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Definition

Suppose that E , F are fields, and that E is a subring of F . We write

E ≤ F and say that E is a subfield of F , and that F is an overfield of E .

The inclusion map i : E → F is called a field extension (or equivalently,

the pair E ≤ F ).

Example

• Any field is an overfield of its prime subfield

• Q ≤ R ≤ C
• C ≤ C(x) ≤ C(x)(y)
• Z2 ≤ Z2[x ]

(x2+x+1)
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Definition

Let E ≤ F be a field extension. Then F is a vector space over E . The

dimension is denoted by [F : E ], and refered to as the degree of the

extension. If this dimension is finite, then the extension is said to be finite

dimensional.

Example

• [C : R] = 2, so R ≤ C is a finite dimensional extension of degree 2.

• [R : Q] =∞, so this extension is infinite dimensional.

It is a theorem (as long as you accept the axiom of choice) that any vector

space has a basis. In the first example, we can take {1, i }, in the second,

we need set-theory yoga to produce a Hamel basis.
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Theorem (Tower thm)

If K ≤ L ≤ M, then [M : K ] = [M : L][L : M].

Proof

Obvious if any extension involved is infinite, so suppose [M : L] = m <∞,

[L : K ] = n <∞. Then M has an L-basis

u1, . . . ,um,

and L has a K -basis

v1, . . . , vn.

Claim:

uivj , 1 ≤ i ≤ m, 1 ≤ j ≤ n

is a K -basis for M.
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Proof (of claim)

Spanning: take w ∈ M. Then

w =

m∑
i=1

ciui , ci ∈ L

=

m∑
i=1

 n∑
j=1

dijvj

ui , dij ∈ K

=
∑
i ,j

dijvjui
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Proof (of claim)

K -linear independence: suppose that∑
i ,j

dijvjui = 0.

Then
m∑
i=1

 n∑
j=1

dijvj

ui = 0,

so since the ui ’s are L-linearly independent, all coefficients

n∑
j=1

dijvj = 0.

But the vj ’s are K -linearly independent, so all dij ’s are zero.
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Example

Z2 ≤
Z2[x ]

(x2 + x + 1)
≤

(
Z2[x ]

(x2+x+1)

)
[y ]

(y3 + y + 1)

has degree 3 ∗ 2 = 6, and a basis consists of

1, x , y , xy , y2, xy2.

This finite field thus has 26 = 64 elements.
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Definition

If E ≤ F , u ∈ F is algebraic over E if there is a non-zero polynomial

f (x) ∈ E [x ] having u has a zero, i.e.,

f (x) =
n∑

i=0

aix
i , ai ∈ E ,

and

f (u) =
n∑

i=0

aiu
i = 0 ∈ F .

The smallest degree of a polynomial that works is the degree of u over E .

If u is not algebraic over E , then it is transcendental over E .
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Example

s =
√

2 + 1 ∈ R is algebraic of degree 2 over Q, since it satisfies

(s − 1)2 − 2 = 0,

but no non-trivial algebraic relation of lower degree.

On the other hand, the number

∞∑
j=1

10−j !

is transcendental over Q, as proved by Liouville.
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Definition

The extension E ≤ F is algebraic if every u ∈ F is algebraic over E .

Example

Let E = Q, and let F =
{
a + b

√
2 a, b ∈ Q

}
. Put u = a + b

√
2.

• F is a field, since

u−1 =
1

a + b
√

2
=

a − b
√

2

a2 + 2b2
=

a

a2 + 2b2
+

−b

a2 + 2b2

√
2.

Note that a2 + 2b2 6= 0 when (0, 0) 6= (a, b) ∈ Q×Q.

• E ≤ F

• E ≤ F is algebraic, with every element of F algebraic over Q with

degree at most 2, since

(u − a)2 − 2b2 = 0.
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Theorem

If [F : E ] = n <∞ then E ≤ F is algebraic.

Proof.

Take u ∈ F , and consider

1, u, u2, . . . , un ∈ F

These n + 1 vectors must be linearly dependent over E , which means that

there are ci ∈ E , not all zero, such that

c01 + c1u + · · ·+ cnu
n = 0

Thus, u is algebraic over E .
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Example

There are algebraic extensions that are not finite-dimensional. For

instance, let E = Q, and let F be the smallest subfield of R that contains

all
√
p for all primes p. Then all elements of F are algebraic; for instance,

if u =
√

2 + 7
12

√
3 then

(u −
√

2)2 =
3 ∗ 49

122
=

49

48

u2 − 2
√

2u + 2 −
49

48
= 0

2
√

2u = u2 + (2 −
49

48
) = u2 +

47

48

8u = (u2 +
47

48
)2

But the set
√

2,
√

3,
√

5, . . . is infinite and Q-linearly independent, so

[F : E ] =∞.
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Definition

Let E ≤ F be a field extension, and let u ∈ F . We denote by E (u) the

smallest subfield of F containing E and u, in other words

E (u) =
⋂

E≤K≤F
u∈K

K

Picture!

We can also describe it as

E (u) =

{
p(u)

q(u)
p(x), q(x) ∈ E [x ], q(x) 6= z .p

}
We call E (u) a simple extension, and u a primitive element of the

extension.
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Example

Q(
√

2) consists of all rational expressions like

a0 + a1
√

2 + a2
√

2
2
+ · · ·+ an

√
2
n

b0 + b1
√

2 + b2
√

2
2
+ · · ·+ bm

√
2
m
,

but this actually simplifies to just all

a0 + a1
√

2.

On the other hand, put u =
∑∞

j=1 10−j !, then all expressions

a0 + a1u + a2u
2 + · · ·+ anu

n

b0 + b1u + b2u2 + · · ·+ bmum
,

that are not identical, are different. So Q ≤ Q(u) is infinite dimensional.
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Theorem

Let E ≤ F be a field extension, and let u ∈ F .

1 If u is algebraic over E , of degree n, then E ≤ E (u) is algebraic, and

E (u) ' E [x ]

p(x)
,

where the minimal polynomial p(x)

1 is irreducible

2 has degree n

3 is the unique (up to association) non-zero polynomial of smallest

degree such that p(u) = 0

2 If u is transcendental over E , then E ≤ E (u) is transcendental, and

infinite dimensional, and

E (u) ' E (x),

the field of rational functions with coefficients in E .
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Proof

• Consider

φ : E [x ]→ F

φ(f (x)) = f (u)

• The image is a subring of F , and is contained in E (u). In fact, it is

E [u], the smallest subring containing u.

• Let I = kerφ.

• • If I 6= (0), then I = (p(x) for a polynomial, which is (up to

association) the unique polynomial of smallest degree in I .
• Of course p(u) = 0; every pol in I has u as a zero, by definition.
• By the first iso thm, E [x ]/I ' E [u] ⊆ E (u) ⊆ F .
• So E [u], a subring of a field, is a domain; so I is a prime ideal; so p(x)

is irreducible; so I is maximal; so E [x ]/I is a field; so E [u] is already a

field; so E [u] = E (u).
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Proof, cont

• • If I = (0), then φ is injective.
• Then it factors through the splitting field E (x) of E [x ]. That is, it

extends to

φ̂ : E (x)→ F

φ̂(
f (x)

g(x)
) =

f (u)

g(u)

• It is injective, by general nonsense
• The image is precisely E (u), the simple extension
• So E (x) ' E (u).

This explains “if not identical, then different”; two rational expressions in

the transcendental u are equal iff they coincide as rational functions.
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Example

Let Q ≤ C 3
√

2 + i = u. What is Q(u)?

We see that

u2 = 2 − 1 +
√

2i
√

2i = u2 − 1

−2 = (u2 − 1)2

u4 − 2u2 + 3 = 0

Since f (x) = x4 − 2x2 + 3 ∈ Q[x ] is irreducible, it is the minimal

polynomial of U, and

Q(u) ' Q[x ]

(x4 − 2x2 + 3)

We have that [Q(u) : Q] = 4.
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Definition

Let E ≤ F , and let u1, . . . , ur ∈ F . We define E (u1, . . . , ur ) either as

• The smallest extension of E inside F which contains u1, . . . , ur , i.e.,⋂
E≤K≤F
u1,...,ur∈K

K ,

• or as the iterated extension

E (u1)(u2) · · · (ur )
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Example

Consider Q(
√

2)(
√

3). We have that Q(
√

2) has a Q-basis
{

1,
√

2
}

, and

that
√

3 6∈
√

3. In fact, x2 − 3 is irreducible both over Q and over Q(
√

3),

so it is the minimal polynomial of
√

3 over Q(
√

2). The tower theorem,

and its proof, then yields that Q(
√

2)(
√

3) has a Q-basis

1,
√

2,
√

3,
√

2
√

3.

Now consider u =
√

2 +
√

3 ∈ Q(
√

2,
√

3). Obviously,

Q ≤ Q(u) ≤ Q(
√

2,
√

3), where the first inclusion is proper. By the tower

theorem again, [Q(u) : Q] is a divisor of [Q(
√

2,
√

3) : Q] = 4, so it is

either 2 or 4. But u 6∈ Q(
√

2), so it is 4; and Q(u) = Q(
√

2,
√

3).
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Theorem

The extension E ≤ F is finite dimensional iff there are a finite number of

elements u1, . . . , ur ∈ F , algebraic over E , such that F = E (u1, . . . , ur ).

Proof.

If [F : E ] = n <∞ then there is a basis u1, . . . , un ∈ F . These basis

elements are elgebraic over E .

If there are such algebraic elements, then clearly uj is algebraic over

E (u1, . . . , uj−1), and [E (u1, . . . , uj−1, uj) : E (u1, . . . , uj−1)] ≤ [E (uj) : E ],

so by the tower theorem,

[F : E ] = [E (u1, . . . , ur ) : E ] ≤ [E (u1) : E ] · · · [E (ur ) : E ] <∞.
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Theorem (Primitive element thm)

Let E ≤ F be a finite dimensional extension, and suppose that either

char(E ) = 0 (that is, Q ≤ E) or that E is finite. Then there exists a

primitive element u ∈ F for the extension: F = E (u).

Proof.

The proofs are in Svensson, maybe also in Judson.
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Example

Consider the iterated simple extension

Z2 ≤ E ≤ F , E =
Z2[x ]

(x2 + x + 1)
, F =

E [y ]

(y3 + y + 1)

Clearly

F = Z2(x , y) = spanQ(1, x , y , xy , y
2, xy2).

Let’s find a primitive element!

Put v = x + y . Then

[1, v , v2, v3, v4, v5]
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Example

is [
1, x + y , y2 + x + 1, xy2 + xy , y2 + x + y , xy2 + y2 + x + y

]
We take the coordinate vectors of these (w.r.t. our prefered basis) and put

them in a matrix. Then these 6 powers span F iff they are linearly

independent iff the matrix is invertible iff it has determinant 1 in Z2. The

matrix is 

1 0 1 0 0 0

0 1 1 0 1 1

0 1 0 0 1 1

0 0 0 1 0 0

0 0 1 0 1 1

0 0 0 1 0 1


and it has determinant 1. So Z2(x + y) = Z2(x , y) = F .
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Example

Let F = Z2(t, u), rational functions in two variables, and let

E = Z2(t
2, u2). Then E is a subfield of F , and E ≤ F is an algebraic

extension of degree 4. There is, however, no primitiv element for this

extension.

Suppose that a ∈ F \ E . Then a2 ∈ E (because characteristic 2) hence it

is a root of f (x) = x2 − a2 ∈ E [x ]. This must be the minimal polynomial

of a, and E ≤ E (a) ≤ F is a non-trivial intermediate field. Hence a is no

primitive element.
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Definition

Let E ≤ F , and let

f (x) =
n∑

i=0

aix
i ∈ E [x ]

Then u ∈ F is a zero of f (x) if

f (u) =
n∑

i=0

aiu
i = 0 ∈ F

It is a simple zero if

(x − u)|f (x) but (x − u)2 6 |f (x),

and more generally, a zero of multiplicity r if

(x − u)r |f (x) but (x − u)r+1 6 |f (x).
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Theorem (Kronecker)

Let f (x) =
∑n

i=0 aix
i ∈ E [x ] be non-constant. Then f (x) has a zero

somewhere.

Proof.

Let f (x) = g(x)h(x) ∈ E (x), with g(x) irreducible. Put

F =
E [x ]

(g(x))
.

Then E ≤ F , and x ∈ F is a zero of f (x).

This might look like some dubious sleight-of-hand, but it is completely on

the up-and-up!
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Example

The polynomial f (x) = x2 + x + 1 ∈ Z2[x ] is irreducible, hence has no

linear factor, hence no zero (in Z2). In

F =
Z2[x ]

(x2 + x + 1)
,

the elements are

0, 1, x , x + 1,

with the relation

x2 = x + 1.

Now f (x) = x2 + x + 1, viewed as a polynomial with coefficients in F , has

two zeroes:

f (x) = x2 + x + 1 = 0

f (x + 1) = (x + 1)2 + (x + 1) + 1 = x2 + 1 + x + 1 + 1 = 0
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Definition

Let E ≤ F . The polynomial

f (x) =
n∑

i=0

aix
i ∈ E [x ]

is said to split inside the extension F if there are distinct zeroes

u1, . . . , ur ∈ F , and multiplicities bj ∈ Z+, such that

f (x) = an
r∏

j=1

(x − uj)
bj
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Example

The polynomial f (x) = x2 + 2 ∈ Q[x ] is irreducible over Q but splits over

Q(
√

2, i), since

x2 + 2 = (x − i
√

2)(x + i
√

2) ∈ Q(
√

2, i)[x ].

Example

The polynomial f (x) = x2 + x + 1 ∈ Z2[x ] splits over the “Kronecker

extension” we studied earlier, as

x2 + x + 1 = (x + x)(x + x + 1).
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Definition

The polynomial

f (x) =
n∑

i=0

aix
i ∈ E [x ]

has F as its splitting field if

1 E ≤ F ,

2 f (x) splits in F [x ],

3 Write

f (x) = an
r∏

j=1

(x − uj)
bj

Then F = E (u1, . . . , ur )

So, we adjoin zeroes of f (x), but nothing unnecessary.
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Theorem

The polynomial

f (x) =
n∑

i=0

aix
i ∈ E [x ]

has a splitting field F , and this splitting field is unique up to a rigid

isomorphism:

F L

E E

φ

i

id

j

The degree [F : E ] ≤ n! and if f (x) is irreducible then [F : E ] ≥ n.

Proof.

Read your textbook!
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Example (The most famous splitting field example there is!)

Let f (x) = x3 − 2 ∈ Q[x ]. What is its splitting field? Put

α =
3
√

2

β = exp(
2πi

3
) = −

1

2
+ i

√
2

3

which have minimal defining polynomial relations (over Q)

α3 − 2 = 0

β3 − 1

β− 1
= β2 + β+ 1 = 0
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Example (Cont)

Then, in Q(α,β), f (x) splits as

x3 − 2 = (x − α)(x − αβ)(x − αβ2)

So the splitting field is contained in Q(α,β), and of course contains the

zeroes

α, αβ, αβ2.

But then it also contains αβ
α = β, so it is actually equal to Q(α,β).

Since x3 − 2 ∈ Q[x ] is irreducible, [Q(α) : Q] = 3. We have that

(x − αβ)(x − αβ2) = x2 + x + 1

is irreducible over Q(α), so [Q(α)(β) : Q(α)] = 2; the tower theorem now

reveals that [Q(α,β) : Q] = 3 ∗ 2 = 6.
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Example (Cont)

Note:

• α ∈ R, so Q(α) ⊆ R
• α has minimal polynomial x3 − 2 over Q
• This minimal polynomial factors over Q(α) as

x3 − 2 = (x −α)(x2 −α(β+β2)x +α2β3) = (x −α)(x2 +αx +α2),

where the latter factor is irreducible

• In particular, we have not found the splitting field after adjoining α to

Q.
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Example

Let f (x) = x3 + x + 1 ∈ Z2[x ]. It is irreducible. In F [y ] = Z2[x ]
(x3+x+1)

[y ], we

have that

y3 + y + 1 = (y + x) ∗ (y + x2) ∗ (y + x2 + x)

So, F is the splitting field, since [F : Z2] = 3.

We found the splitting field after adjoining just one zero!
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Example

Let f (x) = x4 + 4 ∈ Q[x ]. Then

f (x) = x4 + 4 = (x2 + 2x + 2)(x2 − 2x + 2),

By Eisenstein’s criteria, these two factors are irreducible. Further analysis

reveals that the splitting field has degree two over Q.
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Example

Let p be a prime number, and let f (x) = xp − 1 ∈ Q[x ]. Then

f (x) = xp − 1 = (x − 1)(xp−1 + xp−2 + · · ·+ x1),

and the latter factor (call it g(x)) can be shown to be irreducible. The

zeroes of g(x) are{
ξk 1 ≤ k ≤ p − 1

}
, ξ = exp(

2πi

p
)

and the splitting field is Q(ξ), which has degree p − 1 over Q.
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Example

Let p be a prime number, and let f (x) = xp − 2 ∈ Q[x ]. Then the

splitting field of f (x) is an extension of degree p(p − 1).

Prove this on your own as an exercise!
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Lemma

Let E ≤ F be a field extension. The set of elements of F that are

algebraic over E forms a field, which is an algebraic extension over E .

Example

Let Q ≤ C. The set of complex numbers that are algebraic over Q is

called the field of algebraic numbers. By definition, any zero of a rational

polynomial is an algebraic number. More surprisingly, every zero of a

polynomial with algebraic number coefficients — is an algebraic number!
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Definition

The field K is an algebraic closure of K if

1 K ≤ K

2 the extension is algebraic

3 every f (x) ∈ K [x ] splits over K [x ].

Example

Q, the field of algebraic numbers, is an algebraic closure of Q.
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Definition

The field E is algebraically closed if every non-constant f (x) ∈ E [x ] has a

zero in E .

Lemma

If E is algebraically closed, and f (x) ∈ E [x ], then f (x) splits in E .

Proof.

Since f (x) has a zero u ∈ E , it has a factor (x − u) ∈ E [x ]. Split it off;

the remaining factor also has a zero, and so on.

Theorem (Fundamental theorem of algebra)

The complex field C is algebraically closed.
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Lemma

Let K be an algebraic closure of K. Then K is algebraically closed (so

equal to its closure).

Proof.

1 Take a polynomial f (x) ∈ K , and pick a zero u (somewhere).

2 Then K ≤ K (u) is algebraic.

3 Furthermore K ≤ K is algebraic.

4 This means that K ≤ K (u) is algebraic.

5 In particular, u is algebraic over K .

6 But then it belongs to K .

7 Hence, all zeroes of polynomials in K [x ] remain in K .

8 So this field is algebraically closed.
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Theorem

Let E be a field. Then there exists a unique (up to rigid isomorphism)

algebraic closure E , i.e.

1 E ≤ E, and this extension is algebraic

2 Any polynomial with coefficients in E have a zero in E ,

3 Any polynomial with coefficients in E have a zero in E ,

Proof.

Needs set theory yoga.
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Example

Q ≤ Q ≤ C ≤ C(x). The field of algebraic numbers is

1 the algebraic closure of Q,

2 algebraically closed,

3 the set of complex numbers that are algebraic over Q.

The complex field C algebraically closed, and its own algebraic closure. It

is still properly contained in the field of rational functions with complex

coefficients — this latter field is not algebraically closed! I belive he

algebraic closure is the field of Puisseux series.
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Recall that a complex number α is algebraic over Q if it is the zero of a

non-trivial polynomial with rational coefficients, i.e., if

cnα
n + cn−1α

n−1 + · · ·+ c1α+ c0 = 0, cj ∈ Q, cn 6= 0, n ≥ 1

Definition

The complex number α is an algebraic integer if it is the zero of a monic

polynomial with integer coefficients, i.e. if

cnα
n + cn−1α

n−1 + · · ·+ c1α+ c0 = 0, cj ∈ Z, cn = 1, n ≥ 1
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Example

Let q =
√

1/2. Then q2 = 1/2, so q has minimal polynomial x2 − 1/2.

Let I ⊂ Q[x ] consist of those polynomials that have q as a zero. Then

I = (x2 − 1/2). It contains monic polynomials and polynomials with

integer coefficients (such as 2x2 − 1) but no monic polynomial with

integer coefficients. So the algebraic number q is not an algebraic integer.

Hovewer, 2q has minimal polynomial x2 − 2, so it is an algebraic integer.

Theorem

If α ∈ C is an algebraic number, then nα is an algebraic integer for some

positive integer n.
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Construction with straightedge and compass

• Can’t trisect an angle!

• Can’t double a cube!

• Can’t square a circe!

At least not a general angle et cetera, and using only an (unmarked)

straightedge (linjal) and a compass (passare), and finitely many operations

(no limits).
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• You are given a plane, and in the plane, two points.

• The distance between the points is, by definition, 1.

• You can construct new lines and new circles by drawing the line

between to constructed points, and drawing the circle with midpoint

a constructed points, and another constructed point on its periphery.

• Intersection points between lines and lines, between lines and circle,

between circles and circles, are also constructed (or constructible)

points.

• Keep going indefinitely, get a subset of constructible points in the

plane.

• The x and y coordinates of constructible points form a subset of R,

the constructible real numbers.
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G has x-coordinate 1/
√

2, which is hence constructible. (A general point

on the lines/circles is not constructed).
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Theorem

1 The set of constructible numbers form a subfield of K ≤ R.

2 [K : Q] =∞
3 For u ∈ K, [Q(u) : Q] = 2n, for some n (which depends on u).

4 In fact, u is constructible iff there is some finite chain of simple

quadratic radical extensions

Q ≤ Q(
√
α1) ≤ Q(

√
α2) ≤ · · · ≤ Q(

√
αn) = Q(u)
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AB = α, AC = β, α+ β and α− β constructed.
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AB/AD = AC/AE , so take AC = 1, AD = x , AB = y ,get AE = x/y .
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Square root of α.



Abstract Algebra, Lecture 14

Jan Snellman

General field
extensions

Simple extensions

Zeroes of
polynomials

Construction with
straightedge and
compass
Constructible numbers

Trisecting the angle

Doubling the cube

Squaring the circle

Coefficients in K .

• Line L: Ax + By + C = 0

• Circle S1: (x − d1)
2 + (y − d2)

2 − r1 = 0

• Circle S2: (x − d3)
2 + (y − d4)

2 − r2 = 0

Intersection L ∩ S1: y = (−A/B)x − C/B so

0 = (x − d1)
2 + ((−A/B)x − C/B) − d2)

2 − r1

= ux2 + vx + w , u, v ,w ∈ K

= u(x2 + v/ux + w/u)

= u
(
(x − v/(2u))2 − v2/(4u2) + w/u

)
with zeroes in K (

√
v2/(4u2) − w/u).
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Example

• Any rational number is constructible

• √
3/4 +

√
7/3

is constructible

• cos(π/3) is constructible

• α = cos(π/9) is not constructible, since

1/2 = cos(π/3) = cos(3 ∗ π/9) = 4 cos3(π/9) − 3 cos(π/9)

and hence α is a root of

4x3 − 3x − 1/2 = 0

where the LHS is a irreducible polynomial; hence [Q(α) : Q] = 3, not

a power of two.
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Doubling the cube

Example

The number 21/3 is algebraic of degree 3, hence not constructible. So one

can not construct, with straightedge and compass, the side length of a

cube of volume 2.
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Example

It is impossible to “square the circle”, i.e. construct a square with the

same area as a unit circle, since π is transcendental.
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