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Diophantine eqn: want only integer solns

Theorem

Let a, b, c ∈ Z. Put d = gcd(a, b). The equation

ax + by = c , x , y ∈ Z (DE)

is solvable iff d |c.

Proof.

Necessity: if soln x , y exists, then d |LHS , so d |c .

Sufficiency: if d |c , then (DE) equivalent to

a

d
x +

b

d
x =

c

d
(DE’)

with gcd( ad ,
b
d ) = 1. So, can assume d = 1.
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Theorem

Let a, b, c ∈ Z, with gcd(a, b) = 1. The equation

ax + by = c , x , y ∈ Z (DE1)

is solvable.

Proof.

Bezout: 1 = ax ′ + by ′, so c = ax ′c + by ′c . Put x = xp = x ′c ,

y = yp = y ′c .
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All solutions

• If (x1, y2) and (x2, y2) both solutions to (DE1) then (x1 − x2, y1 − y2)

soln to

ax + by = 0 (DEH)

• (x , y) = (bn,−an), n ∈ Z, are solns to (DEH)

• In fact all solutions: ax = −by so b|x , thus x = bn. Hence

abn = −by , so −an = y .

• So all solutions to (DE1) given by

(x , y) = (xp, yp) + (xh, yh) = (xp, yp) + n(b,−a)
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Example

• 4x + 6y = 20

• gcd(4, 6) = 2

• 2x + 3y = 10

• gcd(2, 3) = 1 = 2 ∗ (−1) + 3 ∗ 1

• 2 ∗ (−10) + 3 ∗ 10 = 10

• (xp, yp) = (−10, 10) particular

solution

• All solutions to 2x + 3y = 0

are (xh, yh) = n(3,−2), n ∈ Z

• All solutions to original

Diophantine is

(x , y) = (xh, yh) + (xp, yp) =

(−10 + 3n, 10 − 2n)
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Generalization

Theorem

The linear Diophantine eqn

a1x1 + a2x2 + · · ·+ anxn = c

is solvable when gcd(ai , aj) = 1 for i 6= j .

(Stronger thm possible)

Proof.

Necessity: obvious. Sufficiency: study

a1x + 1 ∗ y = c , gcd(a1, y) = 1

Solvable with x , y integers. Now study

a2x2 + · · ·+ anxn = y ,

solvable by induction.
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Example

2x + 3y + 5z = 1

• Solve 2x + 1u = 1

• (x , u) = (0, 1) + n(1,−2).

• Solve 3y + 5z = u = 1 − 2n.

• (y , z) = (1 − 2n)(2,−1) +m(5,−3).

• Combine:

(x , y , z) = (0, 2,−1) + n(1, 4,−2) +m(0, 5,−3)
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Congruent modulo n

P 3 n > 1.

Definition

For a, b ∈ Z, we say that a is congruent to b modulo n,

a ≡ b mod n

iff n|(a − b).

Lemma

• a ≡ a mod n,

• a ≡ b mod n ⇐⇒ b ≡ a mod n,

• a ≡ b mod n ∧ b ≡ c mod n =⇒ a ≡ c mod n.
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Example

• Odd numbers ar congruent to each other modulo 2

• 134632 ≡ 5645234532 mod 100

• 4 ≡ −1 mod 5,

• 4 6≡ 1 mod 5.
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Definition

A relation ∼ on X is an equivalence relation if for all x , y , z ∈ X ,

• Reflexive: x ∼ x ,

• Symmetric: x ∼ y ⇐⇒ y ∼ x ,

• Transitive: x ∼ y ∧ y ∼ z =⇒ x ∼ z .

• For x ∈ X , [x ] = [x ]∼ = { y ∈ X x ∼ y } is the equivalence class

containing x , and x is a representative of the class

• The classes partition X :

X = ∪x∈X [x ], union disjoint

In other words, every element belongs to a unique eq. class.

• x ∼ y ⇐⇒ x ∈ [y ] ⇐⇒ [x ] = [y ]
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• We collect the classes in a bag:

X/ ∼= { [x ] x ∈ X }

• Picture!

• Canonical surjection:

π : X → X/ ∼

π(y) = [y ]

• Section:

s : X/ ∼→ X

such that π(s(A)) = A.

• Transversal T : choice of exactly one representative from each class

• Normal form: w = s ◦ π satisfies n(y) ∼ y , n(n(y)) = n(y)

• Concepts above related. Picture!
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• Now fix positive integer n > 1, and let ∼ be the equivalence relation

x ∼ y ⇐⇒ x ≡ y mod n

• So X = Z
• It is partitioned into n classes, why?

•
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• If

x = kn + r , 0 ≤ r < n

x ′ = k ′n + r ′, 0 ≤ r ′ < n

then x ≡ x ′ mod n if and only if r = r ′.

• So a transversal is T = {0, 1, 2, . . . , n − 1}

• Z = [0] ∪ [1] ∪ · · · ∪ [n − 1],

• [a] = nZ+ a,

• One section: s([a]) = b with b ≡ a mod n and 0 ≤ b < n, i.e.,

b ∈ T .

• Normal form: kn + r 7→ r

• Zn = Z/(nZ) = {[0]n, [1]n, . . . , [n − 1]n}

• Can add congruence classes by adding representatives!
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Lemma

Suppose that

a1 ≡ a2 mod n

b1 ≡ b2 mod n

Then

a1 + b1 ≡ a2 + b2 mod n

a1b1 ≡ a2b2 mod n

Proof.

n|(a1 − a2), n|(b1 − b2). Since (a1 − a2) + (b1 − b2) = (a1 + b1) − (a2 + b2),

n|((a1 + b1) − (a2 + b2)).

Furthermore,

a1b1 − a2b2 = a1b1 + a2b1 − a2b1 − a2b2

= (a1 − a2)b1 − a2(b1 − b2)
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Definition

We add and multiply congruence classes in Zn by

[a]n + [b]n = [a + b]n

[a]n[b]n = [ab]n

(Zn,+, [0], ∗, [1]) is unitary, commutative ring:

[a] + [0] = [a]

[a] + [−a] = [0]

[a] + [b] = [b + a]

([a] + [b]) + [c ] = [a] + ([b] + [c ])

[a] ∗ [1] = [a]

[a] ∗ [b] = [b] ∗ [a]
([a] ∗ [b]) ∗ [c ] = [a] ∗ ([b] ∗ [c ])
[a] ∗ ([b] + [c ]) = ([a] ∗ [b]) + ([a] ∗ [c ])



Abstract algebra, Lecture 2a

Jan Snellman

Linear Diophantine
equations

Congruences
Definition

Examples

Equivalence relation

Zn

Linear equations in Zn

Chinese
Remainder Thm

Example

Addition and multiplication modulo 4:

+ 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

* 0 1 2 3

0 0 0 0 0

1 0 1 2 3

2 0 2 0 2

3 0 3 2 1

Addition and multiplication modulo 5:

+ 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 0 1

2 2 3 0 1 2

3 3 0 1 2 3

4 4 1 2 3 4

* 0 1 2 3 4

0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 4 1 3

3 0 3 1 4 2

4 0 4 3 2 1
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Lemma

If ac ≡ bc mod n and gcd(c , n) = 1, then a ≡ b mod n.

Proof.

n|(ac − bc), so n|c(a − b), so n|(a − b) (previous lemma).

Example

0 ∗ 2 ≡ 2 ∗ 2 mod 4,

yet

0 6≡ 2 mod 4
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Lemma

If T = {t1, . . . , tn} transversal (mod n) and gcd(a, n) = 1, then

aT = {at1, . . . , atn} also transversal.

Proof.

Need only show ati ≡ atj mod n implies i = j . But n|(ati − atj) gives

n|(ti − tj), which gives i = j , since T transversal.
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Theorem

If gcd(a, n) = 1 then

ax ≡ b mod n

solvable; soln unique modulo n.

Proof.

Uniqueness: if ax ≡ ax ′ ≡ b mod n then ax − ax ′ ≡ 0 mod n, so x ≡ x ′

mod n.

Existence: T = {t1, . . . , tn} transversal. aT = {at1, . . . , atn} also

transversal, so some atj ≡ 1 mod n.

Example

Solve 3x ≡ 2 mod 5. T = {0, 1, 2, 3, 4},

3T = {0, 3, 6, 9, 12} ≡ {0, 3, 1, 4, 2} mod 5. So 3 ∗ 4 ≡ 2 mod 5.
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Theorem

Let d = gcd(a, n). The eqn

ax ≡ b mod n

is solvable iff d |b; the soln then unique modulo n/d.

Proof.

Since d = gcd(a, n) then d |n and d |a.

Necessity: if soln exists then n|(ax − b), hence d |b.

Sufficiency: Suppose d |b.

n|(ax − b) ⇐⇒ n

d
|( a
d
x −

b

d
) ⇐⇒ a

d
x ≡ b

d
mod

n

d

Since gcd( ad ,
b
d ) = 1, we apply previous lemma: soln exists, unique modulo

n
d .
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Example

4x ≡ 2 mod 6

2x ≡ 1 mod 3

2x − 1 ≡ 0 mod 3

• Diophantine eqn, 2x − 1 = 3y

• soln for instance x = −1,y = −1

• Hence x ≡ −1 ≡ 2 mod 3 is the soln, unique mod 3
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Units in Zn

Definition

R commutative ring with one. An element r ∈ R is a unit if exists s ∈ R

with rs = 1. R is a field if every element in R \ {0} is a unit.

Theorem

• [a]n ∈ Zn is a unit iff gcd(a, n) = 1.

• Zn is a field iff n is prime.

Proof.

First part already proved. If n prime, then gcd(a, n) = 1 for n 6 |a. If

n = uv is composite, then gcd(u, n) = u > 1.
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Theorem

CRT If gcd(m, n) = 1, then the system of eqns

x ≡ a mod m

x ≡ b mod n
(CRT)

is solvable; the soln unique modulo mn.

Proof

Uniqueness: if

x ≡ x ′ ≡ a mod m

x ≡ x ′ ≡ b mod n

then

x − x ′ ≡ 0 mod m

x − x ′ ≡ 0 mod n

Thus m|(x − x ′), n|(x − x ′), so since gcd(m, n) = 1, mn|(x − x ′).
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Proof.

Existence: we have that x ≡ a mod m, so x = a + rm, r ∈ Z. Thus

x ≡ b mod n

a + rm ≡ b mod n

a + rm = b + sn

rm − sn = b − a

This is a linear Diophantine eqn, solvable since gcd(m, n) = 1.

Alternatively, rm ≡ b − a mod n is solvable (for r) since

gcd(m, n) = 1.
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x ≡ 1 mod 2

x ≡ 3 mod 5

x ≡ 5 mod 7

Solve first two eqns:

x = 1 + 2r ≡ 3 mod 2

2r ≡ 2 mod 5

r ≡ 1 mod 5

r = 1 + 5s

x = 1 + 2(1 + 5s) = 3 + 10s

x ≡ 3 mod 10
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Now to solve

x ≡ 3 mod 10

x ≡ 5 mod 7

As before:

x = 3 + 10s ≡ 5 mod 7

10s ≡ 2 mod 7

5s ≡ 1 mod 7

Find mult inverse of 5 modulo 7:

s ≡ 3 mod 7

s = 3 + 7t

x = 3 + 10s = 3 + 10(3 + 7t)

= 33 + 70t

x ≡ 33 mod 70
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