Abstract Algebra, Lecture 2

Jan Snellman

The integers
Greatest common divisor

Unique
factorization into primes

Abstract Algebra, Lecture 2

The integers

Jan Snellman ${ }^{1}$
${ }^{1}$ Matematiska Institutionen
Linköpings Universitet

TEKNISKA HÖGSKOLAN
LINKÖPINGS UNIVERSITET

Abstract Algebra, Lecture 2
Jan Snellman

The integers
Greatest common divisor

Unique factorization into primes

Summary

(1) The integers

Definitions
Well-ordering, induction
Divisibility
Prime number
Division Algorithm
(2) Greatest common divisor

Definition
Bezout
Euclidean algorithm

Extended Euclidean Algorithm
(3) Unique factorization into
primes
Some Lemmas
An importan property of primes Euclid, again
Fundamental theorem of
arithmetic
Exponent vectors
Least common multiple

Abstract Algebra, Lecture 2
Jan Snellman

The integers
Greatest common divisor

Unique factorization into primes

Summary

(1) The integers

Definitions
Well-ordering, induction
Divisibility
Prime number
Division Algorithm
(2) Greatest common divisor

Definition
Bezout
Euclidean algorithm

Extended Euclidean Algorithm
(3) Unique factorization into
primes
Some Lemmas
An importan property of primes Euclid, again
Fundamental theorem of arithmetic
Exponent vectors
Least common multiple

Summary

(1) The integers

Definitions
Well-ordering, induction
Divisibility
Prime number
Division Algorithm
(2) Greatest common divisor

Definition
Bezout
Euclidean algorithm

Extended Euclidean Algorithm
(3) Unique factorization into primes

Some Lemmas
An importan property of primes
Euclid, again
Fundamental theorem of arithmetic
Exponent vectors
Least common multiple

The integers

Definitions

Well-ordering, induction

Basic definitions

Definition

- The integers: $\mathbb{Z}=\{0, \pm 1, \pm 2, \pm 3, \ldots\}$
- Natural numbers: $\mathbb{N}=\{0,1,2,3, \ldots\}$
- Positive integers: $\mathbb{Z}_{+}=\mathbb{P}=\{1,2,3, \ldots\}$
- Rational numbers: $\mathbb{Q}=\{a / b \mid a, b \in \mathbb{Z}, b \neq 0\}$ with relation $a / b=c / d$ if and only if $a d=b c$
- Real numbers \mathbb{R}, constructed from \mathbb{Q} using topology
- Complex numbers $\mathbb{C}=\mathbb{R}[i]$

Jan Snellman

The integers

Definitions
Well-ordering, induction Divisibility

Prime number

 Division AlgorithmGreatest common divisor

Unique
factorization into primes

Theorem (Well-ordering principle)

Any non-empty subset of \mathbb{N} contains a smallest element.

Theorem (Induction principle)

Suppose that $S \subset \mathbb{N}$ and
(a) $0 \in S$
(b) For all $n \in \mathbb{N}$, if $n \in S$ then $n+1 \in S$

Then: $S=\mathbb{N}$.
Equivalent formulation:
(a) $0 \in S$
(b) For all $n \in \mathbb{N}$, if $k \in S$ for all $k \in \mathbb{N}$ with $k<n$, then $n \in S$.

Then: $S=\mathbb{N}$.

Abstract Algebra, Lecture 2
Jan Snellman

The integers

Definitions

Well-ordering, induction Divisibility
Prime number Division Algorithm
Greatest common divisor

Unique factorization into primes

Unless otherwise stated, $a, b, c, x, y, r, s \in \mathbb{Z}, n, m \in \mathbb{P}$.

Definition

$a \mid b$ if exists c s.t. $b=a c$.

Example

$3 \mid 12$ since $12=3 * 4$.

Abstract Algebra, Lecture 2

Jan Snellman

The integers

Definitions

Well-ordering, induction Divisibility
Prime number Division Algorithm
Greatest common divisor

Unique factorization into primes

Lemma

- a|0,
- $0 \mid a \Longleftrightarrow a=0$,
- $1 \mid a$,
- $a \mid 1 \Longleftrightarrow a= \pm 1$,
- $a|b \wedge b| a \quad \Longleftrightarrow \quad a= \pm b$
$\cdot a|b \Longleftrightarrow-a| b \Longleftrightarrow a \mid-b$
- $a|b \wedge a| c \quad \Longrightarrow \quad a \mid(b+c)$,
- $a|b \Longrightarrow a| b c$.

Jan Snellman

The integers

Definitions
Well-ordering, induction Divisibility

Prime number

 Division AlgorithmGreatest common divisor

Unique factorization into primes

Theorem

Restricted to \mathbb{P}, divisibility is a partial order, with unique minimal element 1.

Part of Hasse diagram

Id est,
(1) $a \mid a$,
(2) $a|b \wedge b| c \quad \Longrightarrow \quad a \mid c$,
(3) $a|b \wedge b| a \quad \Longrightarrow \quad a=b$.

Abstract Algebra, Lecture 2
Jan Snellman

The integers

Definitions
Well-ordering, induction Divisibility
Prime number Division Algorithm
Greatest common divisor

Unique factorization into primes

Definition

$n \in \mathbb{P}$ is a prime number if

- $n>1$,
- $m \mid n \Longrightarrow m \in\{1, n\}$
(positive divisors, of course $-1,-n$ also divisors)

$$
2,3,5,7,11,13,17,19,23,29,31, \ldots
$$

The integers

Definitions

Well-ordering, induction Divisibility

Prime number

 Division Algorithm
Division algorithm

Theorem

$a, b \in \mathbb{Z}, b \neq 0$. Then exists unique k, r, quotient and remainder, such that

- $a=k b+r$,
- $0 \leq r<b$.

Example

$-27=(-6) * 5+3$.

The integers

Definitions
Well-ordering, induction Divisibility

Prime number

 Division AlgorithmGreatest common divisor

Suppose $a, b>0$. Fix b, induction over a, base case $a<b$, then

$$
a=0 * b+a .
$$

Otherwise

$$
a=(a-b)+b
$$

and ind. hyp. gives

$$
a-b=k^{\prime} b+r^{\prime}, \quad 0 \leq r^{\prime}<b
$$

so

$$
a=b+k^{\prime} b+r^{\prime}=\left(1+k^{\prime}\right) b+r^{\prime}
$$

Take $k=1+k^{\prime}, r=r^{\prime}$.

Abstract Algebra, Lecture 2
Jan Snellman

The integers

Definitions

Well-ordering, induction Divisibility

Prime number

 Division AlgorithmGreatest common divisor

Proof, uniqueness

If

$$
a=k_{1} b+r_{1}=k_{2} b+r_{2}, \quad 0 \leq r_{1}, r_{2}<b
$$

then

$$
0=a-a=\left(k_{1}-k_{2}\right) b+r_{1}-r_{2}
$$

hence

$$
\left(k_{1}-k_{2}\right) b=r_{2}-r_{1}
$$

$|R H S|<b$, so $|L H S|<b$, hence $k_{1}=k_{2}$. But then $r_{1}=r_{2}$.

Abstract Algebra, Lecture 2

Jan Snellman

The integers

Definitions
Well-ordering, induction

Example

$$
a=23, b=5 .
$$

$$
\begin{aligned}
23 & =5+(23-5)=5+18 \\
& =5+5+(18-5)=2 * 5+13 \\
& =2 * 5+5+(13-5)=3 * 5+8 \\
& =3 * 5+5+(8-5)=4 * 5+3
\end{aligned}
$$

$k=4, r=3$.

Greatest common divisor

The integers

Definition

Bezout
Euclidean algorithm Extended Euclidean Algorithm

Unique factorization into primes

Definition

$a, b \in \mathbb{Z}$. The greatest common divisor of a and $b, c=\operatorname{gcd}(a, b)$, is defined by
(1) $c|a \wedge c| b$,
(2) If $d|a \wedge d| b$, then $d \leq c$.

If we restrict to \mathbb{P}, the the last condition can be replaced with 2' If $d|a \wedge d| b$, then $d \mid c$.

Bezout's theorem

The integers

Greatest common divisor
Definition

Bezout

Euclidean algorithm Extended Euclidean Algorithm
Unique factorization into primes

Theorem (Bezout)

Let $d=\operatorname{gcd}(a, b)$. Then exists (not unique) $x, y \in \mathbb{Z}$ so that

$$
a x+b y=d
$$

Proof.

$S=\{a x+$ by $\mid x, y \in \mathbb{Z}\}, d=\min S \cap \mathbb{P}$. If $t \in S$, then $t=k d+r$, $0 \leq r<d$. So $r=t-k d \in S \cap \mathbb{N}$. Minimiality of $d, r<d$ gives $r=0$. So $d \mid t$.
But $a, b \in S$, so $d|a, d| b$, and if ℓ another common divisor then $a=\ell u$, $b=\ell v$, and

$$
d=a x+b y=\ell u x+\ell v y=\ell(u x+v y)
$$

so $\ell \mid d$. Hence d is greatest common divisor.

Jan Snellman

Étienne Bézout

The integers

Greatest common divisor
Definition

Bezout

Euclidean algorithm Extended Euclidean Algorithm

Unique

factorization into primes

The integers

Greatest common divisor
Definition
Bezout

Euclidean algorithm

Extended Euclidean Algorithm

Unique
factorization into primes

Lemma

If $a=k b+r$ then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$.

Proof.

If $c|a, c| b$ then $c \mid r$.
If $c|b, c| r$ then $c \mid a$.

Abstract Algebra, Lecture 2
Jan Snellman

The integers

Greatest common divisor
Definition
Bezout
Euclidean algorithm
Extended Euclidean Algorithm

Unique

 factorization into primes
Extended Euclidean algorithm, example

$$
\begin{array}{rlrl}
27 & =3 * 7+6 & & =1 * 27-3 * 7 \\
7 & =1 * 6+1 & 1 & =7-1 * 6 \\
6 & =6 * 1+0 & & =7-(27-3 * 7) \\
& & =(-1) * 27+4 * 7
\end{array}
$$

The integers

Algorithm
(1) Initialize: Set $x=1, y=0, r=0, s=1$.
(2) Finished?: If $b=0$, set $d=a$ and terminate.
(3) Quotient and Remainder: Use Division algorithm to write $a=q b+c$ with $0 \leq c<b$.
(4) Shift: Set $(a, b, r, s, x, y)=(b, c, x-q r, y-q s, r, s)$ and go to Step 2.

Jan Snellman

The integers

Greatest common

 divisor
Unique

factorization into

Some Lemmas

An importan property of primes
Euclid, again
Fundamental theorem of arithmetic
Exponent vectors Least common multiple

Lemma

$$
\operatorname{gcd}(a n, b n)=|n| \operatorname{gcd}(a, b)
$$

Proof

Assume $a, b, n \in \mathbb{P}$. Induct on $a+b$. Basis: $a=b=1, \operatorname{gcd}(a, b)=1$, $\operatorname{gcd}(a n, b n)=n$, OK.
Ind. step: $a+b>2, a \geq b$.

$$
a=k b+r, \quad 0 \leq r<b
$$

Since $a \geq b, k>0$.

Jan Snellman

The integers

Greatest common divisor

Unique
factorization into

Some Lemmas

An importan property of primes
Euclid, again
Fundamental theorem of arithmetic

Then

$$
\begin{aligned}
\operatorname{gcd}(a, b) & =\operatorname{gcd}(b, r) \\
\operatorname{gcd}(a n, b n) & =\operatorname{gcd}(b n, r n)
\end{aligned}
$$

since

$$
a n=k b n+r n, \quad 0 \leq r n<b n .
$$

But

$$
b+r=b+(a-k b)=a-b(k-1) \leq a<a+b
$$

so ind. hyp. gives

$$
n \operatorname{gcd}(b, r)=\operatorname{gcd}(b n, r n)
$$

But $L H S=n \operatorname{gcd}(a, b), R H S=\operatorname{gcd}(a n, b n)$.

Abstract Algebra, Lecture 2

Jan Snellman

The integers

Greatest common divisor

Unique factorization into

Some Lemmas

An importan property of primes
Euclid, again
Fundamental theorem of arithmetic
Exponent vectors Least common multiple

Lemma

If $a \mid b c$ and $\operatorname{gcd}(a, b)=1$ then $a \mid c$.

Proof.

$$
1=a x+b y
$$

SO

$$
c=a x c+b y c
$$

Since a|RHS, a|c.

Abstract Algebra, Lecture 2
Jan Snellman

The integers

Greatest common

 divisorUnique factorization into

Lemma

p prime, $p \mid a b$. Then $p \mid a$ or $p \mid b$.

Proof.

If $p \nmid a$ then $\operatorname{gcd}(p, a)=1$. Thus $p \mid b$ by previous lemma.

The integers

Greatest common divisor

Unique
factorization into
primes
Some Lemmas
An importan property of primes
Euclid, again
Fundamental theorem of arithmetic

Infinitude of primes

Theorem (Euclides)

Every n is a product of primes. There are infinitely many primes.

Proof.

1 is regarded as the empty product. Ind on n. If n prime, OK. Otherwise, $n=a b, a, b<n$. So a, b product of primes. Combine.
Suppose $p_{1}, p_{2}, \ldots, p_{s}$ are known primes. Put

$$
N=p_{1} p_{2} \cdots p_{s}+1
$$

then $N=k p_{i}+1$ for all known primes, so no known prime divide N. But N is a product of primes, so either prime, or product of unknown primes.

Abstract Algebra, Lecture 2

Jan Snellman

The integers

Greatest common divisor

Unique
factorization into primes
Some Lemmas
An importan property of primes

Euclid, again

Fundamental theorem of arithmetic
Exponent vectors Least common multiple

Example

$$
\begin{array}{r}
2 * 3 * 5+1=31 \\
2 * 3 * 5 * 7+1=211 \\
2 * 3 * 5 * 7 * 11 * 13+1=59 * 509
\end{array}
$$

Abstract Algebra, Lecture 2

Jan Snellman

The integers

Greatest common divisor

Unique
factorization into primes
Some Lemmas
An importan property of primes

Euclid, again

Fundamental theorem of arithmetic
Exponent vectors Least common multiple

Example

$$
\begin{aligned}
2 * 3 * 5+1 & =31 \\
2 * 3 * 5 * 7+1 & =211
\end{aligned}
$$

$$
2 * 3 * 5 * 7 * 11 * 13+1=59 * 509
$$

Abstract Algebra, Lecture 2

Jan Snellman

The integers

Greatest common divisor

Unique

factorization into primes
Some Lemmas
An importan property of primes

Euclid, again

Fundamental theorem of arithmetic

Example

$$
\begin{aligned}
2 * 3 * 5+1 & =31 \\
2 * 3 * 5 * 7+1 & =211 \\
2 * 3 * 5 * 7 * 11 * 13+1 & =59 * 509
\end{aligned}
$$

Fundamental theorem of arithmetic

The integers

Greatest common divisor

Unique factorization into

Theorem

For any $n \in \mathbb{P}$, can uniquely (up to reordering) write

$$
n=p_{1} p_{2} \cdots p_{s}, \quad p_{i} \text { prime } .
$$

Proof.

Existence, Euclides. Uniqueness: suppose

$$
n=p_{1} p_{2} \cdots p_{s}=q_{1} q_{2} \cdot q_{r}
$$

Since $p_{1} \mid n$, we have $p_{1} \mid q_{1} q_{2} \cdots q_{r}$, which by lemma yields $p_{1} \mid q_{j}$ some q_{j}, hence $p_{1}=q_{j}$. Cancel and continue.

Exponent vectors

The integers
Greatest common divisor

Unique
factorization into
primes
Some Lemmas
An importan property of primes
Euclid, again
Fundamental theorem of arithmetic

Exponent vectors

Least common multiple

$$
\begin{aligned}
\operatorname{gcd}(100,130) & =\operatorname{gcd}\left(2^{2} * 5^{2}, 2 * 5 * 13\right) \\
& =2^{\min (2,1)} * 5^{\min (2,1)} * 13^{\min (0,1)} \\
& =2^{1} * 5^{1} * 13^{0} \\
& =10
\end{aligned}
$$

Jan Snellman

The integers

Greatest common divisor

Unique
factorization into primes
Some Lemmas
An importan property of primes
Euclid, again
Fundamental theorem of arithmetic
Exponent vectors
Least common multiple

Definition

- $a, b \in \mathbb{Z}$
- $m=\operatorname{lcm}(a, b)$ least common multiple if
(1) $m=a x=$ by (common multiple)
(2) If n common multiple of a, b then $m \mid n$

Lemma (Easy)

- $a, b \in \mathbb{P}, c, d \in \mathbb{Z}$
- $l c m\left(\prod_{j} p_{j}^{a_{j}}, \prod_{j} p_{j}^{b_{j}}\right)=\prod_{j} p_{j}^{\max \left(a_{j}, b_{j}\right)}$
- $a b=\operatorname{gcd}(a, b) l c m(a, b)$
- If $a \mid c$ and $b \mid c$ then $\operatorname{lcm}(a, b) \mid c$
- If $c \equiv d \bmod a$ and $c \equiv d \bmod b$ then $c \equiv d \bmod l c m(a, b)$

