Jan Snellman

TEKNISKA HÖGSKOLAN INKÖPINGS UNIVERSITET

Polynomial rings

Coefficients in a domain

Coefficients in a field

Abstract Algebra, Lecture 12

Polynomial rings

Jan Snellman ${ }^{1}$
${ }^{1}$ Matematiska Institutionen
Linköpings Universitet

TEKNISKA HÖGSKOLAN
LINKÖPINGS UNIVERSITET
Linköping, fall 2019

Lecture notes availabe at course homepage http://courses.mai.liu.se/GU/TATA55/

Abstract Algebra, Lecture 12
Jan Snellman

Summary

TEKNISKA HÖGSKOLAN IINKÖPINGS UNIVERSITET

Polynomial rings
Coefficients in a domain

Coefficients in a field

(1) Polynomial rings

Zero-divisors, nilpotents, units
Degree

Evaluation

2 Coefficients in a domain
Divisibility
Polynomial rings in several
variables
(3) Coefficients in a field

Division algorithm
$K[x]$ is a PID
GCD
Zeroes of polynomials and
linear factors
Prime and maximal ideals in

Unique factorization
Ideal calculus in $K\lceil x\rceil$
Quotients

Polynomial rings

Coefficients in a domain

Coefficients in a field
(1) Polynomial rings

Zero-divisors, nilpotents, units Degree
Evaluation
(2) Coefficients in a domain

Divisibility
Polynomial rings in several variables
(3) Coefficients in a field

Division algorithm
$K[x]$ is a PID
GCD
Zeroes of polynomials and
linear factors
Prime and maximal ideals in

Unique factorization
Ideal calculus in $K[x]$
Quotients
(1) Polynomial rings

Zero-divisors, nilpotents, units Degree
Evaluation
(2) Coefficients in a domain

Divisibility
Polynomial rings in several variables
(3) Coefficients in a field

Division algorithm
$K[x]$ is a PID GCD
Zeroes of polynomials and linear factors
Prime and maximal ideals in $K[x]$
Unique factorization Ideal calculus in $K[x]$ Quotients

Jan Snellman

TEKNISKA HÖGSKOLAN LINKÖPINGS UNIVERSITET

Polynomial rings
Zero-divisors, nilpotents, units
Degree
Evaluation
Coefficients in a domain
Coefficients in a field

Definition

Let L be a unitary, commutative ring. The polynomial ring $L[x]$ is the set of all maps $c: \mathbb{N} \rightarrow L$ whose support

$$
\operatorname{Supp}(c)=\{n \in \mathbb{N} \mid c(n) \neq 0\}
$$

is finite. Two such maps are added component-wise, and multiplied using Cauchy convolution

$$
(c * d)(n)=\sum_{i=0}^{n} c(i) d(n-i)
$$

This makes $L[x]$ into a commutative, unitary ring; via the injection

$$
L \ni \ell \mapsto(\mathbb{N} \ni n \mapsto \ell \in L)
$$

one can regard L as a subring.

One usually uses the indeterminate x as a "placeholder" for the

TEKNISKA HÖGSKOLAN LINKÖPINGS UNIVERSITET

Polynomial rings
Zero-divisors, nilpotents, units
Degree
Evaluation
Coefficients in a domain
Coefficients in a field coefficients, so the map $c: \mathbb{N} \rightarrow L$ is displayed as

$$
f(x)=\sum_{j=0}^{\infty} c(j) x^{j},
$$

where x^{j} can be thought of as the indicator function on $\{j\}$. The "Cauchy convolution" is then explained by the rule

$$
x^{i} * x^{j}=x^{i+j}
$$

and distributivity.

Jan Snellman

TEKNISKA HÖGSKOLAN LINKÖPINGS UNIVERSITET

Polynomial rings
Zero-divisors,
nilpotents, units
Degree
Evaluation
Coefficients in a domain
Coefficients in a field

Example

Let $L=\mathbb{Z}$, and let $c: \mathbb{N} \rightarrow L$ be given by $c(0)=2, c(1)=-3, c(2)=1$, and $c(n)=0$ for $n>2$.
Let $d: \mathbb{N} \rightarrow L$ be given by $d(0)=-1, d(1)=0, d(2)=5$, and $d(n)=0$ for $n>2$.
The corresponding polynomials, and their product, are

$$
\left(2-3 x+1 x^{2}\right) *\left(-1+0 x+5 x^{2}\right)=-2+3 x+9 x^{2}-15 x^{3}+5 * x^{4}
$$

Jan Snellman

TEKNISKA HÖGSKOLAN LINKÖPINGS UNIVERSITET

Polynomial rings

Zero-divisors, nilpotents, units
Degree
Evaluation
Coefficients in a domain
Coefficients in a field

Theorem

$L[x]$ is an integral domain iff L is.

Proof.

If $a b=0$ in L, then the same holds in $L[x]$.
If

$$
\begin{aligned}
0=\left(a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right. & \left(b_{0}+b_{1} x+\cdots+b_{m} x^{m}\right) \\
& =a_{0} b_{0}+\left(a_{0} b_{1}+a_{1} b_{0}\right) x+\cdots+a_{n} b_{m} x^{n+m}
\end{aligned}
$$

then $a_{n} b_{m}=0$.

Example

$\mathbb{Z}[x]$ is a domain, $\mathbb{Z}_{6}[x]$ is not.

Jan Snellman

Theorem

$f=a_{0}+a_{1} x \cdots+a_{n} x^{n} \in L[x]$ is invertible iff a_{0} is a unit in L and
a_{1}, \ldots, a_{n} are nilpotent in L.

Polynomial rings

Zero-divisors,

nilpotents, units

Degree
Evaluation
Coefficients in a domain
Coefficients in a field

Proof

We will make use of the fact (proved later) that

- nilpotent + nilpotent $=$ nilpotent
- unit + nilpotent $=$ unit

If a_{0} unit, a_{1}, \ldots, a_{n} nilpotent, then $r=a_{1} x+\cdots+a_{n} x^{n}$ nilpotent, so $f=a+r$ unit.

Jan Snellman

TEKNISKA HÖGSKOLAN IINKÖPINGS UNIVERSITET

Polynomial rings

Zero-divisors, nilpotents, units
Degree
Evaluation
Coefficients in a domain
Coefficients in a field

Proof (cont)

Conversely, if $f=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ is a a unit, then there exists $g=b_{0}+b_{1} x+\cdots+b_{m} x^{m}$ with $f g=1$, thus $a_{0} b_{0}=1$, so a_{0} and b_{0} are units. We need to prove that a_{1}, \ldots, a_{n} are nilpotent.
Since $f g=1$, except for the constant coefficient, the coefficients of $f g$ are zero, in particular

$$
\begin{aligned}
a_{n} b_{m} & =0 \\
a_{n-1} b_{m}+a_{n} b_{m-1} & =0 \\
a_{n-2} b_{m}+a_{n-1} b_{m-1}+a_{n} b_{m-2} & =0 \\
\vdots & \\
a_{0} b_{n}+a_{1} b_{n-1}+\cdots+a_{n} b_{0} & =0
\end{aligned}
$$

Jan Snellman

TEKNISKA HÖGSKOLAN IINKÖPINGS UNIVERSITET

Polynomial rings

Zero-divisors,

nilpotents, units

Degree
Evaluation
Coefficients in a domain

Coefficients in a field

Proof (cont)

Multiply the eqn

$$
a_{n-1} b_{m}+a_{n} b_{m-1}=0
$$

by a_{n} to conclude that $a_{n}^{2} b_{m-1}=0$.
Multiply the eqn

$$
a_{n-2} b_{m}+a_{n-1} b_{m-1}+a_{n} b_{m-2}=0
$$

by a_{n}^{2} to conclude (using $a_{n}^{2} b_{m-1}=0$) that $a_{n}^{3} b_{m-2}=0$.
Continue until you reach $a_{n}^{m+1} b_{0}=0$. Since b_{0} is a unit, $a_{n}^{m+1}=0$, so a_{n} is nilpotent.
Now $f-a_{n} x^{n}$ is a unit, so repeat the previous procedure to conclude that a_{n-1} is nilpotent, and so on.

Jan Snellman

TEKNISKA HÖGSKOLAN IINKÖPINGS UNIVERSITET

Polynomial rings

Zero-divisors,

 nilpotents, unitsDegree
Evaluation
Coefficients in a domain

Coefficients in a field

Lemma

If x, y are nilpotent, then so is $x+y$.

Proof.

Suppose that $x^{n}=y^{n}=0$. Then

$$
(x+y)^{2 n}=\sum_{j=0}^{2 n}\binom{2 n}{j} x^{j} y^{2 n-j}
$$

and either j or $2 n-j$ are $\geq n$.

Jan Snellman

TEKNISKA HÖGSKOLAN
LINKÖPINGS UNIVERSITET

Polynomial rings

Zero-divisors,

nilpotents, units

Degree
Evaluation
Coefficients in a domain
Coefficients in a field

Lemma

If x unit, y nilpotent, then $x-y($ and $x+y)$ is a unit.

Proof.

Assume $x x^{-1}=1, y^{n}=0$. Then

$$
(1-y)\left(1+y+\cdots+y^{n-1}\right)=1-y^{n}=1
$$

so $x^{-1}(x-y)=x^{-1}\left(1-y x^{-1}\right)$ has inverse

$$
x^{-1}\left(1+\left(y x^{-1}\right)+\cdots+\left(y x^{-1}\right)^{n-1}\right)
$$

hence $(x-y)$ has inverse

$$
1+\left(y x^{-1}\right)+\cdots+\left(y x^{-1}\right)^{n-1}
$$

Jan Snellman

TEKNISKA HÖGSKOLAN INKÖPINGS UNIVERSITET

Polynomial rings

Zero-divisors, nilpotents, units
Degree
Evaluation
Coefficients in a domain

Coefficients in a field

Definition

If $f=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in L[x]$, with $a_{n} \neq 0$, then the degree of f is

$$
\operatorname{deg} f=\max (\operatorname{Supp}(f))=n
$$

The degree of the zero polynomial is $-\infty$.
We define the

- leading term as $a_{n} x^{n}$,
- leading monomial as x^{n},
- leading coefficient as a_{n}

Example

If $\mathbb{Z}[x]=1-3 x^{4}+17 x^{5}$ then the degree is 5 , the I.t. is $17 x^{5}$, the I.c. is 17 , and the I.m. is x^{5}.

Theorem

Let $f, g \in L[x]$.

- $\operatorname{deg}(f+g) \leq$ $\max (\operatorname{deg}(f), \operatorname{deg}(g))$,
- $\operatorname{deg}(f g) \leq \operatorname{deg}(f)+\operatorname{deg}(g$.

If L is a domain then

- $\operatorname{deg}(f g)=\operatorname{deg}(f)+\operatorname{deg}(g)$,
- $\operatorname{lt}(f g)=\operatorname{lt}(f) \operatorname{lt}(g)$

Example

In $\mathbb{Z}_{4}[x]$,

$$
\left(2 x^{2}+x+1\right)^{2}=4 x^{4}+x^{2}+1+4 x^{3}+4 x^{2}+2 x=x^{2}+x+1
$$

so the degree of products can drop in the presence of zero-divisors. In $\mathbb{Q}[x]$,

$$
\left(2 x^{2}+x+1\right)+\left(-2 x^{2}-x+1\right)=2
$$

so the degree of sums may drop even with field coefficients.

Abstract Algebra, Lecture 12

Jan Snellman

TEKNISKA HÖGSKOLAN LINKÖPINGS UNIVERSITET

Polynomial rings

Zero-divisors, nilpotents, units

Degree

Evaluation
Coefficients in a domain

Coefficients in a field

Definition

Let $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in L[x]$. Let $u \in L$. We define the evaluation of f at u by

$$
f(u)=a_{0}+a_{1} u+\cdots+a_{n} u^{n} \in L
$$

Theorem

For $u \in L$, the map

$$
\begin{aligned}
\mathrm{ev}_{u}: L[x] & \rightarrow L \\
f(x) & \mapsto f(u)
\end{aligned}
$$

is a ring homomorphism.

Jan Snellman

Example

A fixed polynomial $f(x) \in L[x]$ defines a polynomial function

$$
\begin{aligned}
f: L & \rightarrow L \\
u & \mapsto f(u)
\end{aligned}
$$

That is an importan topic that we will only touch upon in this course. We note the following oddity: for polynomials in $\mathbb{Q}[x]$, different polynomials give rise to different functions $\mathbb{Q} \rightarrow \mathbb{Q}$. However, already for polynomials with field coefficients this need not hold. In $\mathbb{Z}_{2}[x]$, if $f(x)=\left(x^{2}+x\right) g(x)$ for any $g(x) \in \mathbb{Z}_{2}[x]$, then

$$
\begin{aligned}
& f\left([0]_{2}\right)=\left([0]_{2}^{2}+[0]_{2}\right)\left(g\left([0]_{2}\right)=[0]_{2}\right. \\
& f\left([1]_{2}\right)=\left([1]_{2}^{2}+[1]_{2}\right)\left(g\left([1]_{2}\right)=[0]_{2}\right.
\end{aligned}
$$

so infinitely many polynomials represent the constantly zero polynomial function.

Abstract Algebra, Lecture 12
Jan Snellman

TEKNISKA HÖGSKOLAN LINKÖPINGS UNIVERSITET

Polynomial rings

Zero-divisors,
nilpotents, units
Degree
Evaluation
Coefficients in a domain
Coefficients in a field

Corollary

The set

$$
I_{u}=\{f(x) \in L[x] \mid f(u)=0\}
$$

is an ideal in $L[x]$, and

$$
\frac{L[x]}{I_{u}} \simeq L
$$

The ideals containing I_{u} are in bijection with the ideals of L.

TEKNISKA HÖGSKOLAN INKÖPINGS UNIVERSITET

Polynomial rings

Coefficients in a domain
Divisibility
Polynomial rings in several variables

Coefficients in a field

Recall:

Theorem

Suppos that L is a domain, and that $f=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in L[x]$.
(1) $L[x]$ is a domain
(2) f is invertible iff a_{0} is a unit and $\operatorname{deg}(f)=0$.

Jan Snellman

TEKNISKA HÖGSKOLAN INKÖPINGS UNIVERSITET

Polynomial rings
Coefficients in a domain

Divisibility

Polynomial rings in several variables

Coefficients in a field

Definition

Let $f, g \in L[x]$.
(1) We write $f \mid g$ if there exists $h \in L[x]$ such that $g=f h$
(2) We say that f and g are associate, $f \sim g$, if $f \mid g$ and $g \mid h$
(3) We say that f is irreducible if it lacks non-trivial divisors, i.e., any divisor of f is either associate to f or a unit
(4) We say that f is prime if $f \mid g h$ implies that $f \mid g$ or $f \mid h$

Jan Snellman

Divisibility

Polynomial rings in several variables

Lemma

(1) $f \mid g$ iff $(f) \supseteq(g)$.
(2) $f \sim g$ iff $f=c g$, with c a unit.
(3) A non-trivial divisor g of f has degree $0<\operatorname{deg}(g)<\operatorname{deg}(f)$.
(4) A prime element is irreducible

Proof.

(1) Suppose that $g=f h$. Then $u \in(g) \Longrightarrow u=g v=f h v \Longrightarrow u \in(f)$. Conversely, if $(g) \subseteq(f)$ then $g \in(f)$, hence $f \mid g$.
(2) If $f=c g$ with c a unit, then $g=c^{-1} f$. Conversely, if $f=u g, g=v f$ then $f=u v f$, so $f(1-u v)=0$, so (since we're in a domain) $u v=1$, and u, v are units.
(3) If $f=g h$ then $\operatorname{deg}(f)=\operatorname{deg}(g)+\operatorname{deg}(h)$; since units have degree zero and non-zero degree zeros are units, $\operatorname{deg}(g), \operatorname{deg}(h)>0$. Hence $\operatorname{deg}(g), \operatorname{deg}(h)<\operatorname{deg}(f)$.
(4) If $p=a b$ then $p \mid a b$ hence $p \mid a$, say; hence $\operatorname{deg} a=\operatorname{deg} p$ and $p \sim a$.

Jan Snellman

Definition

We put $L[x, y]=(L[x])[y]$.
To expound, $L[x]$ is a ring (a domain, even) so we can form polynomials with coeffiecients in it. An element

$$
f(y)=a_{0}(x)+a_{1}(x) y+\cdots+a_{n}(x) y^{n},
$$

where

$$
a_{i}(x)=\sum_{j=0}^{m_{j}} b_{i, j j} x^{j},
$$

is usually written in distributed form as

$$
f(x, y)=\sum_{i, j} b_{i, j} x^{i} y^{j}
$$

and is the regarded as an element in the semigroup ring $L\left[\mathbb{N}^{2}\right]$.

Jan Snellman

TEKNISKA HÖGSKOLAN LINKÖPINGS UNIVERSITET

Example

$$
\begin{aligned}
& \mathbb{Q}[x][y] \ni f=(5+13 x)+\left(2-x^{2}\right) y+\left(11-x+13 x^{2}+17 x^{3}\right) y^{2} \\
& \quad=5+13 x+2 y-x^{2} y+11 y^{2}-x y^{2}+13 x^{2} y^{2}+17 x^{3} y \in \mathbb{Q}[x, y]
\end{aligned}
$$

has support $1, y, y^{2}$ or $1, x, y, x^{2} y, y^{2}, x y^{2}, x^{2} y^{2}, x^{3} y$, depending on one's point of view.

Jan Snellman

We henceforth assume that K is a field.

Theorem (Division thm)

If $f(x), g(x) \in K[x]$, with $g(x)$ not the zero polynomial, then there is a unique quotient $a(x)$ and remainder $r(x)$ such that

$$
\begin{equation*}
f(x)=a(x) g(x)+r(x), \quad \operatorname{deg}(r(x))<\operatorname{deg}(g(x)) \tag{1}
\end{equation*}
$$

Proof.

Put $r_{0}(x)=f(x), a_{0}(x)=0$, and then put $a_{i+1}(x)=\frac{\operatorname{lt}\left(r_{i}(x)\right)}{\operatorname{lt}(g(x))} g(x)$, $r_{i+1}(x)=r_{i}(x)-a_{i+1}(x)$ as long as $\operatorname{deg}\left(a_{i}(x)\right) \geq \operatorname{deg}(g(x))$.

Abstract Algebra, Lecture 12

Jan Snellman

TEKNISKA HÖGSKOLAN LINKÖPINGS UNIVERSITET

Polynomial rings

Coefficients in a domain

Coefficients in a field

Division algorithm

$K[x]$ is a PID
GCD
Zeroes of polynomials and linear factors
Prime and maximal ideals in $K[x]$
Unique factorization Ideal calculus in $K[x]$ Quotients

Example

If $f(x)=3 x^{3}+5 x^{2}-7 x+11 \in \mathbb{Q}[x], g(x)=2 x^{2}+1$, then

$$
\begin{aligned}
f(x) & =3 x^{3}+5 x^{2}-7 x+11 \\
& =\left(3 x^{3}+5 x^{2}-7 x+11\right)-\frac{3 x^{3}}{2 x^{2}} g+\frac{3 x^{3}}{2 x^{2}} g \\
& =3 x^{3}+5 x^{2}-7 x+11-\frac{3}{2} x\left(2 x^{2}+1\right)+\frac{3}{2} x g \\
& =5 x^{2}-\frac{17}{2} x+11+\frac{3}{2} x g \\
& =5 x^{2}-\frac{17}{2} x+11-\frac{5 x^{2}}{2 x^{2}} g+\frac{5 x^{2}}{2 x^{2}} g+\frac{3}{2} x g \\
& =5 x^{2}-\frac{17}{2} x+11-\frac{5}{2}\left(2 x^{2}+1\right)+\left(\frac{5}{2}+\frac{3}{2} x\right) g \\
& =-11 x+11+\left(\frac{5}{2}+\frac{3}{2} x\right) g
\end{aligned}
$$

Jan Snellman

Theorem

Let $I \subset K[x]$ be a proper non-zero ideal (hence containing no non-zero constants), and let $f \in I$ have degree d, the minimal degree of n.z. pols in I. Then $I=(f)$, and any other generator of the principal ideal I is associate to f. In particular, there is a monic (i.e. having lc 1) generator of I.

Proof.

Take $g \in I$, and use the division thm to write

$$
g=a f+r, \quad \operatorname{deg}(r)<\operatorname{deg}(f)=d
$$

Since $g \in I \ni a f$, we have that $r \in I$. But $\operatorname{deg}(r)<d$, the minimal degree of nonzero pols in I, so r is the zero pol. Thus $g \in(f)$. If $I=(h)=(f)$, then $f \mid h$ and $h \mid f$, so $f \sim h$.

Jan Snellman

Polynomial rings

Definition

Let $f, g \in K[x]$. A generator of the principal ideal $(f)+(g)$ is called a greatest common divisor of f and g; the unique monic generator is called the greatest common divisor.

Lemma

If $h=\operatorname{gcd}(f, g)$ then $h|f, h| g$, and if $h^{\prime}\left|f, h^{\prime}\right| g$, then $h^{\prime} \mid h$. Conversely, if h satisfies the above, then $(h)=(f)+(g)$.

Jan Snellman

TEKNISKA HÖGSKOLAN LINKÖPINGS UNIVERSITET

Theorem (Euclidean algorithm)
If $f=a g+r$ then $\operatorname{gcd}(f, g)=\operatorname{gcd}(g, r)$.

Proof.

Exactly as for the integers.

Theorem

If $h=\operatorname{gcd}(f, g)$ then there are (not necessarily unique) polynomials u, v such that

$$
h=u f+v g .
$$

Proof.

$$
(h)=(f)+(g) \text { so } h=u f+v g .
$$

Abstract Algebra, Lecture 12

Jan Snellman

TEKNISKA HÖGSKOLAN
INKÖPINGS UNIVERSITET

Polynomial rings

Coefficients in a domain

Coefficients in a

 fieldDivision algorithm $K[x]$ is a PID

GCD

Zeroes of polynomials and linear factors
Prime and maximal ideals in $K[x]$
Unique factorization Ideal calculus in $K[x]$ Quotients

$$
\begin{aligned}
& \text { R. <x }>=\text { PolynomialRing(QQ) } \\
& f=3 * x^{\wedge} 4+13 * x^{\wedge} 3+5 * x^{\wedge} 2+3 \\
& g=5 * x^{\wedge} 3+5 * x+1 \\
& h, u, v=x g c d(f, g) \\
& u * f+v * g
\end{aligned}
$$

yields

$$
\begin{aligned}
h & =1 \\
u & =\frac{14700}{45529} x^{2}+\frac{725}{91058} x+\frac{14225}{45529} \\
v & =-\frac{8820}{45529} x^{3}-\frac{76875}{91058} x^{2}-\frac{30715}{91058} x+\frac{2854}{45529} \\
u f+v g & =1
\end{aligned}
$$

Jan Snellman

Polynomial rings

Coefficients in a domain

Coefficients in a field
Division algorithm $K[x]$ is a PID

GCD

Zeroes of polynomials and linear factors
Prime and maximal ideals in $K[x]$
Unique factorization Ideal calculus in $K[x]$ Quotients

Theorem (Factor theorem)

Let $f(x) \in K[x], a \in K$. Then a is a zero of f, i.e., $f(a)=0$, iff $(x-a) \mid f(x)$.

Proof.

If $f(x)=(x-a) g(x)$, then $f(a)=(a-a) g(a)=0$.
If $f(a)=0$, use division theorem to get

$$
f(x)=k(x)(x-a)+r, \quad \operatorname{deg} r \leq 0
$$

and then evaluate at a :

$$
0=k(a)(a-a)+r,
$$

so $r=0$, and $(x-a) \mid f(x)$.

Jan Snellman

TEKNISKA HÖGSKOLAN LINKÖPINGS UNIVERSITET

Polynomial rings

Coefficients in a domain

Coefficients in a field
Division algorithm $K[x]$ is a PID
GCD
Zeroes of polynomials and linear factors
Prime and maximal ideals in $K[x]$
Unique factorization Ideal calculus in $K[x]$ Quotients

Theorem

Let $I=(f) \subseteq K[x]$.
(1) I is a prime ideal if f is the z.p. or if f is irreducible.
(2) I is a maximal ideal iff f is a non-zero irreducible polynomial.

Proof.

(0) is prime (in any domain) but not maximal (since it is for instance contained in $(x-1)$).
If $f=g h$ with $\operatorname{deg}(g), \operatorname{deg}(h)<\operatorname{deg}(f)$ then I is not prime. If f is irreducible, then I is maximal, since $(f) \subsetneq(g)$ means that g is a proper, non-trivial divisor of f.
Maximal ideals are always prime.

Jan Snellman

TEKNISKA HÖGSKOLAN LINKÖPINGS UNIVERSITET

Polynomial rings

Coefficients in a domain

Coefficients in a field

Division algorithm $K[x]$ is a PID
GCD
Zeroes of polynomials and linear factors Prime and maximal ideals in $K[x]$

Unique factorization

Ideal calculus in $K[x]$ Quotients

Theorem (Unique factorization)

(1) Any non-zero polynomial $f \in K[x]$ can be written as a product of irreducible polynomials.
(2) This factorization is unique, up to ordering and associate factors (we can permute the factors, and move constants between factors; or move the constants out and assume the remaining factors to be monic, i.e. having I.c. 1)

Proof.

Existence: either f is irreducible, or it factors non-trivially as $f=g h$ with $\operatorname{deg}(g), \operatorname{deg}(h)<\operatorname{deg}(f)$. By induction on the degree, we can assume that g, h are both products of irreducibles.
Uniqueness: We have seen that irreducible polynomials (beeing the generators of prime ideals) are prime elements in $K[x]$. Thus, if

$$
f=p_{1} \cdots p_{r}=q_{1} \cdots q_{s}
$$

are two factorizations into irreducibles, then since p_{1} divides the RHS, it divides som q_{i}. Cancel and continue, just like for the integers.

Jan Snellman

TEKNISKA HÖGSKOLAN LINKÖPINGS UNIVERSITET

Polynomial rings

Coefficients in a domain

Coefficients in a field

Division algorithm $K[x]$ is a PID
GCD
Zeroes of polynomials and linear factors Prime and maximal ideals in $K[x$]

Unique factorization

Ideal calculus in $K[x]$ Quotients

Theorem

(1) In $\mathbb{C}[x]$, irreducible polynomials have degree 1
(2) In $\mathbb{R}[x]$, irreducible polynomials have degree 1 or 2
(3) In $\mathbb{Q}[x]$, there are irreducible polynomials of any degree
(4) In $\mathbb{Z}_{p}[x]$, there are irreducible polynomials of any degree
(5) In $F[x]$, where F is a finite field, there are irreducible polynomials of any degree

Proof.

The first assertion is topological in nature, and hard. We will skip the proof!
Real polynomials have complex zeroes that occur in complex conjugated pairs $\alpha, \bar{\alpha}$, and

$$
(x-\alpha)(x-\bar{\alpha})=x^{2}-2 \mathfrak{R e}(\alpha) x+|\alpha|
$$

is irreducible as a real polynomial.
For any odd prime $p, x^{p}-1 \in \mathbb{Q}[x]$ is irreducible.
The last two assertions will be proved in due time.

Jan Snellman

Polynomial rings

Coefficients in a domain

Coefficients in a field
Division algorithm $K[x]$ is a PID
GCD
Zeroes of polynomials and linear factors
Prime and maximal ideals in $K[x]$
Unique factorization Ideal calculus in $K[x]$ Quotients

Theorem

Let $f, g \in K[x] \backslash\{0\}$ (as in the the z.p.)
(1) $(f) \subseteq(g)$ iff $g \mid f$
(2) $(f)+(g)=(\operatorname{gcd}(f, g))$
(3) $(f) \cap(g)=(l c m(f, g))$
(4) $(f)(g)=(f g)$
(5) $\sqrt{(f)}=(\operatorname{sqfp}(f))$, where $\operatorname{sqfp}\left(\prod_{j} p_{j}^{a_{j}}\right)=\prod_{j} p_{j}$
(6) (f) is prime iff (f) maximal iff (f) is irreducible
(7) (f) is primary iff $f=p^{r}$ with p irreducible

Jan Snellman

TEKNISKA HÖGSKOLAN LINKÖPINGS UNIVERSITET

Theorem

Let $f=a_{0}+a_{1} x+\ldots a_{n_{1}} x^{n-1}+x^{n} \in K[x]$, with $\operatorname{deg}(f)=n>0$. Let $I=(f)$, and put $R=K[x] / I$.
(1) R is a domain iff it is a field iff f is irreducible.
(2) R is a K-vector space of dimension n. A natural basis is

$$
1, \bar{x}, \ldots, \bar{x}^{n-1}
$$

where $\bar{x}=x+I$, the image of x in the quotient R / I
(3) Multiplication of basis vectors are determined by

$$
\begin{aligned}
\bar{x}^{i} \bar{x}^{j} & =\bar{x}^{i+j} \\
\bar{x}^{n} & =-\sum_{j=0}^{n-1} a_{j} \bar{x}^{j}
\end{aligned}
$$

Jan Snellman

TEKNISKA HÖGSKOLAN LINKÖPINGS UNIVERSITET

Polynomial rings

Coefficients in a domain

Coefficients in a field
Division algorithm $K[x]$ is a PID
GCD
Zeroes of polynomials and linear factors Prime and maximal ideals in $K[x]$
Unique factorization Ideal calculus in $K[x]$ Quotients

Example

Put $R=\mathbb{Q}[x] /\left(x^{2}-1\right)$. Then any element in R can be written as

$$
a+b \bar{x}
$$

and the elements multiply subject to the relation

$$
\bar{x}^{2}=1,
$$

so there are zero divisors, e.g.

$$
(\bar{x}+1)(\bar{x}-1)=\bar{x}^{2}-1=0
$$

Are there nilpotent elements?

Jan Snellman

TEKNISKA HÖGSKOLAN
LINKÖPINGS UNIVERSITET

Polynomial rings
Coefficients in a domain

Coefficients in a field
Division algorithm $K[x]$ is a PID
GCD
Zeroes of polynomials and linear factors
Prime and maximal ideals in $K[x]$
Unique factorization Ideal calculus in $K[x]$ Quotients

Example

The polynomial $f=x^{5}+x^{2}+1 \in \mathbb{Z}_{2}[x]$ is irreducible, so $R=\mathbb{Z}_{2}[x) /(f)$ is a field. Hence $g=\bar{x}^{3} \in R$ is invertible. Find the inverse!
(1) (Bezout): in $\mathbb{Z}_{2}[x]$,

$$
\operatorname{gcd}\left(f, x^{3}\right)=1=\left(x^{2}+1\right) f+\left(x^{4}+x^{2}+x\right) g,
$$

SO

$$
\left(\bar{x}^{4}+\bar{x}^{2}+\bar{x}\right) g=1-\bar{f} * \overline{x^{2}+1}=1 \in R
$$

(2) Linear algebra) Make the Ansatz

$$
h=a_{0}+a_{1} \bar{x}+a_{2} \bar{x}^{2}+a_{3} \bar{x}^{3}+a_{4} \bar{x}^{4}
$$

and solve

$$
h g=1,
$$

using

$$
\bar{x}^{5}=\bar{x}^{2}+1, \quad \bar{x}^{6}=\bar{x}^{3}+\bar{x}, \quad \bar{x}^{7}=\bar{x}^{4}+\bar{x}^{2}
$$

Jan Snellman

TEKNISKA HÖGSKOLAN IINKÖPINGS UNIVERSITET

Polynomial rings

Example

The ideals of $\mathbb{Q}[x] /\left(x^{4}-1\right)$ correspond to the ideals of $\mathbb{Q}[x]$ that contain $\left(x^{4}-1\right)$; those are principal ideals with generators that divide $x^{4}-1$. Thus, the non-zero, proper ideals of the quotient are

$$
\left(\bar{x}^{2}+1\right),(\bar{x}+1),(\bar{x}-1) .
$$

Example

Show that $\mathbb{Q}[x] /\left(x^{4}+2 x^{2}+1\right)$ is a local ring, and that the non-units are precisely the images of those polynomials $f(x)$ which vanish at $\pm i$ (imaginary unit).

