Jan Snellman

The integers

Greatest common divisor

Unique factorization into primes

Abstract Algebra, Lecture 2 The integers

Jan Snellman¹

¹Matematiska Institutionen Linköpings Universitet

The integers

Greatest common divisor

Unique factorization into primes

Summary

1 The integers

Definitions

Well-ordering, induction

Divisibility

Prime number

Division Algorithm

② Greatest common divisor

Definition

Bezout

Euclidean algorithm

Extended Euclidean Algorithm

Unique factorization into primes

Some Lemmas

An importan property of primes

Euclid, again

Fundamental theorem of

arithmetic

Exponent vectors

Least common multiple

Greatest common divisor

Unique factorization into primes

1 The integers

Definitions

Well-ordering, induction

Divisibility

Prime number

Division Algorithm

2 Greatest common divisor

Definition

Bezout

Euclidean algorithm

Extended Euclidean Algorithm

3 Unique factorization into primes

Some Lemmas

An importan property of primes

Euclid, again

Fundamental theorem of

arithmetic

Exponent vectors

Least common multiple

Greatest common divisor

Unique factorization into primes

1 The integers

Definitions

Well-ordering, induction

Divisibility

Prime number

Division Algorithm

2 Greatest common divisor

Definition

Bezout

Euclidean algorithm

Extended Euclidean Algorithm

3 Unique factorization into primes

Some Lemmas

An importan property of primes

Euclid, again

Fundamental theorem of

arithmetic

Exponent vectors

Least common multiple

Definitions

Well-ordering, induction Divisibility Prime number

Division Algorithm

Greatest common

Unique factorization into primes

Definition

- The integers: $\mathbb{Z} = \{0, \pm 1, \pm 2, \pm 3, \ldots\}$
- Natural numbers: $\mathbb{N} = \{0, 1, 2, 3, ...\}$
- Positive integers: $\mathbb{Z}_+ = \mathbb{P} = \{1, 2, 3, \ldots\}$
- Rational numbers: $\mathbb{Q} = \{ a/b | a, b \in \mathbb{Z}, b \neq 0 \}$ with relation a/b = c/d if and only if ad = bc
- Real numbers \mathbb{R} , constructed from \mathbb{Q} using topology
- Complex numbers $\mathbb{C} = \mathbb{R}[i]$

Jan Snellma

The integers Definitions

Well-ordering, induction

Well-ordering, induction Divisibility

Prime number

Division Algorithm

Greatest common divisor

Unique factorization into

Theorem (Well-ordering principle)

Any non-empty subset of $\mathbb N$ contains a smallest element.

Theorem (Induction principle)

Suppose that $S \subset \mathbb{N}$ and

- (a) $0 \in S$
- **(b)** For all $n \in \mathbb{N}$, if $n \in S$ then $n + 1 \in S$

Then: $S = \mathbb{N}$.

Equivalent formulation:

- (a) $0 \in S$

(b) For all $n \in \mathbb{N}$, if $k \in S$ for all $k \in \mathbb{N}$ with k < n, then $n \in S$.

Then: $S = \mathbb{N}$.

The integers

Definitions

Abstract Algebra, Lecture 2

Well-ordering, induction Divisibility

Prime number

Division Algorithm

Greatest common divisor

divisor . . .

Unique factorization into primes

Unless otherwise stated, $a, b, c, x, y, r, s \in \mathbb{Z}$, $n, m \in \mathbb{P}$.

Definition

a|b if exists c s.t. b = ac.

Example

3|12 since 12 = 3 * 4.

Abstract Algebra, Lecture 2 Jan Snellman

The integers

Definitions
Well-ordering, induction

Divisibility

Prime number
Division Algorithm

Greatest common

divisor

Unique factorization into primes

Lemma

- a|0,
- $0|a \iff a=0$,
- 1|*a*,
- $a|1 \iff a=\pm 1$,
- $a|b \wedge b|a \iff a = \pm b$
- $a|b \iff -a|b \iff a|-b$
- $a|b \wedge a|c \implies a|(b+c),$
- $a|b \implies a|bc$.

Jan Snellman

The integers

Definitions

Well-ordering, induction

Divisibility Prime number

primes

Division Algorithm

Greatest common divisor

Unique factorization into

Theorem

Restricted to \mathbb{P} , divisibility is a partial order, with unique minimal element 1.

Part of Hasse diagram

Id est,

- $\mathbf{0}$ a a,
- $2 \ a|b \wedge b|c \implies a|c,$ $3 \ a|b \wedge b|a \implies a = b.$

Jan Snellman

The integers

Definitions

Well-ordering, induction Divisibility

Prime number

Division Algorithm

Greatest common

divisor

Unique factorization into primes

Definition

 $n \in \mathbb{P}$ is a prime number if

- n > 1,
- $m \mid n \implies m \in \{1, n\}$

(positive divisors, of course -1, -n also divisors)

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, . . .

Definitions

Well-ordering, induction Divisibility

Prime number

Division Algorithm

Greatest common divisor

Unique factorization into primes

Theorem

 $a,b\in\mathbb{Z}$, $b\neq 0$. Then exists unique k,r, quotient and remainder, such that

- a = kb + r,
- $0 \le r < b$.

Example

-27 = (-6) * 5 + 3.

The integers

Definitions
Well-ordering, induction
Divisibility

Prime number Division Algorithm

Greatest common divisor

Unique factorization into primes

Suppose a, b > 0. Fix b, induction over a, base case a < b, then

$$a = 0 * b + a$$
.

Otherwise

$$a = (a - b) + b$$

and ind. hyp. gives

$$a-b=k'b+r', \quad 0 \le r' < b$$

SO

$$a = b + k'b + r' = (1 + k')b + r'.$$

Take k = 1 + k', r = r'.

Proof, uniqueness

The integers Definitions

Well-ordering, induction

Abstract Algebra, Lecture 2

Divisibility
Prime number

Division Algorithm

Greatest common divisor

Unique factorization into primes

lf

$$a = k_1 b + r_1 = k_2 b + r_2, \quad 0 \le r_1, r_2 < b$$

then

$$0 = a - a = (k_1 - k_2)b + r_1 - r_2$$

hence

$$(k_1-k_2)b = r_2-r_1$$

|RHS| < b, so |LHS| < b, hence $k_1 = k_2$. But then $r_1 = r_2$.

Abstract Algebra, Lecture 2 Jan Snellman

The integers

Definitions

Well-ordering, induction Divisibility

Prime number **Division Algorithm**

Greatest common

divisor

Unique factorization into primes

Example

$$a = 23, b = 5.$$

$$= 5 + 5 + (18 - 5) = 2 * 5 + 13$$
$$= 2 * 5 + 5 + (13 - 5) = 3 * 5 + 13$$

$$= 2 * 5 + 5 + (13 - 5) = 3 * 5 + 8$$

23 = 5 + (23 - 5) = 5 + 18

$$= 3*5+5+(8-5) = 4*5+3$$

$$k = 4, r = 3.$$

The integers

Greatest common divisor

Definition

Bezout Euclidean algorithm Extended Euclidean Algorithm

Unique factorization into primes

Definition

 $a,b\in\mathbb{Z}$. The greatest common divisor of a and b, $c=\gcd(a,b)$, is defined by

- $\mathbf{0}$ $c|a \wedge c|b$,
- 2 If $d|a \wedge d|b$, then $d \leq c$.

If we restrict to \mathbb{P} , the the last condition can be replaced with 2' If $d|a \wedge d|b$, then d|c.

Greatest common divisor

Definition

Bezout

Euclidean algorithm Extended Euclidean Algorithm

Unique factorization into primes

Theorem (Bezout)

Let $d = \gcd(a, b)$. Then exists (not unique) $x, y \in \mathbb{Z}$ so that

$$ax + by = d$$
.

Proof.

 $S = \{ ax + by | x, y \in \mathbb{Z} \}, d = \min S \cap \mathbb{P}. \text{ If } t \in S, \text{ then } t = kd + r, 0 \le r < d. \text{ So } r = t - kd \in S \cap \mathbb{N}. \text{ Minimiality of } d, r < d \text{ gives } r = 0. \text{ So } d | t.$

But $a, b \in S$, so d|a, d|b, and if ℓ another common divisor then $a = \ell u$, $b = \ell v$, and

$$d = ax + by = \ell ux + \ell vy = \ell (ux + vy)$$

so $\ell | d$. Hence d is **greatest** common divisor.

The integers

Greatest common divisor

Definition

Bezout

Euclidean algorithm

Extended Euclidean Algorithm

Unique factorization into primes

Étienne Bézout

Jan Snellman

The integers

Greatest common divisor

Definition Bezout

Euclidean algorithm

Extended Euclidean Algorithm

Unique factorization into primes

Lemma

If a = kb + r then gcd(a, b) = gcd(b, r).

Proof.

If c|a, c|b then c|r.

If c|b, c|r then c|a.

Greatest common divisor Definition

Bezout Euclidean algorithm

Extended Euclidean

Algorithm Unique

factorization into primes

$$27 = 3 * 7 + 6$$

$$7 = 1 * 6 + 1$$

$$6 = 6 * 1 + 0$$

$$6 = 1 * 27 - 3 * 7$$

$$1 = 7 - 1 * 6$$

$$= 7 - (27 - 3 * 7)$$

$$= (-1) * 27 + 4 * 7$$

Greatest common divisor

Definition Bezout

Euclidean algorithm

Extended Euclidean Algorithm

Unique factorization into primes

Algorithm

- 1 Initialize: Set x = 1, y = 0, r = 0, s = 1.
- 2 Finished?: If b = 0, set d = a and terminate.
- **3** Quotient and Remainder: Use Division algorithm to write a = qb + c with 0 < c < b.
- 4 Shift: Set (a, b, r, s, x, y) = (b, c, x qr, y qs, r, s) and go to Step 2.

Jan Snellman

The integers

Greatest common divisor

Unique factorization into primes

Some Lemmas

An importan property of primes

Euclid, again
Fundamental theorem

Exponent vectors
Least common multiple

divisor

Lemma

 $\gcd(an,bn)=|n|\gcd(a,b).$

Proof

Assume $a, b, n \in \mathbb{P}$. Induct on a+b. Basis: a=b=1, $\gcd(a,b)=1$, $\gcd(an,bn)=n$, OK.

Ind. step: a + b > 2, $a \ge b$.

$$a = kb + r$$
, $0 \le r < b$

Since $a \ge b$, k > 0.

```
Jan Snellman
```

The integers

Greatest common divisor

Unique factorization into primes

Some Lemmas An importan property

of primes Euclid, again

Fundamental theorem

Exponent vectors

Least common multiple

Then

 $\gcd(a, b) = \gcd(b, r)$ $\gcd(an, bn) = \gcd(bn, rn)$

since

 $an = kbn + rn, \quad 0 \le rn < bn.$

But

 $b + r = b + (a - kb) = a - b(k - 1) \le a < a + b,$

so ind. hyp. gives

 $n \gcd(b, r) = \gcd(bn, rn).$

But $LHS = n \gcd(a, b)$, $RHS = \gcd(an, bn)$.

Abstract	Algebra,	Lectur

The integers

Greatest common divisor

Unique factorization into primes

Some Lemmas

An importan property of primes

Euclid, again Fundamental theorem

of arithmetic

Exponent vectors

Least common multiple

Lemma

If a|bc and gcd(a, b) = 1 then a|c.

Proof.

$$1 = ax + by$$
,

so

$$c = axc + byc$$
.

Since a|RHS, a|c.

Iact	Aige	ma,	Lec	Lure

The integers

Greatest common divisor

Unique factorization into primes

Some Lemmas

An importan property of primes

Euclid, again
Fundamental theorem
of arithmetic

Exponent vectors

Least common multiple

Lemma

p prime, p|ab. Then p|a or p|b.

Proof.

If $p \nmid a$ then gcd(p, a) = 1. Thus $p \mid b$ by previous lemma.

Greatest common divisor

Unique factorization into primes

Some Lemmas

An importan property of primes

Euclid, again

Fundamental theorem of arithmetic

Exponent vectors

Least common multiple

Theorem (Euclides)

Every n is a product of primes. There are infinitely many primes.

Proof.

1 is regarded as the empty product. Ind on n. If n prime, OK. Otherwise, n = ab, a, b < n. So a, b product of primes. Combine. Suppose p_1, p_2, \ldots, p_s are known primes. Put

$$N = p_1 p_2 \cdots p_s + 1$$
,

then $N = kp_i + 1$ for all known primes, so no known prime divide N. But N is a product of primes, so either prime, or product of unknown primes.

Jan Snellman

The integers

Greatest common divisor

Unique factorization into primes

Some Lemmas

An importan property of primes

Euclid, again

Fundamental theorem of arithmetic

Exponent vectors

Least common multiple

Example

$$2*3*5+1=31$$

$$2*3*5*7+1=211$$

$$2 * 3 * 5 * 7 * 11 * 13 + 1 = 59 * 509$$

Jan Snellman

The integers

Greatest common divisor

Unique factorization into primes

Some Lemmas

An importan property of primes

Euclid, again

Fundamental theorem of arithmetic

Exponent vectors

Least common multiple

Example

$$2*3*5+1=31$$

$$2*3*5*7+1=211$$

$$2 * 3 * 5 * 7 * 11 * 13 + 1 = 59 * 509$$

Jan Snellman

The integers

Greatest common divisor

Unique factorization into primes

Some Lemmas

An importan property of primes

Euclid, again

of arithmetic

Exponent vectors

Least common multiple

Example

2*3*5+1=31

2*3*5*7+1=211

2*3*5*7*11*13+1=59*509

The integers

Greatest common divisor

Unique factorization into primes

Some Lemmas

An importan property of primes

Euclid, again

Fundamental theorem of arithmetic

Exponent vectors
Least common multiple

Fundamental theorem of arithmetic

Theorem

For any $n \in \mathbb{P}$, can uniquely (up to reordering) write

$$n = p_1 p_2 \cdots p_s,$$
 p_i prime.

Proof.

Existence, Euclides. Uniqueness: suppose

$$n = p_1 p_2 \cdots p_s = q_1 q_2 \cdot q_r$$
.

Since $p_1|n$, we have $p_1|q_1q_2\cdots q_r$, which by lemma yields $p_1|q_j$ some q_j , hence $p_1=q_i$. Cancel and continue.

Abstract Algebra, Lecture 2

The integers

Greatest common divisor

Unique factorization into primes

Some Lemmas

An importan property of primes

Euclid, again

Fundamental theorem of arithmetic

Exponent vectors

Least common multiple

Exponent vectors

- Number the primes in increasing order, $p_1 = 2, p_2 = 3, p_3 = 5$, et cetera.
- Then $n = \prod_{j=1}^{\infty} p_j^{a_j}$, all but finitely many a_j zero.
- Let $v(n) = (a_1, a_2, a_3, ...)$ be this integer sequence.
- Then v(nm) = v(n) + v(m).
- Order componentwise, then $n|m \iff v(n) \le v(m)$.
- Have $v(\gcd(n, m)) = \min(v(n), v(m))$.

Example

$$\gcd(100, 130) = \gcd(2^2 * 5^2, 2 * 5 * 13)$$

$$= 2^{\min(2,1)} * 5^{\min(2,1)} * 13^{\min(0,1)}$$

$$= 2^1 * 5^1 * 13^0$$

$$= 10$$

Jan Snellman

The integers

Greatest common divisor

Unique factorization into primes

Some Lemmas

An importan property of primes

Euclid, again Fundamental theorem

of arithmetic

Exponent vectors

Least common multiple

Definition

- $a, b \in \mathbb{Z}$
- m = lcm(a, b) least common multiple if
 - 1 m = ax = by (common multiple)
 - 2 If n common multiple of a, b then m|n

Lemma (Easy)

- $a, b \in \mathbb{P}, c, d \in \mathbb{Z}$
- $lcm(\prod_i p_i^{a_i}, \prod_i p_i^{b_i}) = \prod_i p_i^{\max(a_i, b_i)}$
- $ab = \gcd(a, b) lcm(a, b)$
- If a|c and b|c then lcm(a,b)|c
- If $c \equiv d \mod a$ and $c \equiv d \mod b$ then $c \equiv d \mod lcm(a, b)$