Jan Snellman

Groups

Cyclic Groups

The subgroup generated by a subset

Direct products of groups

Abstract Algebra, Lecture 4 Cyclic Groups

Jan Snellman¹

¹Matematiska Institutionen Linköpings Universitet

Jan Snellman

Groups

- **Cyclic Groups**
- The subgroup generated by a subset
- Direct products of groups

1 Groups Definition U_n

 \mathcal{C}^* and \mathfrak{T}

2 Cyclic Groups

Exponent laws Order of an element $\langle g \rangle$ Definition of cyclic group

Summary

Additive notation

- The canonical cyclic groups: \mathbb{Z} and \mathbb{Z}_n Isomorphic groups Classification of cyclic groups Structure of cyclic groups
- **3** The subgroup generated by a subset
- Direct products of groups

Jan Snellman

Groups

Cyclic Groups

The subgroup generated by a subset

Direct products of groups

1 Groups

Definition U_n \mathcal{C}^* and $\mathfrak T$

2 Cyclic Groups

Exponent laws Order of an element $\langle g \rangle$ Definition of cyclic group

Summary

Additive notation

The canonical cyclic groups: \mathbb{Z} and \mathbb{Z}_n Isomorphic groups Classification of cyclic groups Structure of cyclic groups

- 3 The subgroup generated by a subset
- Direct products of groups

Jan Snellman

Groups

Cyclic Groups

The subgroup generated by a subset

Direct products of groups

1 Groups

Definition U_n C^* and $\mathfrak T$

2 Cyclic Groups

Exponent laws Order of an element $\langle g \rangle$ Definition of cyclic group

Summary

Additive notation

The canonical cyclic groups: \mathbb{Z} and \mathbb{Z}_n Isomorphic groups Classification of cyclic groups Structure of cyclic groups

- **3** The subgroup generated by a subset
- Direct products of groups

Jan Snellman

Groups

Cyclic Groups

The subgroup generated by a subset

Direct products of groups

1 Groups

Definition U_n C^* and $\mathfrak T$

2 Cyclic Groups

Exponent laws Order of an element $\langle g \rangle$ Definition of cyclic group

Summary

Additive notation The canonical cyclic groups: \mathbb{Z} and \mathbb{Z}_n Isomorphic groups Classification of cyclic groups Structure of cyclic groups

- **3** The subgroup generated by a subset
- **4** Direct products of groups

Jan Snellman

Groups

Definition

 U_n C^* and \mathfrak{T}

Cyclic Groups

The subgroup generated by a subset

Direct products of groups

Recall:

Definition

```
(G, *, 1) is a group if for all a, b, c ∈ G,
a * (b * c) = (a * b) * c,
a * 1 = e * 1 = a,
exists unique a<sup>-1</sup> ∈ G such that a * a<sup>-1</sup> = a<sup>-1</sup> * a = 1.
If a * b = b * a always, then abelian group.
```

Group

Jan Snellman

Groups

 $\begin{array}{l} \text{Definition} \\ U_n \\ C^* \text{ and } \mathfrak{T} \end{array}$

Cyclic Groups

The subgroup generated by a subset

Direct products of groups

Remember: in \mathbb{Z}_n , $g = [a]_n$ has multiplicative inverse iff gcd(a, n) = 1.

Definition

 $\mathbb{Z} \ni n > 1.$

•
$$U_n = \{ [a]_n | gcd(a, n) = 1 \}.$$

•
$$\phi(n) = |\{1 \le a < n | \gcd(a, n) = 1\}| = |U_n|.$$

Example

 $U_5 = \{[1]_5, [2]_5, [3]_5, [4]_5\}, U_6 = \{[1]_6, [5]_6\}.$

Jan Snellman

Groups

 $\begin{array}{l} \text{Definition} \\ U_n \\ \mathcal{C}^* \text{ and } \mathfrak{T} \end{array}$

Cyclic Groups

The subgroup generated by a subset

Direct products of groups

Example

Multiplication in U_5 and U_8

*	1	2	3	4
1	1	2	3	4
2	2	4	1	3
3	3	1	4	2
4	4	3	2	1

*	1	3	5	7
1	1	3	5	7
3	3	1	7	5
5	5	7	1	3
7	7	5	3	1

Jan Snellman

Groups

 $\begin{array}{l} \textbf{Definition}\\ U_n\\ \boldsymbol{C^*} \text{ and } \mathfrak{T} \end{array}$

Cyclic Groups

The subgroup generated by a subset

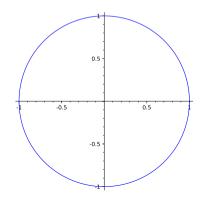
Direct products of groups

Definition

The punktured complex plane $\mathbb{C}^*=\mathbb{C}\setminus\{0\}$ is an abelian group under complex multiplication. The circle group

$$\mathfrak{T} = \{ z \in \mathbb{C}^* | |z| = 1 \}$$

forms a subgroup.



Groups

Cyclic Groups

Exponent laws

Order of an element $\langle g \rangle$

- Definition of cyclic group
- Additive notation
- The canonical cyclic
- groups: \mathbb{Z} and \mathbb{Z}_n
- Isomorphic groups
- Classification of cyclic groups
- Structure of cyclic groups
- The subgroup generated by a subset
- Direct products of groups

Definition

- G group, $g \in G$.
- $g^0 = 1.$
- g² = g * g, g³ = g * g * g, et cetera; for n positive integer gⁿ is g times itself n times (associativity makes this unambiguous)

•
$$g^{-2} = g^{-1} * g^{-1} = (g * g)^{-1}; g^{-n} = (g^n)^{-1} = (g^{-1})^n.$$

Lemma

For all $g \in G$, $i, j \in \mathbb{Z}$, it holds that

$$g^i * g^j = g^{i+j}.$$

Jan Snellman

Groups

Cyclic Groups

```
Exponent laws
Order of an element
```

- $\langle g \rangle$ Definition of cyclic
- group
- Additive notation
- The canonical cyclic
- groups: \mathbb{Z} and \mathbb{Z}_n
- Isomorphic groups
- Classification of cyclic groups
- Structure of cyclic groups
- The subgroup generated by a subset
- Direct products of groups

Definition

The element $g \in G$ has order n, written o(g) = n, if

$$g^n = 1$$

but

$$g^m \neq 1$$
 for $1 \leq m < n$.

If $g^n \neq 1$ for all n > 0 then the order of g is infinite. It is understood that the unit element has order one.

Jan Snellman

Groups

Cyclic Groups

Exponent laws Order of an element

- Order of an elem
- $\langle g \rangle$
- Definition of cyclic group
- Additive notation
- The canonical cyclic
- groups: \mathbb{Z} and \mathbb{Z}_n
- Isomorphic groups
- Classification of cyclic groups
- Structure of cyclic groups

The subgroup generated by a subset

Direct products of groups

- $3^2 = 9 \equiv 1 \mod 8$, so $[3]_8$ has order 2 as an element in U_8 .
- $3^2 = 9 \equiv 4 \mod 5$, $3^3 = 27 \equiv 2 \mod 5$, $83^4 = 81 \equiv 1 \mod 5$, so $[3]_5$ has order 4 as an element of U_5 .
- $5\in\mathbb{Z}$ has infinite order

Jan Snellman

Groups

Cyclic Groups

- Exponent laws Order of an element $\langle g \rangle$
- Definition of cyclic group
- Additive notation
- The canonical cyclic
- groups: \mathbb{Z} and \mathbb{Z}_n
- Isomorphic groups
- Classification of cyclic groups
- Structure of cyclic groups

The subgroup generated by a subset

Direct products of groups

Definition $g \in G$, G group. We define the cyclic subgroup generated by g as

 $\langle g \rangle = \{ g^n | n \in \mathbb{Z} \}$

Lemma

This is the smallest subgroup of G that contain g; it can be written

$$\langle g
angle = igcap_{g \in H \leq G} H$$

Lemma

$$o(g) = |\langle g \rangle|$$

Jan Snellman

Groups

Cyclic Groups

Exponent laws Order of an element $\langle g \rangle$ Definition of cyclic group Additive notation The canonical cyclic groups: \mathbb{Z} and \mathbb{Z}_n Isomorphic groups Classification of cyclic groups Structure of cyclic groups

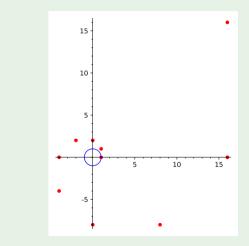
The subgroup generated by a subset

Direct products of groups

Example

6

$$G=\mathbb{C}^*$$
, $g=1+i.$ We depict g^0,g,g^2,g^3,\ldots,g^9 :



Jan Snellman

Groups

Cyclic Groups

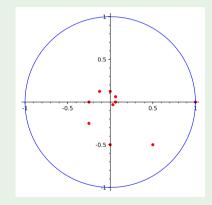
Exponent laws Order of an element $\langle g \rangle$ Definition of cyclic group Additive notation The canonical cyclic groups: \mathbb{Z} and \mathbb{Z}_n Isomorphic groups Classification of cyclic groups Structure of cyclic

groups

The subgroup generated by a subset

Direct products of groups

$$\mathcal{G}=\mathbb{C}^*$$
, $g=1+i.$ We depict $g^0,g^{-1},g^{-2},g^{-3},\ldots,g^{-9}$



Jan Snellman

Groups

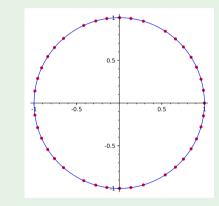
Cyclic Groups

Exponent laws Order of an element $\langle g \rangle$ Definition of cyclic group Additive notation The canonical cyclic groups: \mathbb{Z} and \mathbb{Z}_n Isomorphic groups Classification of cyclic groups Structure of cyclic groups

The subgroup generated by a subset

Direct products of groups

$$h=e^i\in\mathfrak{T}.$$
 We depict g^{-9},\ldots,g^9 :



Jan Snellman

Groups

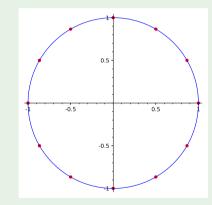
Cyclic Groups

Exponent laws Order of an element $\langle g \rangle$ Definition of cyclic group Additive notation The canonical cyclic groups: \mathbb{Z} and \mathbb{Z}_n Isomorphic groups Classification of cyclic groups Structure of cyclic groups

The subgroup generated by a subset

Direct products of groups

$$w=e^{\pi i/6}\in\mathfrak{T}.$$
 We depict g^{-9},\ldots,g^9 :



Jan Snellman

Groups

Cyclic Groups

Exponent laws Order of an element $\langle g \rangle$

Definition of cyclic group

- Additive notation The canonical cyclic groups: \mathbb{Z} and \mathbb{Z}_n Isomorphic groups Classification of cyclic groups
- Structure of cyclic groups

The subgroup generated by a subset

Direct products of groups

Definition

A group G is cyclic if it has a generator g, i.e., an element such that $G = \langle g \rangle$.

- \mathbb{C}^* is not cyclic
- + ${\mathfrak T}$ is not cyclic
- $\langle e^i
 angle$ is cyclic, and infinite
- $\langle i \rangle$ is cyclic, and finite

Groups

Cyclic Groups

Exponent laws Order of an element $\langle g \rangle$ Definition of cyclic group

Additive notation

- The canonical cyclic groups: \mathbb{Z} and \mathbb{Z}_n lsomorphic groups Classification of cyclic groups
- Structure of cyclic groups
- The subgroup generated by a subset
- Direct products of groups

Definition

If G is abelian, the operation is often denoted +, and the identity element 0. Then for $g \in G$,

- $ng = g + \cdots + g$ if n > 0
- 0g = 0,

•
$$(-n)g = -(ng) = -g - g \cdots - g$$

•
$$\langle g \rangle = \mathbb{Z}g = \{ ng | n \in \mathbb{Z} \}$$

Groups

Cyclic Groups

Exponent laws Order of an element $\langle g \rangle$ Definition of cyclic group Additive notation

The canonical cyclic groups: \mathbb{Z} and \mathbb{Z}_n

- Isomorphic groups Classification of cyclic groups
- Structure of cyclic groups

The subgroup generated by a subset

Direct products of groups

Theorem

- \mathbb{Z} is an infinite cyclic group, generated by 1, or by -1.
- For any $n \ge 2$, \mathbb{Z}_n is finite cyclic group, generated by $[1]_n$, and by any $[a]_n \in U_n$.

Proof.

```
First part: obvious.
Second part: xa = a + \cdots + a, sum of a \times times. We can solve
```

```
xa \equiv b \mod n
```

```
for all RHS b iff gcd(a, n) = 1.
```

Groups

Cyclic Groups

Exponent laws Order of an element $\langle g \rangle$ Definition of cyclic group Additive notation The canonical cyclic groups: \mathbb{Z} and \mathbb{Z}_n

Isomorphic groups

Classification of cyclic groups

Structure of cyclic groups

The subgroup generated by a subset

Direct products of groups

Definition

An *isomorphism* between groups G, H is a bijection $\phi : G \to H$ satisfying, for all $x, y \in G$, $\phi(x *_G y) = \phi(x) *_H \phi(y)$

If an isomorphism exists between G and H, the groups are said to be isomorphic.

Isomorphic groups are, from a group-theoretic point of view, the same. The multiplication is the same, after a relabeling of the elements, provided by ϕ . Isomorphic groups have the same properties (beeing abelian, cyclic, et cetera) and have of course the same size.

Jan Snellman

Groups

Cyclic Groups

Exponent laws Order of an element $\langle g \rangle$ Definition of cyclic group Additive notation The canonical cyclic groups: \mathbb{Z} and \mathbb{Z}_n

Isomorphic groups

Classification of cyclic groups

Structure of cyclic groups

The subgroup generated by a subset

Direct products of groups

Example

Consider the following four matrices, corresponding to reflections in the coordinate axes in the plane:

$$I=egin{pmatrix} 1&0\0&1\end{pmatrix},\quad S=egin{pmatrix} 1&0\0&-1\end{pmatrix},\quad T=egin{pmatrix} -1&0\0&1\end{pmatrix},\quad R=egin{pmatrix} -1&0\0&-1\end{pmatrix}$$

(well, the last one is a rotation by halv a turn). They form a group, with multiplication table

Jan Snellman

Groups

Cyclic Groups

- Exponent laws Order of an element $\langle g \rangle$ Definition of cyclic
- group Additive notation
- The canonical cyclic groups: \mathbb{Z} and \mathbb{Z}_n

Isomorphic groups

- Classification of cyclic groups
- Structure of cyclic groups
- The subgroup generated by a subset
- Direct products of groups

Example (Cont)

Now consider the invertible maps on $\{1,2,3,4\}$ given by

- 1 The identity
- **2** Swapping 2 and 4
- **③** Swapping 1 and 3
- **4** Swapping 1 and 3, and simultaneously 2 and 4

Call the maps i, a, b, c. They form a group unto themselves! The multiplication table is

Jan Snellman

Groups

Cyclic Groups

- Exponent laws Order of an element $\langle g \rangle$ Definition of cyclic group Additive notation
- The canonical cyclic groups: \mathbb{Z} and \mathbb{Z}_n

Isomorphic groups

- Classification of cyclic groups
- Structure of cyclic groups

The subgroup generated by a subset

Direct products of groups

Example (Cont)

Now place the multiplication tables side-by-side:

*	Ι	S	Т	R	
Ι	I	S	Т	R	
S	S	Ι	R	Т	
Т	Т	R	Ι	S	
R	R	Т	S	Ι	

*	i	а	b	с
i	i	а	b	с
а	а	i	с	b
b	b	с	i	а
с	с	b	а	i

We see that the relabeling

1	\rightarrow	i
S	\rightarrow	а
Т	\rightarrow	Ь
R	\rightarrow	с

turns one table into the other, proving that the groups are isomorphic.

Jan Snellman

Groups

Cyclic Groups

- Exponent laws Order of an element $\langle g \rangle$ Definition of cyclic group Additive notation The canonical cyclic
- groups: \mathbb{Z} and \mathbb{Z}_n Isomorphic groups

Classification of cyclic groups

Structure of cyclic groups

The subgroup generated by a subset

Direct products of groups

Theorem

Let $G = \langle g \rangle$ be a cyclic group. If G is infinite, then it is isomorphic to \mathbb{Z} . If it has finite order n, then it is isomorphic to \mathbb{Z}_n .

Proof

- $G = \langle g \rangle = \{ g^n | n \in Z \}$
- Case 1: all gⁿ are different. Exponent laws: gⁿ * g^m = g^{n+m}, bijection to Z which preserves multiplication.
- Case 2: exists some smallest 0 < m < n such that $g^m = g^n$ (i.e. m smallest, then n smallest for that m)
- Multiply by g^{-m} , get $1 = g^0 = g^{n-m}$, put k = n m. Smallest positive k such that $g^k = 1$.
- $(g^k)^s = 1 = g^{ks}$, thus $g^t = 1$ whenever k|t. If divides not, write t = kt + r, then $g^t = g^{kt}g^r = g^r \neq 1$ since 1 < r < k, and k smallest.

Jan Snellman

Groups

Cyclic Groups

- Exponent laws Order of an element $\langle g \rangle$ Definition of cyclic group Additive notation The canonical cyclic
- groups: \mathbb{Z} and \mathbb{Z}_n Isomorphic groups

Classification of cyclic groups

Structure of cyclic groups

The subgroup generated by a subset

Direct products of groups

Proof.

Proof, cont

- Get that $g^a = g^b$ if and only if $a \equiv b \mod n$
- Thus $[a]_n \mapsto g^a$ well-defined bijection, and isomorphism by exponent laws.

Jan Snellman

Groups

Cyclic Groups

Exponent laws Order of an element $\langle g \rangle$ Definition of cyclic group Additive notation The canonical cyclic groups: \mathbb{Z} and \mathbb{Z}_n Isomorphic groups

Classification of cyclic groups

Structure of cyclic groups

The subgroup generated by a subset

Direct products of groups

For convenience (to avoid additive notation, and to avoid tying the abstract notion to the concrete integers) we introduce

Definition

The infinite cyclic (multiplicative) group is denoted C_{∞} , and the cyclic group of order *n* is denoted C_n .

Jan Snellman

Groups

Cyclic Groups

Exponent laws Order of an element $\langle g \rangle$ Definition of cyclic group

Additive notation The canonical cyclic

groups: \mathbb{Z} and \mathbb{Z}_n Isomorphic groups

Classification of cyclic groups

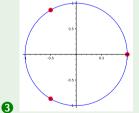
Structure of cyclic groups

The subgroup generated by a subset

Direct products of groups

Example

These cyclic groups are all isomorphic to C_3 : **1** \mathbb{Z}_3 , **2** $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$, and $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$



Jan Snellman

Groups

Cyclic Groups

Exponent laws Order of an element $\langle g \rangle$ Definition of cyclic group Additive notation The canonical cyclic

groups: \mathbb{Z} and \mathbb{Z}_n Isomorphic groups

Classification of cyclic groups

Structure of cyclic groups

The subgroup generated by a subset

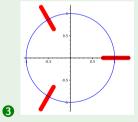
Direct products of groups

Example

These cyclic groups are all isomorphic to C_{∞} :

1 ℤ,

 $\mathbf{O}\left\langle \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \right\rangle$



Jan Snellman

Groups

Cyclic Groups

Exponent laws Order of an element $\langle g \rangle$ Definition of cyclic group Additive notation The canonical cyclic groups: \mathbb{Z} and \mathbb{Z}_n Isomorphic groups

Classification of cyclic groups

Structure of cyclic groups

The subgroup generated by a subset

Direct products of groups

Example

If A is an invertible matrix, then since it is an element of a group, its positive powers A, A^2, A^3, \ldots are either all different, or there is an n such that $A^n = I$ and the higher powers repeat, according to $A^{nk+r} = A^r$. For instance, if n = 6, we can depict the situation as follows:

The sequence of powers of *A* is purely periodic, with period 6:

$$A^0 = I, A^1, A^2, A^3, A^4, A^5, A^6 = I, A^7 = A^1, \dots$$

Jan Snellman

Groups

Cyclic Groups

Exponent laws Order of an element $\langle g \rangle$ Definition of cyclic group Additive notation The canonical cyclic

groups: \mathbb{Z} and \mathbb{Z}_n Isomorphic groups

Classification of cyclic groups

Structure of cyclic groups

The subgroup generated by a subset

Direct products of groups

Example (Cont)

Compare what happens when we are in a semigroup: let

$$A = egin{pmatrix} 0 & 0 & 0 & 0 \ 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \end{pmatrix}$$

This is a non-invertible matrix, hence we are in the semigroup of (not necessarily invertible) 4x4 matrices. Let us compute its first 5 powers:

Γ	$\begin{pmatrix} 0\\ 1 \end{pmatrix}$	0	0	0) (0	0	0 1	0			0 1	0	0) (0	0	0	0 `) (0	0	0 1	$\begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$	1
	0	1	0	0	,	1	0	0	1	,	0	0	1	0	,	0	1	0	0	,	1	0	0	1	
L	(0	0	1	0	/	0	1	0	0	/	(1)	0	0	1	/ /	0	0	1	0	/ /	0	1	0	0 /	

So the sequence repeats after a pre-period:

$$A^1, A^2, A^3, A^4, A^5 = A^2, A^6 = A^3, \dots$$

Jan Snellman

Groups

Cyclic Groups

Exponent laws Order of an element $\langle g \rangle$ Definition of cyclic group Additive notation The canonical cyclic groups: \mathbb{Z} and \mathbb{Z}_n Isomorphic groups

Classification of cyclic groups

Structure of cyclic groups

The subgroup generated by a subset

Direct products of groups

Example (Cont)

A picture of the powers of A is now like this:



Jan Snellman

Groups

Cyclic Groups

Exponent laws Order of an element $\langle g \rangle$ Definition of cyclic group Additive notation The canonical cyclic groups: \mathbb{Z} and \mathbb{Z}_n Isomorphic groups

Classification of cyclic groups

Structure of cyclic groups

The subgroup generated by a subset

Direct products of groups

Example (Cont)

The non-invertible map from $\{1, 2, ..., n + m\}$ which sends *i* to i + 1 for $1 \le i \le n + m - 1$, and n + m to m + 1, has pre-period *m* and period *n*. Here is a picture of m = 3 and n = 4:

Jan Snellman

Groups

Cyclic Groups

Exponent laws Order of an element $\langle g \rangle$ Definition of cyclic group Additive notation

The canonical cyclic groups: \mathbb{Z} and \mathbb{Z}_n

Isomorphic groups

Classification of cyclic groups

Structure of cyclic groups

The subgroup generated by a subset

Direct products of groups

The subgroups of the cyclic group $G = \langle g \rangle$ are all cyclic, given by $H = \langle g^k \rangle$. If G is infinite, all subgroups except $\langle g^0 \rangle = \{1\}$ are infinite (hence isomorphic to G itself.) If |G| = n, then H = G whenever gcd(k, n) = 1; otherwise, $|H| = \frac{n}{gcd(k,n)}$.

Proof.

Theorem

First assertion: obvious. Second assertion: we prove that in any group, if $o(g) = n < \infty$, then $o(g^k) = \frac{n}{\gcd(n,k)}$. Put $d = \gcd(n,k)$. Then $(g^k)^t = g^{kt} = 1$ iff $kt \equiv 0 \mod n$, which happens iff $\frac{k}{d}t \equiv 0 \mod \frac{n}{d}$. But $\gcd(\frac{k}{d}, \frac{n}{d}) = 1$, so this happens iff $t \equiv 0 \mod \frac{n}{d}$.

Jan Snellman

Groups

Cyclic Groups

- Exponent laws Order of an element $\langle g \rangle$ Definition of cyclic group Additive notation The canonical cyclic
- groups: \mathbb{Z} and \mathbb{Z}_n Isomorphic groups
- Classification of cyclic groups

Structure of cyclic groups

The subgroup generated by a subset

Direct products of groups

To describe the inclusions among the subgroups of a cyclic group, we use additive notations:

Theorem

- The subgroup $n\mathbb{Z}$ of \mathbb{Z} is a subgroup of $m\mathbb{Z}$ if and only if m|n
- The subgroups of Z_n are dZ_n for d|n; furthermore d₁Z_n ≤ d₂Z_n if and only if d₂|d₁.

Proof.

Try to prove it yourself!

Jan Snellman

Groups

Cyclic Groups

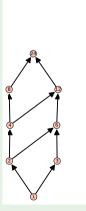
Exponent laws Order of an element $\langle g \rangle$ Definition of cyclic group Additive notation The canonical cyclic groups: \mathbb{Z} and \mathbb{Z}_n Isomorphic groups Classification of cyclic groups Structure of cyclic groups

The subgroup generated by a subset

Direct products of groups

Example

The subgroups of $C_{24} = \langle g \rangle$ are given by $\langle g^1 \rangle$, $\langle g^2 \rangle$, $\langle g^3 \rangle$, $\langle g^4 \rangle$, $\langle g^6 \rangle$, $\langle g^8 \rangle$, $\langle g^{12} \rangle$, $\langle g^{24} \rangle$, where $\langle g^1 \rangle$ is the largest, and $\langle g^{24} \rangle = \langle g^0 \rangle$ the smallest. Compare with the divisor lattice of 24:



Jan Snellman

Groups

Cyclic Groups

The subgroup generated by a subset

Direct products of groups

Definition

G group, $S\subseteq S$ a subset. We define $\langle S\rangle$ as the smallest subgroup of G that contains S, i.e., as

$$\langle S \rangle = \bigcap_{S \subseteq H \le G} H$$

If $S = \{a, b\}$, then

$$\langle S
angle = 1, a, b, a^{-1}, b^{-1}, a^2, ab, ba, b^2, ab^{-1}, \dots, ab^{-1}ab^2a^{-2}, \dots$$

i.e., it consists of all words

$$z_1 * z_2 * \cdots * z_N, \qquad z_i \in \left\{a, b, a^{-1}, b^{-1}
ight\}$$

which are reduced, so a, a^{-1} are not adjacent, neither is b, b^{-1} .

Example

Jan Snellman

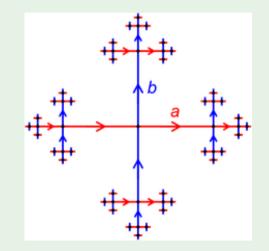
Groups

Cyclic Groups

The subgroup generated by a subset

Direct products of groups

If there are no further relations between a and b, i.e, if the reduced words represent distinct group elements, then we get the *free group* on two generators. It can be depicted graphically as follows:



Jan Snellman

Groups

Cyclic Groups

The subgroup generated by a subset

Direct products of groups

Example

If we instead impose the commutativity relation ab = ba, then the set of elements reduce to

$$a^m b^n, \qquad n,m\in\mathbb{Z}$$

This group, which is generated by a and b together, can be depicted as

:	:	:	:	:	4	:	:	:	:	÷
1	•	:	•	:	2 -	:	:		•	•
•	·	·	·	•		•	·	·	·	•
	-4		-2	•		•	2	•	4	•
:	-4	•	-2	•	-2	•	2	•	4	· ·
• • •			-2						4	•

Jan Snellman

Example

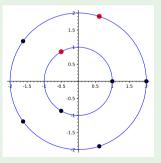
Groups

Cyclic Groups

The subgroup generated by a subset

Direct products of groups

If we impose ab = ba, $a^3 = 1$, $b^5 = 1$, the resulting group is the set of all $a^n b^m$, where *n* is to be taken modulo 3, and *m* is to be taken modulo 5. The elements can be thought of as a pair of points on two concentric circles:



Jan Snellman

Groups

Cyclic Groups

The subgroup generated by a subset

Direct products of groups

Definition

Let G, H be groups. Their direct product $G \times H$ has the cartesian products of their underlying sets as its underlying set, and operation derived from those on G and on H.

$$(g_1, h_1) * (g_2, h_2) = (g_1 *_G g_2, h_1 *_H h_2)$$

The identity element is

 $(1_G, 1_H)$

and the inverse is given by

 $(g,h)^{-1} = (g^{-1},h^{-1})$

Jan Snellman

Groups

Cyclic Groups

The subgroup generated by a subset

Direct products of groups

Definition

For three groups G, H, K, we have natural isomorphism

$$(G \times H) \times K \simeq G \times (H \times K)$$

so we can denote this product simply by $G \times H \times K$. The direct product $G \times G$ is denoted G^2 , $G \times G \times G = G^3$, and so on.

Note: it is also true that $G \times H \simeq H \times G$.

Jan Snellman

Groups

Cyclic Groups

The subgroup generated by a subset

Direct products of groups

Theorem

If $g \in G$, $o(g) = m < \infty$, $h \in H$, $o(h) = n < \infty$, then the order of $(g, h) \in G \times H$ is lcm(m, n)

Proof.

We have that $(g,h)^s = (1,1)$ if and only iff $g^s = !_G$ and $h^s = 1_H$, which happens if and only if

```
s \equiv 0 \mod m
s \equiv 0 \mod n
```

which in turns happens if and only if lcm(m, n)|s.

Jan Snellman

Example

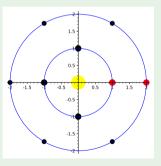
Groups

Cyclic Groups

The subgroup generated by a subset

Direct products of groups

If the planet Mars takes 4 (Terran) years to make a revolution around the Sun, and the tiny asteroid "Pluttinutt" takes 6 years, then the constellations of the Sol-Mars-Pluttinutt system repeat with a period of lcm(4,6) = 12 years.



Jan Snellman

Groups

Cyclic Groups

The subgroup generated by a subset

Direct products of groups

Theorem

Let m, n be positive integers. Then $C_m \times C_n$ is cyclic if and only if gcd(m, n) = 1.

Proof

Let g and h be generators of C_m and C_n , respectively. Put $\tilde{g} = (g, 1)$, and $\tilde{h} = (1, h)$. Then

$$o((g,h) = o(\tilde{g}\tilde{h}) = \operatorname{lcm}(m,n) = \frac{mn}{\operatorname{gcd}(m,n)}$$

so if gcd(m, n) = 1, then

 $\tilde{g}\tilde{h} = mn = |C_m||C_n| = |C_m \times C_n|$

so $C_m \times C_n$ is cyclic.

Jan Snellman

Groups

Cyclic Groups

The subgroup generated by a subset

Direct products of groups

Proof, contd.

On the other hand, suppose that $C_m \times C_n$ is cyclic, with generator (x, y). Then o((x, y)) = mn = lcm(o(x), o(y)). Since the maximal order of an element in C_m is m, and the maximal order of an element in C_n is n, it follows that o(x) = m and o(y) = n and lcm(m, n) = mn.

Jan Snellman

Groups

Cyclic Groups

The subgroup generated by a subset

Direct products of groups

Example

 $C_3 \times C_5 \simeq C_{15}$. On the other hand, $C_2 \times C_2$ is not cyclic, since all non-indentity elements have order 2. We re-use one of the groups we studied before, with multiplication table

*		S	Т	R
Ι	Ι	S	Т	R
S	S	Ι	R	Т
Т	Т	R	Ι	S
R	R	Т	S	Ι

This group is isomorphic to the direct product

 $\{I,S\}\times\{I,T\}$

where each factor is isomorphic to C_2 . Note that the square of each element is the identity, so elements have order one or two.