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Linköping, spring 2019

Lecture notes availabe at course homepage

http://courses.mai.liu.se/GU/TATA55/



Abstract Algebra, Lecture 3

Jan Snellman

Definitions

Examples

Summary

1 Definitions

2 Examples



Abstract Algebra, Lecture 3

Jan Snellman

Definitions

Examples

Summary

1 Definitions

2 Examples



Abstract Algebra, Lecture 3

Jan Snellman

Definitions

Examples

Definition

Let X be a set. A function

? : X × X → X

is called a binary operation on X , or a rule of composition on X .

We often write ?(x , y) in infix notation as x ? y .

Definition

The binary operation ? on X is commutative if for all x , y ∈ X it holds

that

x ? y = y ? x
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Definition

The binary operation ? on X is associative if for all x , y , z ∈ X it holds

that

x ? (y ? z) = (x ? y) ? z

In this case, the resulting element can be unambiguously named x ? y ? z .
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X is the set of all rooted binary trees with at least one leaf, where the

leaves are labeled by positive integers. If A,B are such trees, then

A ? B =

·

A B

For example,

·

1 ?

·

2 3 =

·

·

1

·

2 3
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On the other hand,

·

2 3 ?

·

1 =

·

·

2 3

·

1

so the operation is not commutative. Neither is it associative.
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• X all 2x2-matrices (with real entries, say). ? matrix multiplication.

Associative product.

• X all invertible 2x2-matrices, with matrix multiplication. Associative

product.

• X all 2x2-matrices, A ? B = [A,B] = AB − BA, commutator.

[B,A] = −[A,B], so not commutative (but skew-commutative.)

Non-associative binary operation:

[A, [B,C ]] 6= [[A,B],C ]

in general.

As an aside: “almost associative” by means of Jacobi triple identity:

[A, [B,C ]] + [B, [C ,A]] + [C , [A,B]] = 0
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M = {a, b, c}, X all non-empty words on M, operation: concatenation.

Ex: u = aaba,v = cbcaa, w = caba

u ∗ v = aabacbcaa 6= v ∗ u = cbcaaaaba

u ∗ (v ∗ w) = aaba ∗ (cbcaacaba) = aabacbcaacaba = (u ∗ v) ∗ w

This operation is associative, but not commutative.
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A set. X all maps f : X → X . Operation: composition. This operation is

associative, but not commutative.

Ex: A = {1, 2, 3}, f (1) = 2, f (2) = 3, f (3) = 3, g(1) = 1, g(2) = 3,

g(3) = 1. h = f ◦ g , h(1) = f (g(1)) = f (1) = 2, et cetera.



Abstract Algebra, Lecture 3

Jan Snellman

Definitions

Examples Definition

A set X with an associative binary operation is (by abuse of notation)

called a semigroup. A semigroup is a monoid if there furthermore exists a

(necessarily unique) identity element e such that

x ? e = e ? x = x

for all x ∈ X .
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• All “words” on an alphabet X form a semigroup under concatenation

(the so-called free semigroup). Adjoin empty word to get free monoid.

• All “monomials” in X , e.g. if X = a, b, c then elements

abaac = aaabc = a3bc, free commutative monoid.

• All 2x2-matrices under multiplication is a monoid.

• XX , the set of all maps from X to itself, with composition as

operation, is a monoid.
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A = {a, b}, X = AA, operation composition. Then X = {I , S ,P,Q} with

I =

(
a b

a b

)
S =

(
a b

b a

)
P =

(
a b

a a

)
Q =

(
a b

b b

)
Multiplication table

I S P Q

I I S P Q

S S I Q P

P P P P P

Q Q Q Q Q
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Finally, the main object of study for the first part of the course:

Definition

A monoid (X , ?, e) where each x ∈ X has a (necessarily unique) two-sided

inverse x−1, i.e.,

x ? x−1 = x−1 ? x = e

is called a group.

Just to be difficult:

Definition

A group where the operation is commutative is called an Abelian group.
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All invertible maps f : X → X forms a group, the symmetric group SX .

Tremendously important and general.

Example

X = {1, 2, 3}. f (1) = 2, f (2) = 1, f (3) = 3, g(1) = 2, g(2) = 3, g(3) = 1.

(f ◦ g)(1) = f (g(1)) = f (2) = 1, (g ◦ f )(1) = g(f (1)) = g(2) = 3, so

f ◦ g 6= g ◦ f , so the group SX is not abelian.
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• (Z,+, 0) is an abelian group.

• (Q \ {0} , ∗, 1) is an abelian group

• The set of invertible real 2x2-matrices is a group

• The set of invertible linear transformation on a fixed vector space V

is a group

• The set Zn of integers mod n is a group under addition

• The set Un = { [k ]n gcd(k , n) = 1 } is a group under multiplication
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Henceforth, (G , ∗, e) denotes a group.

Lemma

The inverse of g ∈ G is unique.

Proof.

If h, k are inverses of g , then

h = h ∗ e = h ∗ (g ∗ k) = (h ∗ g) ∗ k = e ∗ k = e
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Lemma (Cancellation)

If g , h, k ∈ H and hg = kg, then h = k.

Proof.

We have that (hg)g−1 = (kg)g−1, thus h(gg−1) = k(gg−1), thus

h = k .

Lemma (Linear equations)

a, b ∈ G. The equation ax = b has the unique solution x = a−1b.

Proof.

Since a ∗ (a−1b) = b, this is one solution. If x is a solution, then

a−1(ax) = a−1b.
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Addition and multiplication modulo 5:

+ 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 0 1

2 2 3 0 1 2

3 3 0 1 2 3

4 4 1 2 3 4

* 1 2 3 4

1 1 2 3 4

2 2 4 1 3

3 3 1 4 2

4 4 3 2 1

(Z5,+, [0]) is an abelian group, as is U5. Note that ax = b (and xa = b)

have a unique solution means that each element occurs exactly once in

each row and in each column of the multiplication table.
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Let G = (G , ∗, e) be a group. A subset H ⊆ G is a subgroup, denoted

G ≤ H, if

1 e ∈ H,

2 a, b ∈ H =⇒ a ∗ b ∈ H,

3 a ∈ H =⇒ a−1 ∈ H.

Equivalently, H ≤ G if H, with the induced multiplication, forms a group.
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• Z ≤ Q ≤ R ≤ C
• Let C∗ denote the group of non-zero complex numbers, under

multiplication.

• The subset R∗ of complex numbers with zero imaginary part is a

subgroup,
• The set iR∗ of complex numbers with zero real part is not a subgroup,
• The subset of complex numbers with unit modulus is a subgrup, the

so-called circle group T

• The subset of complex numbers with modulus 2 is not a subgroup,
• The subset of complex numbers with rational real and imaginary parts

forms a subgroup,
• The subset of complex with with rational real and imaginary parts, and

unit modulus, forms a subgroup. Elements of this infinite subgroup

correspond to Pythagorean Triplets.

• The set of all invertible linear transformations on a real vector space V

is a subgroup of the group SV of all invertible maps from V to itself.
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Lemma

If H ≤ K ≤ G then H ≤ G.

Lemma

If H ≤ G and K ≤ G then H ∩ K ≤ G.

Lemma

If S ⊆ G is any subset, then the intersection of all subgroups of G that

contains S is a subgroup, denoted by 〈S〉. This is the unique smallest

subgroup that contains S.
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