Jan Snellman

Linear Diophantine equations

Congruences

Chinese Remainder Thm

Abstract algebra, Lecture 2a

Linear Diophantine equations, congruenses

Jan Snellman¹

¹Matematiska Institutionen Linköpings Universitet

Linear Diophantine equations

Congruences

Chinese Remainder Thm

- 1 Linear Diophantine equations
 One egn, two unknowns
 - One eqn, many unknowns
- 2 Congruences
 Definition
 Examples

Equivalence relation \mathbb{Z}_n Linear equations in \mathbb{Z}_n

3 Chinese Remainder Thm Proof Example **Linear Diophantine**

Congruences

Chinese Remainder Thm

- **1** Linear Diophantine equations One egn, two unknowns
 - One egn, many unknowns
- 2 Congruences Definition
 - Examples

- Linear equations in \mathbb{Z}_n

Linear Diophantine equations

Congruences

Chinese Remainder Thm

- 1 Linear Diophantine equations
 - One eqn, two unknowns
 One eqn, many unknowns
- 2 Congruences

Definition

Examples

Equivalence relation

Linear equations in \mathbb{Z}_n

3 Chinese Remainder Thm

Proof

Example

One eqn, two unknowns One egn, many unknowns

Diophantine eqn: want only integer solns

Theorem

Let $a, b, c \in \mathbb{Z}$. Put $d = \gcd(a, b)$. The equation

ax + by = c, $x, y \in \mathbb{Z}$ (DE)

is solvable iff d c.

Proof.

Necessity: if soln x, y exists, then d|LHS, so d|c. Sufficiency: if d|c, then (DE) equivalent to

$$\frac{a}{d}x + \frac{b}{d}x = \frac{c}{d}$$

(DE')

with $gcd(\frac{a}{d}, \frac{b}{d}) = 1$. So, can assume d = 1.

Congruences

Remainder Thm

Abstract algebra, Lecture 2a Jan Snellman

Linear Diophantine

One eqn, two unknowns
One eqn, many

Congruences

Remainder Thm

Theorem

Let $a,b,c\in\mathbb{Z}$, with $\gcd(a,b)=1$. The equation

$$ax + by = c,$$
 $x, y \in \mathbb{Z}$

(DE1)

is solvable.

Proof.

Bezout: 1 = ax' + by', so c = ax'c + by'c. Put $x = x_p = x'c$, $y = y_p = y'c$.

Jan Snellman

Linear Diophantine equations

One eqn, two unknowns
One eqn, many
unknowns

Congruences

Chinese Remainder Thm

All solutions

• If (x_1, y_2) and (x_2, y_2) both solutions to (DE1) then $(x_1 - x_2, y_1 - y_2)$ soln to

$$ax + by = 0 (DEH)$$

- $(x,y) = (bn, -an), n \in \mathbb{Z}$, are solns to (DEH)
- In fact all solutions: ax = -by so b|x, thus x = bn. Hence abn = -by, so -an = y.
- So all solutions to (DE1) given by

$$(x,y) = (x_p, y_p) + (x_h, y_h) = (x_p, y_p) + n(b, -a)$$

Jan Snellman

Linear Diophantine equations

One eqn, two unknowns

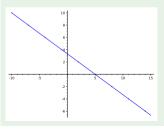
One eqn, many unknowns

Congruences

Chinese Remainder Thm

Example

- 4x + 6y = 20
- gcd(4,6) = 2
- 2x + 3y = 10
- gcd(2,3) = 1 = 2*(-1) + 3*1
- 2*(-10) + 3*10 = 10
- $(x_p, y_p) = (-10, 10)$ particular solution



- All solutions to 2x + 3y = 0are $(x_h, y_h) = n(3, -2), n \in \mathbb{Z}$
- All solutions to original Diophantine is $(x, y) = (x_h, y_h) + (x_p, y_p) = (-10 + 3n, 10 2n)$

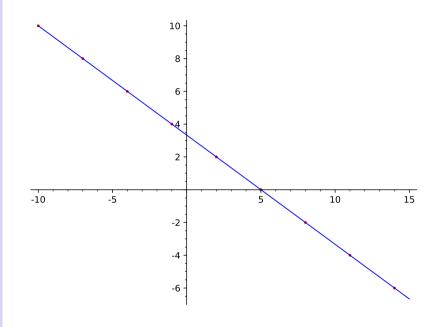
Jan Snellman

Linear Diophantine equations

One eqn, two unknowns
One eqn, many
unknowns

Congruences

Chinese Remainder Thm



Jan Snellman

Linear Diophantine equations

One egn, two unknowns

One eqn, many

Congruences

Chinese Remainder Thm

Example

$$2x + 3y + 5z = 1$$

- Solve 2x + 1u = 1
- (x, u) = (0, 1) + n(1, -2).
- Solve 3y + 5z = u = 1 2n.
- (y,z) = (1-2n)(2,-1) + m(5,-3).
- Combine:

$$(x, y, z) = (0, 2, -1) + n(1, 4, -2) + m(0, 5, -3)$$

Congruences

Definition

Examples Equivalence relation \mathbb{Z}_n

Linear equations in \mathbb{Z}_n

Chinese Remainder Thm

 $\mathbb{P} \ni n > 1$.

Definition

For $a, b \in \mathbb{Z}$, we say that a is congruent to b modulo n,

$$a \equiv b \mod n$$

iff n|(a-b).

Lemma

- $a \equiv a \mod n$,
- $a \equiv b \mod n \iff b \equiv a \mod n$,
- $a \equiv b \mod n \quad \land \quad b \equiv c \mod n \implies a \equiv c \mod n$.

Abstract algebra, Lecture 2a

Jan Snellman

Linear Diophantine equations

Congruences

Definition

Examples

Equivalence relation \mathbb{Z}_n

Linear equations in \mathbb{Z}_n

Chinese

Remainder Thm

Example

- Odd numbers ar congruent to each other modulo 2
- $134632 \equiv 5645234532 \mod 100$
- $4 \equiv -1 \mod 5$,
- $4 \not\equiv 1 \mod 5$.

Jan Snellman

Linear Diophantine equations

Congruences

Definition Examples

Equivalence relation

 \mathbb{Z}_n

Linear equations in \mathbb{Z}_n

Remainder Thm

Definition

A relation \sim on X is an equivalence relation if for all $x, y, z \in X$,

- Reflexive: x ~ x,
- Symmetric: $x \sim y \iff y \sim x$,
- Transitive: $x \sim y \quad \land \quad y \sim z \implies \quad x \sim z$.
- For $x \in X$, $[x] = [x]_{\sim} = \{ y \in X | x \sim y \}$ is the equivalence class containing x, and x is a representative of the class
- The classes partition *X*:

$$X = \bigcup_{x \in X} [x],$$
 union disjoint

In other words, every element belongs to a unique eq. class.

•
$$x \sim y \iff x \in [y] \iff [x] = [y]$$

Abstract algebra, Lecture 2a

Jan Snellman

Linear Diophantine equations

Congruences

Definition

Examples
Equivalence relation

 \mathbb{Z}_n Linear equations in \mathbb{Z}_n

Chinese Remainder Thm • We collect the classes in a bag:

$$X/\sim=\{[x]|x\in X\}$$

- Picture!
- Canonical surjection:

$$\pi: X \to X/\sim \ \pi(y) = [y]$$

 $s: X/\sim \to X$

Section:

such that
$$\pi(s(A)) = A$$
.

- Transversal T: choice of exactly one representative from each class
 - Normal form: $w = s \circ \pi$ satisfies $n(y) \sim y$, n(n(y)) = n(y)
 - Concepts above related. Picture!

Jan Snellman

Linear Diophantine equations

Congruences

Definition
Examples
Equivalence relation \mathbb{Z}_n Linear equations in \mathbb{Z}_n

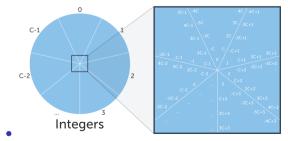
Chinese

Remainder Thm

• Now fix positive integer n > 1, and let \sim be the equivalence relation

$$x \sim y \iff x \equiv y \mod n$$

- So $X = \mathbb{Z}$
- It is partitioned into *n* classes, why?



Jan Snellman

Linear Diophantine equations

Congruences Definition

Examples
Equivalence relation \mathbb{Z}_n

Linear equations in \mathbb{Z}_n

Chinese Remainder Thm If

$$x = kn + r, \quad 0 \le r < n$$

$$x' = k'n + r', \quad 0 \le r' < n$$

then $x \equiv x' \mod n$ if and only if r = r'.

- So a transversal is $T = \{0, 1, 2, ..., n-1\}$
- $\mathbb{Z} = [0] \cup [1] \cup \cdots \cup [n-1]$,
- $[a] = n\mathbb{Z} + a$,
- One section: s([a]) = b with $b \equiv a \mod n$ and $0 \le b < n$, i.e., $b \in T$.
- Normal form: $kn + r \mapsto r$
- $\mathbb{Z}_n = \mathbb{Z}/(n\mathbb{Z}) = \{[0]_n, [1]_n, \dots, [n-1]_n\}$
- Can add congruence classes by adding representatives!

Congruences

Definition Examples Equivalence relation \mathbb{Z}_n

Remainder Thm

Linear equations in \mathbb{Z}_n

Lemma

Suppose that

 $a_1 \equiv a_2 \mod n$

$$b_1 \equiv b_2 \mod n$$

 $a_1 + b_1 \equiv a_2 + b_2 \mod n$

 $a_1b_1 \equiv a_2b_2 \mod n$

 $= (a_1 - a_2)b_1 - a_2(b_1 - b_2)$

Then

Proof.

Furthermore.

 $n|(a_1-a_2), n|(b_1-b_2)$. Since $(a_1-a_2)+(b_1-b_2)=(a_1+b_1)-(a_2+b_2)$. $n|((a_1+b_1)-(a_2+b_2)).$

 $a_1b_1 - a_2b_2 = a_1b_1 + a_2b_1 - a_2b_1 - a_2b_2$

Abstract algebra, Lecture 2a Ian Snellman **Linear Diophantine** Congruences Definition **Examples** Equivalence relation \mathbb{Z}_n Linear equations in \mathbb{Z}_n Remainder Thm

Definition

We add and multiply congruence classes in \mathbb{Z}_n by

 $[a]_n + [b]_n = [a+b]_n$ $[a]_n[b]_n = [ab]_n$

 $(\mathbb{Z}_n, +, [0], *, [1])$ is unitary, commutative ring:

[a] + [0] = [a][a] + [-a] = [0]

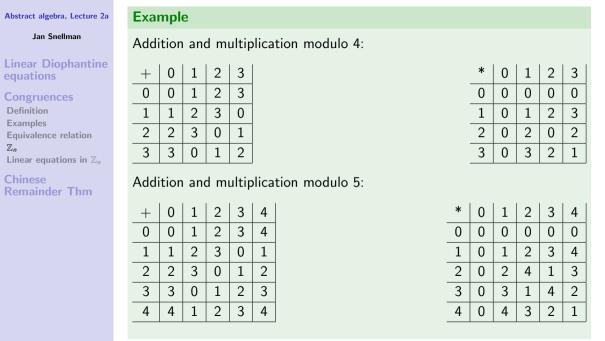
[a] + [b] = [b + a]([a] + [b]) + [c] = [a] + ([b] + [c])

[a] * [1] = [a]

[a] * [b] = [b] * [a]

([a] * [b]) * [c] = [a] * ([b] * [c])

[a] * ([b] + [c]) = ([a] * [b]) + ([a] * [c])



Jan Snellman

Linear Diophantine equations

Congruences

Definition
Examples
Equivalence relation

Linear equations in \mathbb{Z}_n

Remainder Thm

Lemma

If $ac \equiv bc \mod n$ and gcd(c, n) = 1, then $a \equiv b \mod n$.

Proof.

n|(ac-bc), so n|c(a-b), so n|(a-b) (previous lemma).

Example

 $0*2 \equiv 2*2 \mod 4,$

yet

 $0 \not\equiv 2 \mod 4$

Jan Snellman

Linear Diophantine equations

Congruences

Definition
Examples
Equivalence relation

Linear equations in \mathbb{Z}_n

Chinese Remainder Thm

Lemma

If $T = \{t_1, ..., t_n\}$ transversal (mod n) and gcd(a, n) = 1, then $aT = \{at_1, ..., at_n\}$ also transversal.

Proof.

Need only show $at_i \equiv at_j \mod n$ implies i = j. But $n | (at_i - at_j)$ gives $n | (t_i - t_j)$, which gives i = j, since T transversal.

Linear Diophantine

Congruences

Definition
Examples
Equivalence relation

Linear equations in \mathbb{Z}_n

Remainder Thm

Theorem

If gcd(a, n) = 1 then

 $ax \equiv b \mod n$

solvable; soln unique modulo n.

Proof.

Uniqueness: if $ax \equiv ax' \equiv b \mod n$ then $ax - ax' \equiv 0 \mod n$, so $x \equiv x' \mod n$.

Existence: $T = \{t_1, ..., t_n\}$ transversal. $aT = \{at_1, ..., at_n\}$ also transversal, so some $at_j \equiv 1 \mod n$.

Example

Solve $3x \equiv 2 \mod 5$. $T = \{0, 1, 2, 3, 4\}$, $3T = \{0, 3, 6, 9, 12\} \equiv \{0, 3, 1, 4, 2\} \mod 5$. So $3 * 4 \equiv 2 \mod 5$.

Jan Snellman

Linear Diophantine equations

Congruences

Definition
Examples
Equivalence relation

Linear equations in \mathbb{Z}_n

Chinese Remainder Thm

Theorem

Let $d = \gcd(a, n)$. The eqn

$$ax \equiv b \mod n$$

is solvable iff $d \mid b$; the soln then unique modulo n/d.

Proof.

Since $d = \gcd(a, n)$ then d|n and d|a.

Necessity: if soln exists then n|(ax - b), hence d|b.

Sufficiency: Suppose d|b.

$$n|(ax-b)$$
 \iff $\frac{n}{d}|(\frac{a}{d}x-\frac{b}{d})$ \iff $\frac{a}{d}x\equiv\frac{b}{d}$ mod $\frac{n}{d}$

Since $\gcd(\frac{a}{d},\frac{b}{d})=1$, we apply previous lemma: soln exists, unique modulo $\frac{n}{d}$.

Linear Diophantine

Congruences Definition

Examples
Equivalence relation

Linear equations in \mathbb{Z}_n

Chinese Remainder Thm

Example

$$4x \equiv 2 \mod 6$$

 $2x \equiv 1 \mod 3$
 $2x - 1 \equiv 0 \mod 3$

- Diophantine eqn, 2x 1 = 3y
- soln for instance x = -1, y = -1
- Hence $x \equiv -1 \equiv 2 \mod 3$ is the soln, unique mod 3

Linear Diophantine

Congruences Definition Examples

Equivalence relation \mathbb{Z}_n

Linear equations in \mathbb{Z}_n

Chinese Remainder Thm

Definition

R commutative ring with one. An element $r \in R$ is a *unit* if exists $s \in R$ with rs = 1. R is a field if every element in $R \setminus \{0\}$ is a unit.

Theorem

- $[a]_n \in \mathbb{Z}_n$ is a unit iff gcd(a, n) = 1.
- \mathbb{Z}_n is a field iff n is prime.

Proof.

First part already proved. If n prime, then gcd(a, n) = 1 for $n \nmid a$. If n = uv is composite, then gcd(u, n) = u > 1.

Jan Snellman
Linear Diophantine equations
Congruences
Chinese Remainder Thm Proof
Example

Theorem

CRT If gcd(m, n) = 1, then the system of eqns $x \equiv a \mod m$ $x \equiv b \mod n$ is solvable; the soln unique modulo mn. **Proof** Uniqueness: if $x \equiv x' \equiv a \mod m$ $x \equiv x' \equiv b \mod n$ then $x - x' \equiv 0 \mod m$ $x - x' \equiv 0 \mod n$ Thus m|(x-x'), n|(x-x'), so since gcd(m,n)=1, mn|(x-x').

(CRT)

Jan Snellman

Linear Diophantine equations

Congruences

Chinese Remainder Thm

Proof

Example

Proof.

Existence: we have that $x \equiv a \mod m$, so x = a + rm, $r \in \mathbb{Z}$. Thus

$$x \equiv b \mod n$$

$$a + rm \equiv b \mod n$$

$$a + rm = b + sn$$

$$rm - sn = b - a$$

This is a linear Diophantine eqn, solvable since gcd(m, n) = 1. Alternatively, $rm \equiv b - a \mod n$ is solvable (for r) since gcd(m, n) = 1.

```
Example
```

Jan Snellman

Linear Diophantine

Congruences

equations

Example

Chinese Remainder Thm

Abstract algebra, Lecture 2a

Proof

Solve first two egns:

 $x \equiv 1 \mod 2$

 $x \equiv 3 \mod 5$

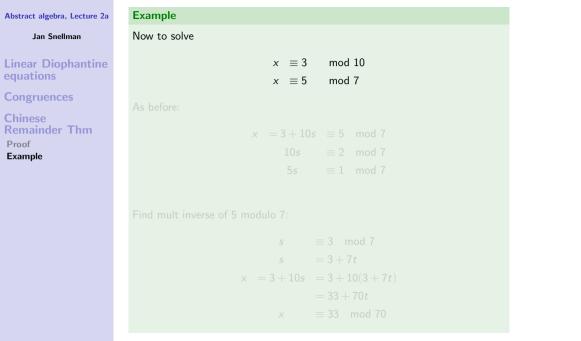
 $x \equiv 5 \mod 7$

x = 1 + 2(1 + 5s) = 3 + 10s

 $x = 1 + 2r \equiv 3 \mod 2$

 $2r \equiv 2 \mod 5$ $r \equiv 1 \mod 5$ r = 1 + 5s

 $x \equiv 3 \mod 10$



Abstract algebra, Lecture 2a	Example
Jan Snellman	Now to solve
Linear Diophantine equations Congruences Chinese Remainder Thm Proof	$x \equiv 3 \mod{10}$ $x \equiv 5 \mod{7}$ As before: $x = 3 + 10s \equiv 5 \mod{7}$
Example	$10s \equiv 2 \mod 7$ $5s \equiv 1 \mod 7$
	Find mult inverse of 5 modulo 7:
	$s \equiv 3 \mod 7$
	s = 3 + 7t
	x = 3 + 10s = 3 + 10(3 + 7t)
	= 33 + 70t
	$x \equiv 33 \mod 70$

Abstract algebra, Lecture 2a	Example
Jan Snellman	Now to solve
Linear Diophantine equations	$ \begin{array}{rcl} x & \equiv 3 & \mod 10 \\ x & \equiv 5 & \mod 7 \end{array} $
Congruences Chinese	As before:
Remainder Thm Proof	$x = 3 + 10s \equiv 5 \mod 7$
Example	$10s \equiv 2 \mod 7$
	$5s \equiv 1 \mod 7$
	Find and the formula of Fame I. In 7
	Find mult inverse of 5 modulo 7:
	$s \equiv 3 \mod 7$
	s = 3 + 7t
	x = 3 + 10s = 3 + 10(3 + 7t)
	= 33 + 70t
	$x \equiv 33 \mod 70$