Jan Snellman

## Definitions

Examples

## Abstract Algebra, Lecture 3

Binary operations, semigroups, groups

Jan Snellman ${ }^{1}$<br>${ }^{1}$ Matematiska Institutionen<br>Linköpings Universitet

TEKNISKA HÖGSKOLAN
LINKÖPINGS UNIVERSITET

Abstract Algebra, Lecture 3
Jan Snellman

## Definitions

Examples

## (1) Definitions

## (2) Examples

Abstract Algebra, Lecture 3
Jan Snellman
Summary

## (1) Definitions

## (2) Examples

## Definition

Let $X$ be a set. A function

$$
\star: X \times X \rightarrow X
$$

is called a binary operation on $X$, or a rule of composition on $X$.
We often write $\star(x, y)$ in infix notation as $x \star y$.

## Definition

The binary operation $\star$ on $X$ is commutative if for all $x, y \in X$ it holds that

$$
x \star y=y \star x
$$

## Definitions

## Definition

The binary operation $\star$ on $X$ is associative if for all $x, y, z \in X$ it holds that

$$
x \star(y \star z)=(x \star y) \star z
$$

In this case, the resulting element can be unambiguously named $x \star y \star z$.

## Definitions

## Example

$X$ is the set of all rooted binary trees with at least one leaf, where the leaves are labeled by positive integers. If $A, B$ are such trees, then

$$
A \star B=\mathrm{A}^{/ \backslash} \mathrm{B}
$$

For example,


## Definitions

## Example

On the other hand,

so the operation is not commutative. Neither is it associative.

## Jan Snellman

## Definitions

Examples

## Example

- $X$ all $2 \times 2$-matrices (with real entries, say). $\star$ matrix multiplication. Associative product.
- $X$ all invertible $2 \times 2$-matrices, with matrix multiplication. Associative product.
- $X$ all $2 \times 2$-matrices, $A \star B=[A, B]=A B-B A$, commutator. $[B, A]=-[A, B]$, so not commutative (but skew-commutative.) Non-associative binary operation:

$$
[A,[B, C]] \neq[[A, B], C]
$$

in general.
As an aside: "almost associative" by means of Jacobi triple identity:

$$
[A,[B, C]]+[B,[C, A]]+[C,[A, B]]=0
$$

## Example

$M=\{a, b, c\}, X$ all non-empty words on $M$, operation: concatenation.
Ex: $u=a a b a, v=c b c a a, w=c a b a$

$$
\begin{gathered}
u * v=\text { aabacbcaa } \neq v * u=\text { cbcaaaaba } \\
u *(v * w)=\text { aaba } *(c b c a a c a b a)=\text { aabacbcaacaba }=(u * v) * w
\end{gathered}
$$

This operation is associative, but not commutative.

## Definitions

## Examples

## Example

$A$ set. $X$ all maps $f: X \rightarrow X$. Operation: composition. This operation is associative, but not commutative.
Ex: $A=\{1,2,3\}, f(1)=2, f(2)=3, f(3)=3, g(1)=1, g(2)=3$, $g(3)=1 . h=f \circ g, h(1)=f(g(1))=f(1)=2$, et cetera.

## Definitions

## Examples

## Definition

A set $X$ with an associative binary operation is (by abuse of notation) called a semigroup. A semigroup is a monoid if there furthermore exists a (necessarily unique) identity element $e$ such that

$$
x \star e=e \star x=x
$$

for all $x \in X$.

## Definitions

## Example

- All "words" on an alphabet $X$ form a semigroup under concatenation (the so-called free semigroup). Adjoin empty word to get free monoid.
- All "monomials" in $X$, e.g. if $X=a, b, c$ then elements $a b a a c=a a a b c=a^{3} b c$, free commutative monoid.
- All $2 \times 2$-matrices under multiplication is a monoid.
- $X^{X}$, the set of all maps from $X$ to itself, with composition as operation, is a monoid.


## Definitions

## Examples

## Example

$A=\{a, b\}, X=A^{A}$, operation composition. Then $X=\{I, S, P, Q\}$ with

$$
\begin{aligned}
I & =\left(\begin{array}{ll}
a & b \\
a & b
\end{array}\right)
\end{aligned} \quad S=\left(\begin{array}{ll}
a & b \\
b & a
\end{array}\right), ~ \begin{array}{ll}
P & =\left(\begin{array}{ll}
a & b \\
a & a
\end{array}\right)
\end{array} \quad Q=\left(\begin{array}{ll}
a & b \\
b & b
\end{array}\right) .
$$

Multiplication table

|  | $I$ | $S$ | $P$ | $Q$ |
| :---: | :---: | :---: | :---: | :---: |
| $I$ | $I$ | $S$ | $P$ | $Q$ |
| $S$ | $S$ | $I$ | $Q$ | $P$ |
| $P$ | $P$ | $P$ | $P$ | $P$ |
| $Q$ | $Q$ | $Q$ | $Q$ | $Q$ |

Finally, the main object of study for the first part of the course:

## Definition

A monoid $(X, \star, e)$ where each $x \in X$ has a (necessarily unique) two-sided inverse $x^{-1}$, i.e.,

$$
x \star x^{-1}=x^{-1} \star x=e
$$

is called a group.
Just to be difficult:

## Definition

A group where the operation is commutative is called an Abelian group.

## Definitions

## Example

All invertible maps $f: X \rightarrow X$ forms a group, the symmetric group $S_{X}$. Tremendously important and general.

## Example

$X=\{1,2,3\} . f(1)=2, f(2)=1, f(3)=3, g(1)=2, g(2)=3, g(3)=1$.
$(f \circ g)(1)=f(g(1))=f(2)=1,(g \circ f)(1)=g(f(1))=g(2)=3$, so
$f \circ g \neq g \circ f$, so the group $S_{X}$ is not abelian.

## Definitions

## Example

- $(\mathbb{Z},+, 0)$ is an abelian group.
- $(\mathbb{Q} \backslash\{0\}, *, 1)$ is an abelian group
- The set of invertible real $2 \times 2$-matrices is a group
- The set of invertible linear transformation on a fixed vector space $V$ is a group
- The set $\mathbb{Z}_{n}$ of integers $\bmod n$ is a group under addition
- The set $U_{n}=\left\{[k]_{n} \mid \operatorname{gcd}(k, n)=1\right\}$ is a group under multiplication


## Definitions

Henceforth, $(G, *, e)$ denotes a group.

## Lemma

The inverse of $g \in G$ is unique.

## Proof.

If $h, k$ are inverses of $g$, then

$$
h=h * e=h *(g * k)=(h * g) * k=e * k=e
$$

## Definitions

 Examples
## Lemma (Cancellation)

If $g, h, k \in H$ and $h g=k g$, then $h=k$.

## Proof.

We have that $(h g) g^{-1}=(k g) g^{-1}$, thus $h\left(g g^{-1}\right)=k\left(g g^{-1}\right)$, thus
$h=k$.

## Lemma (Linear equations)

$a, b \in G$. The equation $a x=b$ has the unique solution $x=a^{-1} b$.

## Proof.

Since $a *\left(a^{-1} b\right)=b$, this is one solution. If $x$ is a solution, then $a^{-1}(a x)=a^{-1} b$.

## Definitions

## Example

Addition and multiplication modulo 5:

| + | 0 | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | 2 | 3 | 4 |
| 1 | 1 | 2 | 3 | 0 | 1 |
| 2 | 2 | 3 | 0 | 1 | 2 |
| 3 | 3 | 0 | 1 | 2 | 3 |
| 4 | 4 | 1 | 2 | 3 | 4 |


| $*$ | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 2 | 3 | 4 |
| 2 | 2 | 4 | 1 | 3 |
| 3 | 3 | 1 | 4 | 2 |
| 4 | 4 | 3 | 2 | 1 |

$\left(\mathbb{Z}_{5},+,[0]\right)$ is an abelian group, as is $U_{5}$. Note that $a x=b$ (and $x a=b$ ) have a unique solution means that each element occurs exactly once in each row and in each column of the multiplication table.

## Definitions

## Definition

Let $G=(G, *, e)$ be a group. A subset $H \subseteq G$ is a subgroup, denoted $G \leq H$, if
(1) $e \in H$,
(2) $a, b \in H \Longrightarrow a * b \in H$,
(3 $a \in H \Longrightarrow a^{-1} \in H$.
Equivalently, $H \leq G$ if $H$, with the induced multiplication, forms a group.

## Jan Snellman

## Definitions

Examples

## Example

- $\mathbb{Z} \leq \mathbb{Q} \leq \mathbb{R} \leq \mathbb{C}$
- Let $\mathbb{C}^{*}$ denote the group of non-zero complex numbers, under multiplication.
- The subset $\mathbb{R}^{*}$ of complex numbers with zero imaginary part is a subgroup,
- The set $i \mathbb{R}^{*}$ of complex numbers with zero real part is not a subgroup,
- The subset of complex numbers with unit modulus is a subgrup, the so-called circle group $\mathfrak{T}$
- The subset of complex numbers with modulus 2 is not a subgroup,
- The subset of complex numbers with rational real and imaginary parts forms a subgroup,
- The subset of complex with with rational real and imaginary parts, and unit modulus, forms a subgroup. Elements of this infinite subgroup correspond to Pythagorean Triplets.
- The set of all invertible linear transformations on a real vector space $V$ is a subgroup of the group $S_{V}$ of all invertible maps from $V$ to itself.


## Lemma

If $H \leq K \leq G$ then $H \leq G$.

## Lemma

If $H \leq G$ and $K \leq G$ then $H \cap K \leq G$.

## Lemma

If $S \subseteq G$ is any subset, then the intersection of all subgroups of $G$ that contains $S$ is a subgroup, denoted by $\langle S\rangle$. This is the unique smallest subgroup that contains $S$.

