Types of ideals

Ideal calculus

Sum of ideals

Monomial ideals Intersection of ideals Product of ideals Radicals of ideals Primary ideals Ideals in \mathbb{Z}

Definition

If I, J are ideals in R, then their sum

$$
I+J=\{i+j \mid i \in I, j \in J\}
$$

is the smallest ideal containing both. When $I=(i), J=(j)$ are both principal, we write

$$
(i)+(j)=(i, j),
$$

and similarly for finitely generated ideals.

Example

In $\mathbb{C}[x, y]$ we have that $\left(x^{3}, x y\right)+\left(x^{2} y, y^{4}\right)=\left(x^{3}, x y, y^{4}\right)$ (picture)

Definition

If $R=K\left[x_{1}, \ldots, x_{n}\right]$, where K is a field, then a monomial is an element of the form $x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}$, and a monomial ideal is an ideal I which satisfies the following equivalent conditions:

- $I=\left(m_{1}, \ldots, m_{r}\right)$ where the m_{i} 's are monomials
- If $f=\sum_{m} c_{m} m \in R$ then $f \in I$ iff all monomials $m \in I$.
- As a K-vector space, I has a basis consisting of monomials.

So a monomial ideal is determined by the monomials contain therein; in fact, those monomials form a monoid ideal of the monoid of monomials (under multiplication).

Jan Snellman

 IINKÖPINGS UNIVERSITET

Types of ideals

Ideal calculus

Sum of ideals

Monomial ideals

Intersection of ideals Product of ideals Radicals of ideals Primary ideals

Jan Snellman

Types of ideals

Ideal calculus

Sum of ideals

Monomial ideals

Intersection of ideals Product of ideals Radicals of ideals Primary ideals

Ideals in \mathbb{Z}

Jan Snellman

TEKNISKA HÖGSKOLAN LINKÖPINGS UNIVERSITET

Types of ideals

Ideal calculus
Sum of ideals Monomial ideals Intersection of ideals Product of ideals Radicals of ideals Primary ideals

Ideals in \mathbb{Z}

Definition

If I, J are ideals in R, then their intersection $I \cap J$ is the largest ideal contained in both.

Example

In $\mathbb{C}[x, y]$ we have that

$$
\left(x^{3}, x y\right) \cap\left(x^{2} y, y^{4}\right)=\left(x y^{4}, x^{2} y\right)
$$

(picture)

Jan Snellman

TEKNISKA HÖGSKOLAN LINKÖPINGS UNIVERSITET

Types of ideals

Ideal calculus
Sum of ideals
Monomial ideals
Intersection of ideals

Product of ideals

Radicals of ideals Primary ideals

Ideals in \mathbb{Z}

Definition

If I, J are ideals in R, then, by abuse of notation, $I J$ denotes the ideal generated by the set $I J$, i.e., all finite sums of elements in $I J$:

$$
\left\{\sum_{k=1}^{r} i_{k} j_{k} \mid 1 \leq r<\infty, i_{k} \in I, j_{k} \in J\right\}
$$

Lemma

$I J \subseteq I \cap J$.

Example

In $\mathbb{C}[x, y]$ we have that

$$
\left(x^{3}, x y\right)\left(x^{2} y, y^{4}\right)=\left(x^{5} y, x y^{5}, x^{3} y^{2}\right)
$$

Jan Snellman

Types of ideals

Ideal calculus
Sum of ideals
Monomial ideals

Definition

If I is an ideal in R, then its radical is

$$
\sqrt{I}=\left\{r \in R \mid r^{n} \in I \text { for some } n>0\right\}
$$

The ideal / is radical if it equals its radical.

Theorem

- $I \subseteq \sqrt{I}=\sqrt{\sqrt{I}}$
- I is radical if and only if R / I is reduced, i.e., lacks nilpotent elements

Example

In $\mathbb{C}[x, y]$ we have that

$$
\sqrt{\left(x^{3}, x y\right)}=(x)
$$

Jan Snellman

TEKNISKA HÖGSKOLAN IINKÖPINGS UNIVERSITET

Types of ideals

Ideal calculus
Sum of ideals
Monomial ideals Intersection of ideals Product of ideals Radicals of ideals Primary ideals

Ideals in \mathbb{Z}

Definition

I is a primary ideal if

$$
x y \in I \quad \Longrightarrow x \in I \text { or } y \in \sqrt{I}
$$

Lemma

I is primary iff all zero-divisors of R / I are nilpotent.

Example

In $\mathbb{C}[x, y]$ we have that $\left(x^{3}, x y\right)$ is not primary, since $x * y \in I, x \notin I$, $y \notin \sqrt{I}$. However, the ideal can be decomposed as an intersection of primary ones:

$$
\left(x^{3}, x y\right)=(x) \cap\left(x^{3}, y\right)
$$

Jan Snellman

TEKNISKA HÖGSKOLAN LINKÖPINGS UNIVERSITET

Types of ideals

Ideal calculus
Ideals in \mathbb{Z}

Recall that all ideals in \mathbb{Z} are principal.

Theorem

For non-zero ideals of \mathbb{Z} it holds that
(1) $(n) \subseteq(m)$ iff $m \mid n$
(2) $(n)+(m)=(\operatorname{gcd}(n, m))$
(3) $(n) \cap(m)=(l c m(n, m))$
(4) $(n)(m)=(n m)$
(5) $\sqrt{\left(p_{1}^{a_{1}} \cdots p_{r}^{a_{r}}\right)}=\left(p_{1} \cdots p_{r}\right)$
(6) (n) is prime iff (n) is maximal iff n is a prime number.
(7) (n) is radical iff n is square-free
(8) n) is primary iff n is a prime power

Jan Snellman

TEKNISKA HÖGSKOLAN IINKÖPINGS UNIVERSITET

Types of ideals Ideal calculus

Ideals in \mathbb{Z}

Proof.

(1) If $n=m s$ then $n \in(m)$ hence $(n) \subseteq(m)$. Conversely if $(n) \subseteq(m)$ then $n \in(m)$ hence $n=m s$.
(2) Put $d=\operatorname{gcd}(n, m)$. Then $d|n, d| m$, so $(n) \subseteq(d),(m) \subseteq(d)$. But $(n)+(m)$ is the smallest ideal containing (n) and (m), so $(n)+(m) \subseteq(d)$.
Conversely, by Bezout, $d=x n+y m \in(n)+(m)$, so $(d) \subseteq(n)+(m)$.
(3) Put $\ell=\operatorname{lcm}(n, m)$. Then $\ell=a n, \ell=b m$, so $\ell \in(n) \cap(m)$, hence $(\ell) \subseteq(n) \cap(m)$.
Conversely, if $s \in(n) \cap(m)$ then $s=x n, s=y m$ so it is a common multiple of n and m, hence divisible by ℓ. It follows that $s \in(\ell)$.

