

Polynomial rings

Coefficients in a domain

Coefficients in a field

Abstract Algebra, Lecture 12 Polynomial rings

Jan Snellman¹

¹Matematiska Institutionen Linköpings Universitet

Linköping, fall 2019

Lecture notes availabe at course homepage http://courses.mai.liu.se/GU/TATA55/

Polynomial rings

Coefficients in a domain

Coefficients in a field

1 Polynomial rings

Zero-divisors, nilpotents, units Degree Evaluation

2 Coefficients in a domain

Divisibility Polynomial rings in several variables

B Coefficients in a field

Summary

Polynomial rings

Coefficients in a domain

Coefficients in a field

1 Polynomial rings

Zero-divisors, nilpotents, units Degree Evaluation

2 Coefficients in a domain

Divisibility Polynomial rings in several variables

3 Coefficients in a field

Summary

Polynomial rings

Coefficients in a domain

Coefficients in a field

1 Polynomial rings

- Zero-divisors, nilpotents, units Degree Evaluation
- **2** Coefficients in a domain
 - Divisibility Polynomial rings in several variables

3 Coefficients in a field

Summary

Division algorithm K[x] is a PID GCD Zeroes of polynomials and linear factors Prime and maximal ideals in K[x]Unique factorization Ideal calculus in K[x]Quotients

Jan Snellman

Polynomial rings

Zero-divisors, nilpotents, units Degree

Evaluation

Coefficients in a domain

Coefficients in a field

Definition

Let *L* be a unitary, commutative ring. The polynomial ring L[x] is the set of all maps $c : \mathbb{N} \to L$ whose support

 $\mathrm{Supp}\,(c) = \{ n \in \mathbb{N} | c(n) \neq 0 \}$

is finite. Two such maps are added component-wise, and multiplied using *Cauchy convolution*

$$(c*d)(n) = \sum_{i=0}^{n} c(i)d(n-i)$$

This makes L[x] into a commutative, unitary ring; via the injection

$$L \ni \ell \mapsto (\mathbb{N} \ni n \mapsto \ell \in L)$$

one can regard L as a subring.

Jan Snellman

Polynomial rings

Zero-divisors, nilpotents, units Degree

Evaluation

Coefficients in a domain

Coefficients in a field

One usually uses the indeterminate x as a "placeholder" for the coefficients, so the map $c : \mathbb{N} \to L$ is displayed as

$$f(x) = \sum_{j=0}^{\infty} c(j) x^j,$$

where x^j can be thought of as the indicator function on $\{j\}$. The "Cauchy convolution" is then explained by the rule

$$x^i * x^j = x^{i+j}$$

and distributivity.

Example

Polynomial rings

Zero-divisors, nilpotents, units

Degree

Evaluation

Coefficients in a domain

Coefficients in a field

Let $L = \mathbb{Z}$, and let $c : \mathbb{N} \to L$ be given by c(0) = 2, c(1) = -3, c(2) = 1, and c(n) = 0 for n > 2. Let $d : \mathbb{N} \to L$ be given by d(0) = -1, d(1) = 0, d(2) = 5, and d(n) = 0for n > 2.

The corresponding polynomials, and their product, are

$$(2 - 3x + 1x^2) * (-1 + 0x + 5x^2) = -2 + 3x + 9x^2 - 15x^3 + 5 * x^4$$

Polynomial rings

Zero-divisors, nilpotents, units

Degree

Evaluation

Coefficients in a domain

Coefficients in a field

Theorem

L[x] is an integral domain iff L is.

Proof.

If ab = 0 in L, then the same holds in L[x]. If

$$0 = (a_0 + a_1x + \dots + a_nx^n)(b_0 + b_1x + \dots + b_mx^m)$$

= $a_0b_0 + (a_0b_1 + a_1b_0)x + \dots + a_nb_mx^{n+m}$

then $a_n b_m = 0$.

Example

 $\mathbb{Z}[x]$ is a domain, $\mathbb{Z}_6[x]$ is not.

Jan Snellman

Polynomial rings

Zero-divisors, nilpotents, units

Degree

Evaluation

```
Coefficients in a domain
```

Coefficients in a field

Theorem

 $f = a_0 + a_1 x \cdots + a_n x^n \in L[x]$ is invertible iff a_0 is a unit in L and a_1, \ldots, a_n are nilpotent in L.

Proof

We will make use of the fact (proved later) that

- nilpotent + nilpotent = nilpotent
- unit + nilpotent = unit

If a_0 unit, a_1, \ldots, a_n nilpotent, then $r = a_1x + \cdots + a_nx^n$ nilpotent, so f = a + r unit.

Polynomial rings

Zero-divisors, nilpotents, units

Degree

Evaluation

Coefficients in a domain

Coefficients in a field

Proof (cont)

Conversely, if $f = a_0 + a_1x + \cdots + a_nx^n$ is a a unit, then there exists $g = b_0 + b_1x + \cdots + b_mx^m$ with fg = 1, thus $a_0b_0 = 1$, so a_0 and b_0 are units. We need to prove that a_1, \ldots, a_n are nilpotent. Since fg = 1, except for the constant coefficient, the coefficients of fg are zero, in particular

$$a_{n}b_{m} = 0$$

$$a_{n-1}b_{m} + a_{n}b_{m-1} = 0$$

$$a_{n-2}b_{m} + a_{n-1}b_{m-1} + a_{n}b_{m-2} = 0$$

$$\vdots$$

$$a_{0}b_{n} + a_{1}b_{n-1} + \dots + a_{n}b_{0} = 0$$

Jan Snellman

Polynomial rings

Zero-divisors, nilpotents, units

Degree

Evaluation

Coefficients in a domain

Coefficients in a field

Proof (cont)

Multiply the eqn

$$a_{n-1}b_m + a_nb_{m-1} = 0$$

by a_n to conclude that $a_n^2 b_{m-1} = 0$. Multiply the eqn

$$a_{n-2}b_m + a_{n-1}b_{m-1} + a_nb_{m-2} = 0$$

by a_n^2 to conclude (using $a_n^2 b_{m-1} = 0$) that $a_n^3 b_{m-2} = 0$. Continue until you reach $a_n^{m+1} b_0 = 0$. Since b_0 is a unit, $a_n^{m+1} = 0$, so a_n is nilpotent.

Now $f - a_n x^n$ is a unit, so repeat the previous procedure to conclude that a_{n-1} is nilpotent, and so on.

Polynomial rings

Zero-divisors, nilpotents, units

Degree

Evaluation

```
Coefficients in a domain
```

Coefficients in a field

Lemma

If x, y are nilpotent, then so is x + y.

Proof.

Suppose that $x^n = y^n = 0$. Then

$$(x+y)^{2n} = \sum_{j=0}^{2n} {\binom{2n}{j}} x^j y^{2n-j},$$

and either j or 2n - j are $\geq n$.

Jan Snellman

Polynomial rings

Zero-divisors, nilpotents, units

Degree

Evaluation

Coefficients in a domain

Coefficients in a field

Lemma

If x unit, y nilpotent, then x - y (and x + y) is a unit.

Proof.

Assume $xx^{-1} = 1$, $y^n = 0$. Then

$$(1-y)(1+y+\cdots+y^{n-1}) = 1-y^n = 1$$

so $x^{-1}(x-y) = x^{-1}(1-yx^{-1})$ has inverse

$$x^{-1}(1 + (yx^{-1}) + \dots + (yx^{-1})^{n-1})$$

hence (x - y) has inverse

$$1 + (yx^{-1}) + \dots + (yx^{-1})^{n-1}.$$

Jan Snellman

Polynomial rings

Zero-divisors, nilpotents, units

Degree

Evaluation

Coefficients in a domain

Coefficients in a field

Definition

If $f = a_0 + a_1x + \cdots + a_nx^n \in L[x]$, with $a_n \neq 0$, then the *degree* of f is

$$\deg f = \max(\operatorname{Supp}(f)) = n.$$

The degree of the zero polynomial is $-\infty$. We define the

- leading term as a_nxⁿ,
- leading monomial as xⁿ,
- leading coefficient as an

Example

If $\mathbb{Z}[x] = 1 - 3x^4 + 17x^5$ then the degree is 5, the l.t. is $17x^5$, the l.c. is 17, and the l.m. is x^5 .

Jan Snellman

Polynomial rings

Zero-divisors, nilpotents, units

Degree

Evaluation

Coefficients in a domain

Coefficients in a field

Theorem

- Let $f, g \in L[x]$. • $\deg(f + g) \le \max(\deg(f), \deg(g)),$
 - $\deg(fg) \leq \deg(f) + \deg(g)$.

If L is a domain then

• $\deg(fg) = \deg(f) + \deg(g)$,

•
$$lt(fg) = lt(f)lt(g)$$

Example

In $\mathbb{Z}_4[x]$,

$$(2x2 + x + 1)2 = 4x4 + x2 + 1 + 4x3 + 4x2 + 2x = x2 + x + 1,$$

so the degree of products can drop in the presence of zero-divisors. In $\mathbb{Q}[x]$,

$$(2x^2 + x + 1) + (-2x^2 - x + 1) = 2,$$

so the degree of sums may drop even with field coefficients.

LINKÖPINGS UNIVERSITET

Jan Snellman

Polynomial rings

Zero-divisors, nilpotents, units Degree Evaluation

Coefficients in a domain

Coefficients in a field

Definition

Let $f(x) = a_0 + a_1x + \dots + a_nx^n \in L[x]$. Let $u \in L$. We define the evaluation of f at u by

$$f(u) = a_0 + a_1 u + \dots + a_n u^n \in L$$

Theorem

For $u \in L$, the map

$$\operatorname{ev}_u: L[x] \to L$$

 $f(x) \mapsto f(u)$

is a ring homomorphism.

Jan Snellman

Polynomial rings

Zero-divisors, nilpotents, units Degree Evaluation

Coefficients in a domain

Coefficients in a field

Example

A fixed polynomial $f(x) \in L[x]$ defines a polynomial function

 $f: L \to L$ $u \mapsto f(u)$

That is an importan topic that we will only touch upon in this course. We note the following oddity: for polynomials in $\mathbb{Q}[x]$, different polynomials give rise to different functions $\mathbb{Q} \to \mathbb{Q}$. However, already for polynomials with field coefficients this need not hold. In $\mathbb{Z}_2[x]$, if $f(x) = (x^2 + x)g(x)$ for any $g(x) \in \mathbb{Z}_2[x]$, then

$$f([0]_2) = ([0]_2^2 + [0]_2)(g([0]_2) = [0]_2$$

$$f([1]_2) = ([1]_2^2 + [1]_2)(g([1]_2) = [0]_2$$

so infinitely many polynomials represent the constantly zero polynomial function.

Polynomial rings

Zero-divisors, nilpotents, units Degree Evaluation

Coefficients in a domain

Coefficients in a field

Corollary

The set

$$I_u = \{ f(x) \in L[x] | f(u) = 0 \}$$

is an ideal in L[x], and

$$\frac{L[x]}{I_u} \simeq L$$

The ideals containing I_u are in bijection with the ideals of L.

Polynomial rings

Coefficients in a domain

Divisibility

Polynomial rings in several variables

Coefficients in a field

Recall:

Theorem

Suppos that L is a domain, and that $f = a_0 + a_1x + \cdots + a_nx^n \in L[x]$.

```
1 L[x] is a domain
```

2 f is invertible iff a_0 is a unit and deg(f) = 0.

Polynomial rings

Coefficients in a domain

Divisibility

Polynomial rings in several variables

Coefficients in a field

Definition

Let $f, g \in L[x]$.

- **1** We write f|g if there exists $h \in L[x]$ such that g = fh
- 2 We say that f and g are associate, $f \sim g$, if f|g and g|h
- **3** We say that *f* is irreducible if it lacks non-trivial divisors, i.e., any divisor of *f* is either associate to *f* or a unit
- **4** We say that f is prime if f|gh implies that f|g or f|h

Jan Snellman

Polynomial rings

Coefficients in a domain

Divisibility

Polynomial rings in several variables

Coefficients in a field

f |g iff (f) ⊇ (g).
 f ~ g iff f = cg, with c a unit.
 A non-trivial divisor g of f has degree 0 < deg(g) < deg(f).
 A prime element is irreducible

Proof.

l emma

- **1** Suppose that g = fh. Then $u \in (g) \implies u = gv = fhv \implies u \in (f)$. Conversely, if $(g) \subseteq (f)$ then $g \in (f)$, hence f|g.
- 2 If f = cg with c a unit, then $g = c^{-1}f$. Conversely, if f = ug, g = vf then f = uvf, so f(1 uv) = 0, so (since we're in a domain) uv = 1, and u, v are units.
- If f = gh then deg(f) = deg(g) + deg(h); since units have degree zero and non-zero degree zeros are units, deg(g), deg(h) > 0. Hence deg(g), deg(h) < deg(f).
- 4 If p = ab then p|ab hence p|a, say; hence deg a = deg p and $p \sim a$.

Jan Snellman

TEKNISKA HÖGSKOLAN

Polynomial rings

Coefficients in a domain

Divisibility

Polynomial rings in several variables

Coefficients in a field

Definition

We put L[x, y] = (L[x])[y].

To expound, L[x] is a ring (a domain, even) so we can form polynomials with coefficients in it. An element

$$f(y) = a_0(x) + a_1(x)y + \cdots + a_n(x)y^n,$$

where

$$a_i(x) = \sum_{j=0}^{m_j} b_{i,jj} x^j,$$

is usually written in distributed form as

$$f(x,y) = \sum_{i,j} b_{i,j} x^i y^j,$$

and is the regarded as an element in the semigroup ring $L[\mathbb{N}^2]$.

Example

Polynomial rings

Coefficients in a domain

Divisibility

Polynomial rings in several variables

Coefficients in a field

$$\mathbb{Q}[x][y] \ni f = (5+13x) + (2-x^2)y + (11-x+13x^2+17x^3)y^2$$

= 5+13x+2y-x^2y+11y^2-xy^2+13x^2y^2+17x^3y \in \mathbb{Q}[x,y]

has support $1, y, y^2$ or $1, x, y, x^2y, y^2, xy^2, x^2y^2, x^3y$, depending on one's point of view.

Jan Snellman

Polynomial rings

Coefficients in a domain

Coefficients in a field

Division algorithm

K[x] is a PID GCD Zeroes of polynomials and linear factors Prime and maximal ideals in K[x]Unique factorization Ideal calculus in K[x]Quotients

We henceforth assume that K is a field.

Theorem (Division thm)

If $f(x), g(x) \in K[x]$, with g(x) not the zero polynomial, then there is a unique quotient a(x) and remainder r(x) such that

 $f(x) = a(x)g(x) + r(x), \qquad \deg(r(x)) < \deg(g(x))$ (1)

Proof.

Put
$$r_0(x) = f(x)$$
, $a_0(x) = 0$, and then put $a_{i+1}(x) = \frac{|t(r_i(x))|}{|t(g(x))|}g(x)$, $r_{i+1}(x) = r_i(x) - a_{i+1}(x)$ as long as $\deg(a_i(x)) \ge \deg(g(x))$.

Example

If f(x)

Jan Snellman

Polynomial rings

Coefficients in a domain

Coefficients in a field

Division algorithm

 $\begin{array}{l} K[\mathbf{x}] \text{ is a PID} \\ \textbf{GCD} \\ \textbf{Zeroes of polynomials} \\ \textbf{and linear factors} \\ \textbf{Prime and maximal} \\ \textbf{ideals in } K[\mathbf{x}] \\ \textbf{Unique factorization} \end{array}$

Ideal calculus in K[x]

Quotients

$$= 3x^{3} + 5x^{2} - 7x + 11 \in \mathbb{Q}[x], \ g(x) = 2x^{2} + 1, \ \text{then}$$

$$f(x) = 3x^{3} + 5x^{2} - 7x + 11$$

$$= (3x^{3} + 5x^{2} - 7x + 11) - \frac{3x^{3}}{2x^{2}}g + \frac{3x^{3}}{2x^{2}}g$$

$$= 3x^{3} + 5x^{2} - 7x + 11 - \frac{3}{2}x(2x^{2} + 1) + \frac{3}{2}xg$$

$$= 5x^{2} - \frac{17}{2}x + 11 + \frac{3}{2}xg$$

$$= 5x^{2} - \frac{17}{2}x + 11 - \frac{5x^{2}}{2x^{2}}g + \frac{5x^{2}}{2x^{2}}g + \frac{3}{2}xg$$

$$= 5x^{2} - \frac{17}{2}x + 11 - \frac{5}{2}(2x^{2} + 1) + \left(\frac{5}{2} + \frac{3}{2}x\right)g$$

$$= -11x + 11 + \left(\frac{5}{2} + \frac{3}{2}x\right)g$$

Polynomial rings

Coefficients in a domain

Coefficients in a field

Division algorithm K[x] is a PID GCD Zeroes of polynomials

and linear factors Prime and maximal ideals in K[x]Unique factorization Ideal calculus in K[x]Quotients Theorem

Let $I \subset K[x]$ be a proper non-zero ideal (hence containing no non-zero constants), and let $f \in I$ have degree d, the minimal degree of n.z. pols in *I*. Then I = (f), and any other generator of the principal ideal I is associate to f. In particular, there is a monic (i.e. having lc 1) generator of *I*.

Proof.

Take $g \in I$, and use the division thm to write

$$g = af + r, \qquad \deg(r) < \deg(f) = d.$$

Since $g \in I \ni af$, we have that $r \in I$. But deg(r) < d, the minimal degree of nonzero pols in I, so r is the zero pol. Thus $g \in (f)$. If I = (h) = (f), then f | h and h | f, so $f \sim h$.

Polynomial rings

Coefficients in a domain

Coefficients in a field

Division algorithm K[x] is a PID

GCD

Zeroes of polynomials and linear factors Prime and maximal ideals in K[x]Unique factorization Ideal calculus in K[x]Quotients

Definition

Let $f, g \in K[x]$. A generator of the principal ideal (f) + (g) is called a greatest common divisor of f and g; the unique monic generator is called the greatest common divisor.

Lemma

If
$$h = \text{gcd}(f, g)$$
 then $h|f$, $h|g$, and if $h'|f$, $h'|g$, then $h'|h$.
Conversely, if h satisfies the above, then $(h) = (f) + (g)$.

Polynomial rings

Coefficients in a domain

Coefficients in a field

Division algorithm K[x] is a PID

GCD

Zeroes of polynomials and linear factors Prime and maximal ideals in K[x]Unique factorization Ideal calculus in K[x]Quotients

Theorem (Euclidean algorithm)

$$f f = ag + r \ then \ gcd(f,g) = gcd(g,r).$$

Proof.

ľ

Exactly as for the integers.

Theorem

If h = gcd(f, g) then there are (not necessarily unique) polynomials u, v such that

$$h = uf + vg$$
.

Proof.

(h) = (f) + (g) so h = uf + vg.

Example

vields

Jan Snellman

Polynomial rings

Coefficients in a domain

Coefficients in a field

Division algorithm K[x] is a PID

GCD

```
Zeroes of polynomials
and linear factors
Prime and maximal
ideals in K[x]
Unique factorization
Ideal calculus in K[x]
Quotients
```

```
R.<x> = PolynomialRing(QQ)
f = 3*x^4 + 13*x^3 + 5*x^2+3
g = 5*x^3 + 5*x+1
h,u,v =xgcd(f,g)
u*f+v*g
```

h = 1 $u = \frac{14700}{45529}x^{2} + \frac{725}{91058}x + \frac{14225}{45529}$ $v = -\frac{8820}{45529}x^{3} - \frac{76875}{91058}x^{2} - \frac{30715}{91058}x + \frac{2854}{45529}$ uf + vg = 1

Jan Snellman

Polynomial rings

Coefficients in a domain

Coefficients in a field

Division algorithm K[x] is a PID GCD

Zeroes of polynomials and linear factors

Prime and maximal ideals in K[x]Unique factorization Ideal calculus in K[x]Quotients

Theorem (Factor theorem)

Let $f(x) \in K[x]$, $a \in K$. Then a is a zero of f, i.e., f(a) = 0, iff (x-a)|f(x).

Proof.

If
$$f(x) = (x - a)g(x)$$
, then $f(a) = (a - a)g(a) = 0$.
If $f(a) = 0$, use division theorem to get

$$f(x) = k(x)(x-a) + r, \qquad \deg r \le 0$$

and then evaluate at a:

$$0 = k(a)(a-a) + r,$$

so
$$r = 0$$
, and $(x - a)|f(x)$

Polynomial rings

Coefficients in a domain

Coefficients in a field

- Division algorithm K[x] is a PID GCD
- Zeroes of polynomials and linear factors

Prime and maximal ideals in K[x]

Unique factorization Ideal calculus in K[x]Quotients

Theorem

Let $I = (f) \subseteq K[x]$.

- **1** *is a prime ideal if f is the z.p. or if f is irreducible.*
- 2 I is a maximal ideal iff f is a non-zero irreducible polynomial.

Proof.

(0) is prime (in any domain) but not maximal (since it is for instance contained in (x - 1)).

If f = gh with deg(g), deg(h) < deg(f) then I is not prime.

If f is irreducible, then I is maximal, since $(f) \subsetneq (g)$ means that g is a proper, non-trivial divisor of f.

Maximal ideals are always prime.

Theorem (Unique factorization)

Polynomial rings

Coefficients in a domain

Coefficients in a field

- Division algorithm K[x] is a PID
- GCD

Zeroes of polynomials and linear factors Prime and maximal ideals in K[x]

Unique factorization

Ideal calculus in K[x]Quotients Any non-zero polynomial f ∈ K[x] can be written as a product of irreducible polynomials.

2 This factorization is unique, up to ordering and associate factors (we can permute the factors, and move constants between factors; or move the constants out and assume the remaining factors to be monic, i.e. having l.c. 1)

Proof.

Existence: either f is irreducible, or it factors non-trivially as f = gh with $\deg(g), \deg(h) < \deg(f)$. By induction on the degree, we can assume that g, h are both products of irreducibles.

Uniqueness: We have seen that irreducible polynomials (beeing the generators of prime ideals) are prime elements in K[x]. Thus, if

 $f = p_1 \cdots p_r = q_1 \cdots q_s$

are two factorizations into irreducibles, then since p_1 divides the RHS, it divides som q_i . Cancel and continue, just like for the integers.

Polynomial rings

Coefficients in a domain

Coefficients in a field

Division algorithm K[x] is a PID

GCD

Zeroes of polynomials and linear factors Prime and maximal

Unique factorization

ideals in K[x]

Ideal calculus in *K*[*x*] Quotients

Theorem

In C[x], irreducible polynomials have degree 1
 In R[x], irreducible polynomials have degree 1 or 2
 In Q[x], there are irreducible polynomials of any degree
 In Z_p[x], there are irreducible polynomials of any degree
 In F[x], where F is a finite field, there are irreducible polynomials of any degree

Proof.

The first assertion is topological in nature, and hard. We will skip the proof!

Real polynomials have complex zeroes that occur in complex conjugated pairs $\alpha, \overline{\alpha}$, and

$$(x - \alpha)(x - \overline{\alpha}) = x^2 - 2\mathfrak{Re}(\alpha)x + |\alpha|$$

is irreducible as a real polynomial. For any odd prime p, $x^p - 1 \in \mathbb{Q}[x]$ is irreducible. The last two assertions will be proved in due time.

Jan Snellman

Theorem

Polynomial rings

Coefficients in a domain

```
Coefficients in a field
```

Division algorithm K[x] is a PID GCD

```
Zeroes of polynomials
and linear factors
Prime and maximal
ideals in K[x]
```

Unique factorization

Ideal calculus in K[x]

Quotients

Let $f, g \in K[x] \setminus \{0\}$ (as in the the z.p.) (f) \subset (g) iff g|f (f) + (g) = $(\gcd(f, g))$ **3** $(f) \cap (g) = (lcm(f,g))$ (f)(g) = (fg) **6** $\sqrt{(f)} = (\operatorname{sqfp}(f)), \text{ where } \operatorname{sqfp}\left(\prod_{j} p_{j}^{a_{j}}\right) = \prod_{j} p_{j}$ **(**f) is prime iff (f) maximal iff (f) is irreducible **(**f) is primary iff $f = p^r$ with p irreducible

Theorem

- **Polynomial rings**
- Coefficients in a domain
- Coefficients in a field
- Division algorithm K[x] is a PID GCD
- Zeroes of polynomials and linear factors Prime and maximal ideals in K[x]Unique factorization
- Ideal calculus in K[x]

Quotients

Let $f = a_0 + a_1x + \dots + a_{n_1}x^{n-1} + x^n \in K[x]$, with $\deg(f) = n > 0$. Let I = (f), and put R = K[x]/I.

- **1** *R* is a domain iff it is a field iff f is irreducible.
- 2 R is a K-vector space of dimension n. A natural basis is

 $1, \overline{x}, \ldots, \overline{x}^{n-1}$

where $\overline{x} = x + I$, the image of x in the quotient R/I

3 Multiplication of basis vectors are determined by

$$ar{\mathbf{x}}^i \overline{\mathbf{x}}^j = \overline{\mathbf{x}}^{i+j}$$
 $ar{\mathbf{x}}^n = -\sum_{j=0}^{n-1} \mathbf{a}_j \overline{\mathbf{x}}^j$

Jan Snellman

Polynomial rings

Coefficients in a domain

Coefficients in a field

Division algorithm K[x] is a PID

GCD

Zeroes of polynomials and linear factors Prime and maximal ideals in K[x]

Unique factorization

Ideal calculus in K[x]

Quotients

Put $R = \mathbb{Q}[x]/(x^2-1)$. Then any element in R can be written as

 $a+b\overline{x},$

and the elements multiply subject to the relation

 $\overline{x}^2 = 1,$

so there are zero divisors, e.g.

Example

 $(\overline{x}+1)(\overline{x}-1)=\overline{x}^2-1=0$

Are there nilpotent elements?

Jan Snellman

Polynomial rings

Coefficients in a domain

Coefficients in a field

Division algorithm K[x] is a PID GCD

Zeroes of polynomials and linear factors Prime and maximal

ideals in K[x]

Unique factorization

Ideal calculus in K[x]

Quotients

Example

The polynomial $f = x^5 + x^2 + 1 \in \mathbb{Z}_2[x]$ is irreducible, so $R = \mathbb{Z}_2[x)/(f)$ is a field. Hence $g = \overline{x}^3 \in R$ is invertible. Find the inverse! (Bezout): in $\mathbb{Z}_2[x]$,

 $gcd(f, x^3) = 1 = (x^2 + 1)f + (x^4 + x^2 + x)g,$

so

$$(\overline{x}^4 + \overline{x}^2 + \overline{x})g = 1 - \overline{f} * \overline{x^2 + 1} = 1 \in R$$

2 (Linear algebra) Make the Ansatz

$$h = a_0 + a_1 \overline{x} + a_2 \overline{x}^2 + a_3 \overline{x}^3 + a_4 \overline{x}^4$$

and solve

hg = 1,

using

 $\overline{x}^5 = \overline{x}^2 + 1, \qquad \overline{x}^6 = \overline{x}^3 + \overline{x}, \qquad \overline{x}^7 = \overline{x}^4 + \overline{x}^2$

Jan Snellman

TEKNISKA HÖGSKOLAN

LINKÖPINGS UNIVERSITET

Example

Polynomial rings

Coefficients in a domain

Coefficients in a field

Division algorithm K[x] is a PID GCD

```
Zeroes of polynomials
and linear factors
Prime and maximal
ideals in K[x]
Unique factorization
Ideal calculus in K[x]
```

Quotients

The ideals of $\mathbb{Q}[x]/(x^4-1)$ correspond to the ideals of $\mathbb{Q}[x]$ that contain (x^4-1) ; those are principal ideals with generators that divide x^4-1 . Thus, the non-zero, proper ideals of the quotient are

 $(\overline{x}^2 + 1), (\overline{x} + 1), (\overline{x} - 1).$

Example

Show that $\mathbb{Q}[x]/(x^4 + 2x^2 + 1)$ is a local ring, and that the non-units are precisely the images of those polynomials f(x) which vanish at $\pm i$ (imaginary unit).