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Theorem

If F is a finite field, then char(F ) = p, where p is a prime number, and F

has pn elements.

Proof.

1 A field has characteristic zero (and then contains Q as a prime

subfield) or characteristic p, with p prime, and then contains Zp as

its prime subfield

2 For a finite field F , the latter case must hold

3 Thus F is a vector space of finite dimension, n, over Zp

4 Thus F has pn elements
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Theorem

If f (x) ∈ Zp[x ] is irreducible, and of degree n, then

Zp[x ]

(f (x))

is a finite field with pn elements.
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Theorem

For any prime p, and positive integer n, there is some irreducible

polynomial f (x) ∈ Zp[x ] of degree n.

Corollary

For any prime power q = pn, there is a finite field with q elements.

The proof of the above theorem is somewhat tricky — so we will prove

the existence of finie fields of size q = pn in another way.
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Lemma

If F is a field with char(F ) = p, then

(a + b)p
n
= ap

n
+ bp

n
(1)

for all a, b ∈ F and n ∈ Z+.
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Proof

1 n = 1: By the binomial thm,

(a+ b)p = ap +

(
p

1

)
ap−1b+

(
p

2

)
ap−2b2 + · · ·+

(
p

p − 1

)
abp−1 + bp

where all terms except the first and the last are ≡ 0 mod p

2 Suppose the identity holds for a fixed n; then it also holds for n + 1,

since

(a + b)p
n+1

= ((a + b)p)p
n

= (ap + bp)p
n

= ap
n+1

+ bp
n+1
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Frobenius endomorphism

Theorem

Let F be a field with characteristic p. Then

ϕ : F → F

ϕ(v) = vp

is an injective field homomorphism. If F is finite, then ϕ is an

isomorphism.

Proof.

We have shown that ϕ(u + v) = ϕ(u) +ϕ(v). Furthermore

ϕ(uv) = (uv)p = upvp = ϕ(u)ϕ(v), ϕ(0) = 0p = 0, ϕ(1) = 1p = 1.

If varphi(u) = up = 0 then u = 0, so ϕ is injective. An injective map from

a finite set to itself is also surjective.
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Fixed field of the Frobenius endomorphism

Theorem

Let F be a field of characteristic p which is an algebraic extension of its

prime field Zp. Then Zp is exactly the fixed field of ϕ, i.e., the set

{ u ∈ F ϕ(u) = u }

Proof.

Every element a of the prime field satisfies ap = a, hence is a zero of

xp − x . This polynomial can have no more than p zeroes in F . But a zero

of this polynomial is precisely a fixed point of ϕ.
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Definition

The polynomial f (x) ∈ F [x ], F a field, is separable if it has deg(f ) distinct

zeroes in its splitting field (no multiple zeroes).

An algebraic extension F ≤ L is separable if every element in L is the zero

of a separable polynomial in F [x ].

Example

x3 − 2 ∈ Q[x ] is separable, as is x2 + x + 1 ∈ Z2[2], as we have seen.

Their splitting fields form separable extensions over the base fields.

Example

The polynomial Z2(t)[x ] 3 x2 + t is irreducible, but splits as (x + s)2 in its

splitting field; here s2 = t. Thus, the polynomial in question is not

separable!



Abstract Algebra, Lecture 15

Jan Snellman

Existence of finite
fields
Size is a prime power

The Frobenius
endomorphism

Separability

Proof of existence and
uniqueness

Galois field

Properties of finite
fields

Applications of
finite fields

Theorem

Let F be a field and f (x) ∈ F [x ]. Then f (x) is separable iff

gcd(f (x), f ′(x)) = 1.

Proof

• Assume f (x) separable (and monic, for simplicity)

• Then f (x) = (x − r1) · · · (x − rn) in its splitting field

• Then f ′(x) =
∑n

j=1

∏
6̀=j(x − r`)

• The zeroes of f are r1, . . . , rn, but f ′(rj) =
∏
6̀=j(rj − r`) 6= 0

• No common zeroes (in the splitting field), so no common factor
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Proof (cont)

• Now assume f (x) not separable

• Then f (x) = (x − r)sg(x)

• So f ′(x) = s(x − r)s−1g(x) + (x − r)sg ′(x)

• Can you spot the common factor?
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Example

• Let f (x) = x3 − 2 ∈ Q[x ]. Then f ′(x) = 3x2, and

gcd(f (x), f ′(x)) = 1. Hence f (x) is separable.

• If g(x) = x2 + t ∈ Z2(t)[x ] then g ′(x) = 2x = 0, so

gcd(g(x), g ′(x)) = g(x). Hence f (x) is not separable.

• Let h(x) = x2 + 1 ∈ Z2[x ]. Then h ′(x) = 0, so

gcd(h(x), h ′(x)) = h(x) and h(x) is not separable. Indeed,

h(x) = (x + 1)2.

• Let f (x) = x3 + x + 1 ∈ Z2[x ]. Then f ′(x) = 3x2 + 1 and

gcd(f (x), f ′(x) = 1. So f (x) is separable. Indeed, in

F [y ] = Z2[x ]
(x3+x+1)

[y ], we have that

y3 + y + 1 = (y + x) ∗ (y + x2) ∗ (y + x2 + x)
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We come to our main result:

Theorem

For any prime power q = pn there is a finite field F with q elements. Any

field with q elements is isomorphic to the splitting field of

φq(x) = xq − x ∈ Zp[x ].
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Proof (of existence)

• Let F be the splitting field of φ(x) ∈ Zp[x ]

• The derivative is φ ′(x) = qxq−1 − 1 = −1 ∈ Zp[x ], because of

charateristic p. It is thus is relatively prime to φ(x).

• So φ(x) is a separable polynomial, and splits into q distinct linear

factors in F .

• Claim: the zeroes of φ(x) in F form a subfield of F . Proved on next

slide

• Since the zeroes of φ form a subfield of F , the smallest field with all

the zeroes, it is F

• φ(x) has q distinct zeroes, so F has q elements
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Proof (of the claim)

• Clearly φ(0) = φ(1) = 0

• If φ(u) = uq − u = 0 and φ(v) = vq − v = 0, then

φ(u+v) = (u+v)q−(u+v) = uq+vq−(u+v) = uq−u+vq−v = 0,

where we used the lemma from earlier

• φ(−u) = (−u)q − (−u) = −uq + u = 0 in odd characteristic, and in

characteristic 2 we have that −u = u, so still OK.

• φ(1/u) = u−q − u−1 = 1/uq − 1/u = 1/u − 1/u = 0.
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Proof (of uniqueness up to iso)

• Suppose E another field with q elements

• Pick u ∈ E

• If u = 0 then f (u) = 0

• If u 6= 0 then u ∈ E ∗, the multiplicative group of E

• E ∗ has q − 1 elems, so by Lagrange, uq−1 = 1

• So uq = u, and φ(u) = 0.

• E has q elemens, and φ(x) splits in E , so it is a splitting field of φ(x)

• Splitting fields of φ(x) are isomorphic
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Definition

Let q = pn, with p prime. The unique (up to iso) finite field with q

elements is denoted GF (q) and refered to as the Galois field of order q.
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Example

• Let’s construct GF (23) as the splitting field of φ(x) = x8 + x ∈ Z2[x ]
• We first factor

x8 + x = x(x + 1)(x3 + x + 1)(x3 + x2 + 1)

• We make a Kronecker extension to get at least one zero:

F =
Z2[x ]

(x3 + x + 1)

• In F [x ], everything splits:

x8 + x = x(x + 1)(x + x)(x + x2)(x + x2 + x)·
· (x + x + 1)(x + x2 + 1)(x + x2 + x + 1)

• So F is already the splitting field
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Example (GF (8) cont)

• So F ' GF (8)
• The 8 elements are

0, 1, x , x + 1, x2, x2 + 1, x2 + x , x2 + x + 1.

• Relation: x3 = x + 1.
• If we instead put

K =
Z2[y ]

(y3 + y2 + 1)

things still work
• K is the splitting field of φ(x), K ' GF (8).
• The 8 elements are

0, 1, y , y + 1, y2, y2 + 1, y2 + y , y2 + y + 1.

• Relation: y3 = y2 + 1.
• The map x 7→ y + 1 is an isomorphism between F and K
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Theorem

Let F be a field (not necessarily finite), and let G be a finite subgroup of

the multiplicative group F ∗. Then G is cyclic.

Proof

• Put n = |G |
• G is abelian, so G ' Cq1 × · · · × Cqr , with qi prime powers

• Put m = lcm(q1, . . . , qr )

• Exists g ∈ G with o(g) = m

• If h ∈ G , with r = o(h), then r |m, and hr = 1

• Hence h is a zero of x r − 1

• But x r − 1 divides xm − 1, so h is a zero of that poly, as well
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Proof (cont)

• Lagrange: xm − 1 has at most m zeroes in F

• We have found n zeroes, so n ≤ m

• But m is maximal order of element in G , and n = |G |, so m ≤ n

• Thus m = n

• Thus G is cyclic
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Corollary

If F is a finite field of characteristic p, then F ∗ = 〈u〉 for some u ∈ F ∗.

Furthermore, F = Zp(u).
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Recall:

Theorem

If G = |g | is a cyclic group of order n <∞, then gk is another generator

iff gcd(k , n) = 1. Thus there are precisely ϕ(n) generators of G.

Example

ϕ(23 − 1) = 23 − 1 − 1 = 6, so GF (8)∗ is a cyclic group of order 7, and

every element except the identity generates it. For instance, if we present

it as

GF (8) =
Z2[x ]

(x3 + x + 1)

then the element x generates GF (8)∗:

x0 = 1, x1 = x , x2 = x2, x3 = x + 1,

x4 = x2 + x , x5 = x2 + x + 1, x6 = x2 + 1, x7 = 1
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In a somewhat backwards fashion, we are able to prove the existence of

irreducible polynomials of arbitrary degree:

Theorem

Let p be a prime and n a positive integer. Then there is some irreducible

polynomial in Zp[x ] of degree n.

Proof.

• E = GF (pn) exist

• It has Zp as prime subfield

• E ∗ = 〈u〉 for some u ∈ E ∗

• The element u thus satisfies Zp(u) = E

• It has a minimal polynomial f (x) ∈ Zp[x ]

• That polynomial is irreducible, and has degree n.
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Example

We calculate the minimal polynomial of the elements GF (8) ' Z2[x ]
(x3+x+1)

.

0 x

1 x + 1

x x3 + x + 1

x + 1 x3 + x2 + 1

x2 x3 + x + 1

x2 + 1 x3 + x2 + 1

x2 + x x3 + x + 1

x2 + x + 1 x3 + x2 + 1
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Theorem

Every subfield of GF (pn) has size pm with m|n; conversely, if m|n then

there is a unique isomorphic copy of GF (pm) inside GF (pn).

Proof.

If Zp ≤ E ≤ GF (pn) then n = [GF (pn) : Zp] = [GF (pn) : E ][E : Zp], so

m = [E : Zp] is a divisor of n, and |E | = pm.

If n = mk then pm − 1|pn − 1, and (xp
m−1 − 1)|(xpn−1 − 1); thus

(xp
m
− x)|(xpn − x).

So every zero of xp
m
− x is a zero of xp

m
− x , thus GF (pn) contains the

splitting field of xp
m
− x as a subfield (the subfield consisting of precisely

those zeroes).
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Example

The non-zero elements of GF (16)

have the following orders and

minimal polynomials. The ones with

order 3 and minimal polynomial

x2+ x + 1 form (together with zero)

a subfield isomorphic to GF (4).

15 x4 + x + 1

15 x4 + x + 1

5 x4 + x3 + x2 + x + 1

15 x4 + x + 1

3 x2 + x + 1

5 x4 + x3 + x2 + x + 1

15 x4 + x3 + 1

15 x4 + x + 1

5 x4 + x3 + x2 + x + 1

3 x2 + x + 1

15 x4 + x3 + 1

5 x4 + x3 + x2 + x + 1

15 x4 + x3 + 1

15 x4 + x3 + 1

1 x + 1
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Example

The subfields of GF (pn) form a

poset order-isomorphic to the

divisor lattic of n. For instance, the

subfields of GF (p24) are as follows.
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Theorem

Let F be a subfield of GF (pn). Then |F | = pm with m|n.

1 F is the splitting field of xp
m
− x

2 F is the fixed field of ϕm, where ϕ is the Frobenius endomorphism.
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Example

Let GF (24) = Z2(c) where c has minimal polynomial x4 + x + 1. Then ϕ2 acts as

0 0

c c + 1

c2 c2 + 1

c3 c3 + c2 + c + 1

c + 1 c

c2 + c c2 + c

c3 + c2 c3 + c

c3 + c + 1 c3 + c2 + 1

c2 + 1 c2

c3 + c c3 + c2

c2 + c + 1 c2 + c + 1

c3 + c2 + c c3 + 1

c3 + c2 + c + 1 c3

c3 + c2 + 1 c3 + c + 1

c3 + 1 c3 + c2 + c

1 1





Abstract Algebra, Lecture 15

Jan Snellman

Existence of finite
fields

Properties of finite
fields
The multiplicative
group is cyclic

Inclusion relations

Applications of
finite fields

Theorem

Fix a prime p and consider all finite fields GF (pn) with n a positive

integer.

1 All such fields contain GF (p)

2 Given two such fields, there is a unique smallest field in the collection

that contains both

3 The union of all fields in the collection is the algebraic closure of each

and every field therein
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Theorem

Let p be a prime, n a positive integer, q = pn. The factorization of

xq − x ∈ Zp[x ] into irreducible factors contain each monic irreducible

polynomial h(x) ∈ Zp[x ] whose degree divides n, each such polynomial

occuring exactly once.

Example

x2
4
−x = x ·(x+1)·(x2+x+1)·(x4+x+1)·(x4+x3+1)·(x4+x3+x2+x+1)

and the factorization lists all irreducible polynomials in Z2[x ] of degree

1,2, or 4.
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Proof

• GF (q) is the splitting field of φ(x) and consists precisely of its zeroes.

• Let u ∈ GF (q) and let h(x) be its minimal polynomial. Then h(x) is

irreducible, and d = deg(h(x)) = [Zp(u) : Zp], so it is a divisor of

n = [GF (q) : Zp].

• There will be d zeroes in total of h(x), and

h(x) = (x − u)(x − u2) · · · (x − ud).

• This accounts for all zeroes, since different irreducible polynomials

have no zeroes in common (each irreducible polynomial is the

minimal polynomial of each of its zeroes)
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Theorem

Let p be prime, and let c(d , p) denote the number of irreducible monic

polynomials of degree d in Zp[x ]. Then for any positive integer n, it holds

that

pn =
∑
d |n

dcd ,p (2)

Proof.

Consider

xp
n
− x =

∏
d |n

∏
deg(h(x))=d

h(x) irr

h(x)

and take degrees of the LHS and the RHS.
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Theorem (Möbius inversion)

Let µ(n) be zero unless n is a square-free integer, in which case it is (−1)r

where r is the number of primes in its factorization. Let f be defined on

the positive integers, and define F via f as

F (n) =
∑
d |n

f (d).

Then one can recover f as

f (n) =
∑
d |n

F (d)µ(n/d) =
∑
d |n

F (n/d)µ(d).

Proof.

Induction gives a short and uninspired proof.
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Theorem

Let cn,p denote the number of degree n monic irreducible polynomials in

Zp[x ]. Then

cn,p =
1

n

∑
d |n

µ(n/d)pd .

Proof.

Put f (n) = ncn,p. Then

F (n) = pn =
∑
d |n

f (n)

so by Möbius inversion

f (n) =
∑
d |n

µ(n/d)F (n) =
∑
d |n

µ(n/d)pd ,

whence

cn,p =
1

n

∑
d |n

µ(n/d)pd .
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Example

The number of irreducible polynomials of degree n in Z2[x ] is

c1,2 =
1

1
(µ(1)21) = 2

c2,2 =
1

2
(µ(2)21 + µ(1)22) = 1

c3,2 =
1

3
(µ(3)21 + µ(1)23) = 2

c4,2 =
1

4
(µ(4)21 + µ(2)22 + µ(1)24) = 3

c5,2 = 6

c6,2 = 9

and so on.
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Example

The number of irreducible monic polynomials of degree n in Z3[x ] is

c1,3 =
1

1
(µ(1)31) = 3

c2,3 =
1

2
(µ(2)31 + µ(1)32) = 6

c3,3 =
1

3
(µ(3)31 + µ(1)33) = 24

and so on.
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Corollary

There are irreducible polynomials of degree n in Zp[x ].

Proof.

We have that

cn,p = µ(1)pn +
∑
d |n
d<n

µ(n/d)pd ,

and the latter sum is in magnitude ≤

n−1∑
d=0

pd =
pn − 1

p − 1
< pn,

so cn,p > 0.
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In fact, the same methods show

Theorem

Let cn,q denote the number of degree n monic irreducible polynomials in

GF (q)[x ]. Then

cn,q =
1

n

∑
d |n

µ(n/d)qd .

This integer is always positive, so there are irreducible monic polynomials

of degree n in GF (q)[x ].
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Definition

A linear homogeneous reccurence equation with constant coefficients of

degree m over a field F is of the form

an = c1an−1 + c2an−2 + · · ·+ ckan−k , n ≥ k

with cj ∈ F . A solution is a sequence (an)n∈N in F .

It is uniquely determined once additional initial conditions

a0 = b0

a1 = b1
...

ak−1 = bk−1

are assigned.
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Theorem

• Any F -linear combination of solutions to the LHRE (without initial

conditions) is again a solution

• If u is a root (in some extension field, if necessary) of the

characteristic equation

uk = c1u
k−1 + c2u

k−2 + · · ·+ ck

then

an = un, n ≥ 0

is a solution

• If u has multiplicity r then

an = nsun

is also a solution, for s < r .
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Example

Consider the Fibonacci reccurence

an = an−1 + an−2

over Q. The characteristic equation is

x2 − x − 1 = 0,

with roots

σ1 = −
1

2

√
5 +

1

2
, σ2 =

1

2

√
5 +

1

2

Note that the roots lie in the extension Q(
√

5). The general solution is

an = v1σ
n
1 + v2σ

n
2,

where v1, v2 can be determined by the initial conditions.
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Example (cont)

For instance, if a0 = a1 = 1, (and a2 = 2, a3 = 3, a4 = 5,and so on) then

1 = v1σ
0
1 + v2σ

0
2 = v1 + v2

1 = v1σ
1
1 + v2σ

1
2 = v1σ1 + v2σ2

and v1, v2 ∈ Q(
√

5), yet each an ∈ Q, (in fact, in Z).
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Example

Now consider the same reccurence

an = an−1 + an−2

but over Z2. Now σ1, σ2 ∈ E , where

E =
Z2[x ]

x2 + x + 1
' GF (4).

In fact, σ1 = x and σ2 = x + 1. The general solution is

an = v1x
n + v2(x + 1)n
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Example (cont)

We tabulate

n an xn (x + 1)n

0 1 1 1

1 1 x x + 1

2 0 x + 1 x

3 1 1 1

4 1 x x + 1

5 0 x + 1 x

6 1 1 1

Interestingly, the solutions are periodic!
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Example (Cont)

To solve the recurrence with the initial conditions a0 = a1 = 1, we must

solve

1 = v1 + v2

1 = v1x + v2(x + 1)

which gives v1 = v2 = 1 and an = xn + (x + 1)n.

Of course, taking periodicity into account, we have that

an =


1 n ≡ 0 mod 3

1 n ≡ 1 mod 3

0 n ≡ 2 mod 3
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Theorem

Any solution to the degree k LHRE over GF (q) is periodic, with period

length ≤ qk .

Proof.

The value of an depends only on the vector

(an−1, an−2, . . . , an−k) ∈ GF (q)k

We can form a digraph where the vertices are such “states”, and where

there are directed edges

(an−1, an−2, . . . , an−k) −→ (an, an−2, . . . , an−k+1)

Starting at

(ak−1, ak−2, . . . , a0)

in this digraph, we’ll eventually enter a directed cycle.
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Example

The Fibonacci reccurence over GF (2) is described by

00

01 10

11
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Example

Over GF (4) the Fibonacci

reccurence (we put a = x and

b = x + 1) is described by a digraph

with 16 vertices. Here is a portion

of it:

00

01 10

11

0a a0

aa
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Generating function

Definition

Let R be a domain and a = (aj)
∞
j=0 a sequence of elements in R. The

generating function of the sequence is the formal power series

G (a) =
∞∑
j=0

aj t
j ∈ R[[t]]

Example

The generating function of the constant sequence 1, 1, 1, . . . is

1 + t + t2 + t3 + · · · = 1

1 − t
.
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The utility of generating functions comes from the following properties:

Lemma

• G (a + b) = G (a) + G (b)

• If c ∈ R then G (ca) = cG (a)

• Denote by S the shift S(a)i = ai−1, S(a)0 = 0. Then

G (S(a)) = tG (a)

Proof.

The first two properties are obvious, and

t
∞∑
j=0

aj t
j =

∞∑
j=0

aj t
j+1 = 0 +

∞∑
`=1

a`−1t
`
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Theorem

Suppose that the sequence (sn)
∞
n=0 in F = GF (q) satisfies

sn+k = ak−1sn+k−1 + ak−2sn+k−2 + . . . a0sn

a linear recurrence relation over F of degree k. Call

g(x) = xk − ak−1x
k−1 − ak−2x

k−2 − · · ·− a0 ∈ F [x ]

the characteristic polynomial of the sequence, and denote by

g∗(x) = 1 − ak−1x − ak−2x
2 − · · ·− a0x

k ∈ F [x ]

its reciprocal polynomial. Suppose that all zeroes of g(x), in some

extension ~F of F , are simple. Then

1

sn =

k∑
j=1

βjα
n
j

where the α’s are the zeroes of f (x) in ~F , and the β’s are uniquely

determined elements of ~F .

2 The generating function of the sequence is a rational function

G (x) =
f (x)

g∗(x)

with f (x) of degree < k.
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Example

Let (aj) be the sequence over Z2 given by a0 = a1 = 1, an = an−1 + an−2.

Let f (t) = G (a). Then

a = (1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, . . . )

as we have seen before, and

f (t) = 1 + t + 0t2 + t3 + t4 + · · · ∈ Z2[[t]]

Since

1 + t3 + t6 + t9 + · · · = 1

1 + t3

we get that

f (t) =
1 + t

1 + t3
=

1

1 + t + t2
.
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Example (cont.)

We could have arrived at this as follows: from

an = an−1 + an−2, a0 = a1 = 1

we sum and get

∞∑
n=2

ant
n =

∞∑
n=2

an−1t
n +

∞∑
n=2

an−2t
n

hence

f (t) − a1t − a0 = tf (t) − a0t + t2f (t)

so

f (t) =
a1t + a0 − a0t

t2 − t − 1
=

1

1 + t + t2
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Example (cont.)

We now factor the denominator as

t2 + t + 1 = (t + α)(t + α+ 1)

in the extension GF (4) = Z2(α) with α2 = α+ 1. Then we can do partial

fraction decomposition as

1

t2 + t + 1
=

1

(t + α)(t + α+ 1)
=

A

t + α
+

B

t + α+ 1

so

A(t + α+ 1) + B(t + α) = 1,

hence setting t = α we get A ∗ 1 = 1, and setting t = α+ 1 we have

B ∗ 1 = 1.
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Example (cont.)

Since α2 = α+ 1 we have that 1 = α(α+ 1) so

∞∑
n=0

ant
n =

1

t + α
+

1

t + α+ 1
=

α−1

1 + α−1t
+

(1 + α)−1

1 + (1 + α)−1t
=

α+ 1

1 + (α+ 1)t
+

α

1 + αt
=

∞∑
n=0

(α+ 1)n+1tn +
∞∑
n=0

(α)n+1tn =

∞∑
n=0

(αn+1 + (α+ 1)n+1)tn
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Example (cont.)

We tabulate

n αn+1 (α+ 1)n+1 αn + (α+ 1)n+1

0 α α+ 1 1

1 α+ 1 α 1

2 1 1 0

3 α α+ 1 1

4 α+ 1 α 1

5 1 1 0

We once again see that the sequence (a)n is periodic with period 3.
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Example

Suppose that we are given the start of a sequence in GF (q), and are told

that the sequence is reccurent, of relatively low degree. Can we find the

reccurence relation that the sequence satisfies, even if the part we are

given is shorter than the period length?

Express F = GF (25) as Z5(a), with a having minimal polynomial

x2 + 4x + 2 = 0

over Z5. Consider the sequence with generating function

G(x) = a + 2 + (4a + 4) x + 2x2 + 4x3 + 3ax4 + (3a + 3) x5 + 3x6 + 4x7 + (2a + 2) x8 + (4a + 1) x9 + O(x10)

We want to express G (x) = f (x)/g(x), i.e., G (x) ∗ g(x) = f (x)
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Example

Let us first check if any linear g(x) works. For instance, what about
1 + x? Well,

(1+ x) ∗ (a+ 2+ (4a + 4) x + 2x2 + 4x3 + 3ax4 + (3a + 3) x5 + 3x6 + 4x7 + (2a + 2) x8 + (4a + 1) x9 +O(x10)) =

a + 2 + x + (4a + 1) x2 + x3 + (3a + 4) x4 + (a + 3) x5 + (3a + 1) x6 + 2x7 + (2a + 1) x8 + (a + 3) x9 + O(x10)

so no dice. No other first degree denominators work, either.
However, testing quadratic monic irreducible polynomials, we find

(1 + x + (a + 3) x2) ∗

(a + 2 + (4a + 4) x + 2x2 + 4x3 + 3ax4 + (3a + 3) x5 + 3x6 + 4x7 + (2a + 2) x8 + (4a + 1) x9 + O(x10)) =

a + 2 + x + O(x10)

so we belive that

G (x) =
t + a + 2

(a + 3) t2 + t + 1
.



Abstract Algebra, Lecture 15

Jan Snellman

Existence of finite
fields

Properties of finite
fields

Applications of
finite fields
Calculating the number
of irreducible
polynomials of a given
degree

Recurrence equations
Recognizing a recurrent sequence

One can use so-called Padé approximants to get the denominator an the

numerator directly:

Theorem

Let f (x) ∈ F [[x ]] be a formal power series. For positive integers m, n, there

is a unique rational function R(x) = a(x)/b(x) with deg(a) = m,

deg(b) = n, b(0) = 1, called the Padé approximant of order [m/n], such

that

f (x) ≡ R(x) mod (xm+n).

The Padé approximant can be determined by performing the Euclidean

algorithm (see for instance the Wikipedia page) or by solving for the

coefficients in the Ansatz

amx
m + · · ·+ a0

bnxn + · · ·+ b1x + 1
= c0 + c1x + . . . cn+mx

n+m mod (xn+m+1)
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For [2/2] PA we have

a2x
2 + a1x + a0

b2x2 + b1x + 1
≈ c0 + c1x + c2x

2 + c3x
3 + c4x

4

so

a2x
2 + a1x + a0 ≈ (c0 + c1x + c2x

2 + c3x
3 + c4x

4)(b2x
2 + b1x + 1)

≈ c0 + (c0b1 + c1)x + (c0b2 + c1b1 + c2)x
2+

(c1b2 + c2b1 + c3)x
3 + (c2b2 + c3b1 + c4)x

4

hence

a0 = c0

a1 = c0b1 + c1

a2 = c0b2 + c1b1 + c2

0 = c1b2 + c2b1 + c3

et cetera are the equations to determine the ai ’s and the bj ’s.
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Example

In our example, the Padé approximant of order [1/2] is

t + a + 2

(a + 3) t2 + t + 1
.

Note that we only need a tiny part of G (x) to find this; however, a longer

initial sequence gives us more confidence that we have found the true

rational function.
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Example

Since the denominator is (a + 3) t2 + t + 1, the sequence should satisfy

sn+2 = −sn+1 − (a + 3)sn.

The sequence starts

a + 2, 4a + 4, 2

and

− (4a + 4) − (a + 3)(a + 2) = −4a − 4 − a2 − 2a − 3a − 6 =

− a2 + a = 4a + 2 + a = 2.
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