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Throughout this lecture, D will denote an integral domain.

Theorem

There is an injective ring homomorphism η : D → F , with F a field, such

that any injective ring homomorphism f : D → K to a field K factors

through F as f = f̂ ◦ η.

F

D K

f̂η

f

The pair (F , η) is unique up to isomorphism; if (H, β) solves the same

universal problem, then there is a ring isomorphism φ such that β = φ ◦ η.

H

F

D K

~f

f̂

φ

η

f

β
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Example

Think of Z ⊂ Q, and f : Z→ K extended by f (a/b) = f (a)/f (b).

Example

Think also of the “rational functions”, which are quotients of polynomials

in K [x ].

Example

Somewhat similar: as an additive group, Z is the “difference group” of the

monoid N; we represent −3 as 0 − 3 or 1 − 4 or 2 − 5 or...
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Proof

Existence: Let X = D × (D \ 0), and introduce the relation

(a, b) ∼ (c , d) ⇐⇒ ad = bc

Think of (a, b) as a/b, and write it like so. We check that ∼ is an

equivalence relation respecting multiplication and addition, turning

X/ ∼= F into a commutative, unitary ring. But 1/(r/s) = (s/r) whenever

r 6= 0, so F is a field.

The map

D 3 r 7→ r/1 ∈ F

is an embedding of D into F .

If f : D → K is injective, then we define f̂ : F → K by

f̂ (r/s) = f (r)/f (s). Clearly, f̂ (η(r)) = f̂ (r/1) = f (r)/f (1) = f (r), since f

is injective and hence f (1) = 1.
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Proof, cont.

Uniqueness: consider the diagram

H

F

D K

~f

f̂
η

f

β

By the universal property, β factors through η:

H

F

D K

~f

f̂

β̂

η

f

β
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Proof, cont.

Similarly, by the universal property, η factors through β:

H

F

D K

~f
η̂

f̂
η

f

β

So F embeds into H and H into F ; they are thus isomorphic fields.
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Definition

When D = K [x ], then the fraction field

F = K (x) =

{
f (x)

g(x)
f (x), g(x) ∈ K [x ], g(x) 6= z .p.

}
is called the “field of rational functions”.

1 For f (x)
g(x) ∈ K (x), it is natural to concern oneself with the quantity

deg(f ) − deg(g)

2 Some rational functions, like

1

x − 1
= 1 + x + x2 + x3 + . . .

lie in the ring of formal power series; all lie in the ring of formal

Laurent series. As an example,

1

x2(1 − x)
= x−2 + x−1 + 1 + x + x2 + x3 + . . .
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Theorem

Any domain D contain a smallest subdomain: this is either an isomorphic

copy of Z or of Zp; any field contains a smallest subfield, which is either

Q or Zp.

Proof

Consider the ring homomorphism φ : Z→ D with φ(n) = 1D + · · ·+ 1D ,

n times. If it is injective, then the image is isomorphic to Z. If not, the

image is a subring of a domain, so a domain; hence Z/ ker(φ) is a

domain, so ker(φ) is a prime ideal, so it is (p) for a prime p, so the image

is isomorphic to Z/pZ.
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Proof, cont.

If D is a field, and φ is injective, then we can extend φ to Q, embedding

it inside D (note that all non-zero ringhomomorphisms between fields are

injective):

Q

Z D

φ̂

φ

η

If D is a field, and ker(φ) = pZ, then as before, the image of φ is Zp (so

is the image of φ̂).

Definition

The unique smallest subfield of the field is called the prime subfield.
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Definition

Let u, v ,w ∈ D \ {0}.

1 If u|1 then u is a unit

2 If u|v and v |u then u = cv , with c a unit; we say that u, v are

associate and write u ∼ v . This is an equivalence relation.

3 If w |u and w |v then w is a common divisor of u and v ; it is a greatest

common divisor if it furthermore holds that w is divisible by any other

common divisor. Gcd’s are determined up to association.

4 We define gcd(u1, . . . , ur ) inductively as gcd(gcd(u1, . . . , ur−1), ur ). It

is the greatest (w.r.t. divisibility) of the common divisors of u1, . . . , ur .

5 w is irreducible if any divisor is either a unit, or associate to w

6 w is a prime element if w |uv implies that w |u or w |v
7 D has finite factorization if all (nonzero) elements are finite products

of irreducible elements

8 D is a unique factorization domain if it has finite factorization, and

this factorization is unique, up to order and associates
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Example

Kronecker, and his student Kummer, studied so called “rings of algebraic

integers”. It was assumed that elements in such domains could be

factored uniquely. However, in

Z[
√
−5] ' Z[t]

(t2 + 5)

we have that

6 = 2 ∗ 3 = (1 +
√
−5)(1 −

√
−5)

are two non-equivalent factorizations into irreducible elements. The world

of algebraic number theory was shaken to its core! Kummer, in order to

rectify the situation, introduced so-called “ideal elements”, i.e. principal

ideals. One often has unique factorization of ideals where unique

factorization of elements do not hold.
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Example

The subring of C[[x ]] consisting of convergent power series is not a UFD,

since some elements can have infinitely many irreducible factors. More

precisely, Weierstrass factorization theorem says that

1 − z/n

is analytic, and irreducible, and has a single zero at z = n. Furthermore,

every entire function whose zeroes are simple and contained in the natural

numbers can be written as

eg(z)
∞∏
k=1

(1 − z/n).

Here g(z) is an entire function, and eg(z) thus has no zeroes, and is

invertible.
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Definition

D is an Euclidean domain if there is a function d : D → N ∪ {−∞} such

that

d(u + v) ≤ max d(u), d(v)

d(uv) = d(u) + d(v)

d(0) = −∞
Furthermore, this function should provide for a division algorithm:

we demand that for u, v ∈ D, v 6= 0, there are unique k , r such that

u = kv + r , d(r) < d(v)
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Theorem

The following are Euclidean domains:

1 Z, with d(u) = |u|,
2 K [x ], with d(u) = deg(u),

3 The Gaussian integers Z[i ] = { a + ib a, b ∈ Z } with

d(a + ib) = a2 + b2.

Theorem

Euclidean domains have an Euclidean algorithm, thus gcd’s exist. Bezout’s

theorem hold. They are principal ideal domains.

Proof.

Extract the pertinent parts of the proofs in K [x ].
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Theorem

If D has finite factorization, and if irreducible elements are prime, then D

is a UFD.

Proof.

If u = p1 · · · pr = q1 · · · qs , we can cancel p1 and some qi , then proceed by

induction.
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Lemma

In a PID, (u) is maximal iff u is irreducible.

Proof.

If u = vw with v ,w non-units, then (u) ( (v), so (u) is not maximal.

Conversely, if u is irreducible, and (u) ⊆ (v), then v |u, so v is either a

unit or associate to u, so (v) = D or (v) = (u). So (u) is maxial.

Theorem

In a PID, irreducible elements are prime.

Proof.

Let w be irreducible. If w |uv then (w) ⊇ (uv). But (w) is a maximal

ideal, hence a prime ideal, hence either u or v belong to (w), hence either

u or v is divisible by w .
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Theorem

In a PID, and strictly increasing chain of ideals

I1 ( I2 ( I3 ( · · ·

stabilizes, i.e., In = In+1 = . . . for some n.

Proof.

Put I = ∪In. This is an ideal! It has a generator, so I = (u). Since

u ∈ I = ∪In, u ∈ In for some n. Then In = (u) = I ⊇ Im for all m.
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Theorem

Any PID has finite factorization.

Proof.

Take u ∈ D \ {0}. If u is irreducible, done. Otherwise, u = vw , with

(u) ( (v). If v irreducible, fine; otherwise v = v2w2 with

(u) ( (v) ( (v2). Continue, by the previous lemma we’ll eventually get

(vn−1) = (vn), i.e., vn = cvn−1 with c a constant, and vn−1 could not be

divided further; it was irreducible.

So we have u = v̂g with v̂ irreducible. Repeating the above argument

with g , it is either irreducible or contains an irreducible factor. But if we

could keep splitting of factors indefinitely, we would get an infinite

ascending chain of principal ideals, which is impossible.
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Theorem

Any PID is a UFD.

Proof.

It has finite factorization, and irreducible elements are prime.

Corollary

Any Euclidean domain is a UFD.

Proof.

They are PIDs.
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Example

In Z[i ], we can uniquely (up to the units {1,−1, i ,−i }) factor into

irreducibles, which are (Gaussian) primes. The ordinary primes in the

subring Z ⊂ Z[i ] may factor:

13 = (2 + 3i)(2 − 3i)

Since d(13) = 132 = d(2 + 3i)d(2 − 3i) = 132 we have

13 = d(2 + 3i) = 22 + 32, showing that (2, 3, 13) is a Pythagorean triple,

i.e., there is a right triangle with these sidelengths.
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Theorem

If D is a UFD, then so is D[x ]

The proof, which is somewhat technical, uses the so-called

Lemma (Gauss’s lemma)

Let f (x) =
∑

j ajx
j ∈ D[x ], with D a UFD. Let the content of f (x) be

cn(f ) = gcd(a0, . . . , an). Then

cn(fg) = cn(f )cn(g)

Theorem

If f (x) ∈ D[x ] factors as f (x) = g(x)h(x), with g(x), h(x) ∈ K [x ], where

K is the fraction field of D, then there are c , d , e ∈ D such that

f (x) = c(dg(x))(eh(x)) and dg(x), eh(x) ∈ D[x ].

The proofs are in your textbook!
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Corollary

Let D be a UFD. Then D[x1, . . . , xn] is a UFD.

Proof.

D[x1] is a UFD, hence so is D[x1, x2] ' D[x1][x2], and so forth.

Theorem

If K is a field, then K [x1, x2, x3, . . . ] (infinitely many indeterminates) is a

UFD.

Proof.

This is an exercise in Bourbaki’s Algèbre commutatif.
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Theorem

Let K be a field. The ring of formal power series K [[x ]] is a UFD.

Proof.

It is a PID; in fact, every ideal is of the form (xm).

Theorem

Let K be a field. The ring of formal power series K [[x1, . . . , xn]] is a UFD.
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Example

The ring of formal power series D[[x ]], where D is a UFD, need not be a

UFD!

For an example, let K be a field, form the polynomial ring K [x , y , z ], then

the quotient S = K [x ,y ,z ]
(x2+y3+z7)

. Then we form, not the fraction field, but

something similar, namely the localization; we put

S = { f /g f , g ∈ S , g(0, 0, 0) 6= 0 }

It is well-defined whether g(0, 0, 0) = 0 or not, even though it is an

element in the quotient.

Then S is a local ring, and a UFD, but S [[t]] is not!

Thank you, Wikipedia!

Theorem (Cashwell-Everett)

K [[x1, x2, x3, . . . ]] is a UFD.
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In a similar fashion to Weierstrass factorization thm:

Theorem (Snellman)

The subring lim←−K [x1, . . . , xn] ⊂ K [[x1, x2, x3, . . . ]] of formal power series,

whose restrictions to finitely many indeterminates are polynomials, is a

“topological UFD” in which every element can be uniquely written as a

countable convergent product of irreducibles.
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We reiterate the following consequence of Gauss’s lemma:

Lemma

The polynomial

f (x) =
n∑

j=0

ajx
j ∈ Z[x ]

is irreducible iff it is irreducible viewed as a polynomial in Q[x ].
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We can check for linear factors:

Lemma

If f (x) =
∑n

j=0 ajx
j ∈ Z[x ] has a rational zero r/s, with gcd(r , s) = 1,

then r |a0 and s|an.

Proof.

If

a0 + a1r/s + · · ·+ anr
n/sn = 0,

then

sna0 + sn−1a1r + · · ·+ anr
n = 0,

so

sna0 = −rsn−1a1 − · · ·− rnan.

Since r |RHS , r |sna0. But gcd(r , s) = 1, so r |a0. A similar argument

shows that s|an.
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• Let D, L be domains, and φ : D → L a ring homomorphism

• If w = uv in D, then φ(w) = φ(u)φ(v) in L

• However, φ can turn non-units into units

• A special case of the technique: φ induces

φ̂ : D[x ]→ L[x ]

φ̂(
∑
j

ajx
j) =

∑
j

φ(aj)x
j

• A special case of the special case: φ : Z→ Zp, and φ̂ : Z[x ]→ Zp[x ],

reducing the coefficients mod p
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Example

Let f (x) = x2 + 10x + 21 ∈ Z[x ]. Reducing modulo 3 we see that

f (x) ≡ x(x + 1) mod 3.

A technique known as “Hensel lifting” lifts this factorization uniquely

modulo 32

f (x) ≡ (x + 1 ∗ 3)(x + 1 + 2 ∗ 3) ≡ (x + 3)(x + 7) mod 9.

This lifting extends to any power of 3, but already modulo 9 we have

recovered the correct factors over Z.
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Another useful result which follows from reducing modulo a prime is

Lemma (Eisenstein)

Let

f (x) = a0 + a1x + · · ·+ anx
n ∈ Z[x ],

with

• p prime

• p|ai for 0 ≤ i < n

• p 6 |an
• p2 6 |a0

Then f (x) is irreducible.

Proof.

Consult your textbook!
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Example

Is x5 − 1 ∈ Z[x ] irreducible? Obviously not, since

x5 − 1 = (x − 1)(x4 + x3 + x2 + x + 1).

Is this the factorization into irreducibles? Put

h(x) = x4 + x3 + x2 + x + 1,

then

h(x+1) = (x+1)4+(x+1)3+(x+1)2+(x+1)+1 = x4+5x3+10x2+10x+5,

which is irreducible by Eisenstein. But if h(x) = a(x)b(x) then surely

h(x + 1) = a(x + 1)b(x + 1), so h(x) is irreducible.
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