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Group

Recall:

Definition

(G , ∗, 1) is a group if for all a, b, c ∈ G ,

1 a ∗ (b ∗ c) = (a ∗ b) ∗ c ,

2 a ∗ 1 = e ∗ 1 = a,

3 exists unique a−1 ∈ G such that a ∗ a−1 = a−1 ∗ a = 1.

If a ∗ b = b ∗ a always, then abelian group.



Abstract Algebra, Lecture 4

Jan Snellman

Groups
Definition

Un

C∗ and T

Cyclic Groups

The subgroup
generated by a
subset

Direct products of
groups

Remember: in Zn, g = [a]n has multiplicative inverse iff gcd(a, n) = 1.

Definition

Z 3 n > 1.

• Un = { [a]n gcd(a, n) = 1 } .

• φ(n) = |{ 1 ≤ a < n gcd(a, n) = 1 }| = |Un|.

Example

U5 = {[1]5, [2]5, [3]5, [4]5}, U6 = {[1]6, [5]6}.
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Multiplication in U5 and U8

* 1 2 3 4

1 1 2 3 4

2 2 4 1 3

3 3 1 4 2

4 4 3 2 1

* 1 3 5 7

1 1 3 5 7

3 3 1 7 5

5 5 7 1 3

7 7 5 3 1
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Definition

The punktured complex plane C∗ = C \ {0} is an abelian group under

complex multiplication. The circle group

T = { z ∈ C∗ |z | = 1 }

forms a subgroup.
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Definition

• G group, g ∈ G .

• g0 = 1.

• g2 = g ∗ g , g3 = g ∗ g ∗ g , et cetera; for n positive integer gn is g

times itself n times (associativity makes this unambiguous)

• g−2 = g−1 ∗ g−1 = (g ∗ g)−1; g−n = (gn)−1 = (g−1)
n
.

Lemma

For all g ∈ G, i , j ∈ Z, it holds that

g i ∗ g j = g i+j .
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Definition

The element g ∈ G has order n, written o(g) = n, if

gn = 1

but

gm 6= 1 for 1 ≤ m < n.

If gn 6= 1 for all n > 0 then the order of g is infinite. It is understood that

the unit element has order one.
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Example

• 32 = 9 ≡ 1 mod 8, so [3]8 has order 2 as an element in U8.

• 32 = 9 ≡ 4 mod 5, 33 = 27 ≡ 2 mod 5, 834 = 81 ≡ 1 mod 5, so

[3]5 has order 4 as an element of U5.

• 5 ∈ Z has infinite order
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Definition

g ∈ G , G group. We define the cyclic subgroup generated by g as

〈g〉 = { gn n ∈ Z }

Lemma

This is the smallest subgroup of G that contain g; it can be written

〈g〉 =
⋂

g∈H≤G
H

Lemma

o(g) = |〈g〉|
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Example

G = C∗, g = 1 + i . We depict g0, g , g2, g3, . . . , g9:
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Example

G = C∗, g = 1 + i . We depict g0, g−1, g−2, g−3, . . . , g−9:
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h = e i ∈ T. We depict g−9, . . . , g9:
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w = eπi/6 ∈ T. We depict g−9, . . . , g9:
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Definition

A group G is cyclic if it has a generator g , i.e., an element such that

G = 〈g〉.

Example

• C∗ is not cyclic

• T is not cyclic

• 〈e i 〉 is cyclic, and infinite

• 〈i〉 is cyclic, and finite
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Definition

If G is abelian, the operation is often denoted +, and the identity element

0. Then for g ∈ G ,

• ng = g + · · ·+ g if n > 0

• 0g = 0,

• (−n)g = −(ng) = −g − g · · ·− g

• 〈g〉 = Zg = { ng n ∈ Z }
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Theorem

• Z is an infinite cyclic group, generated by 1, or by −1.

• For any n ≥ 2, Zn is finite cyclic group, generated by [1]n, and by any

[a]n ∈ Un.

Proof.

First part: obvious.

Second part: xa = a + · · ·+ a, sum of a x times. We can solve

xa ≡ b mod n

for all RHS b iff gcd(a, n) = 1.
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Definition

An isomorphism between groups G ,H is a bijection φ : G → H satisfying,

for all x , y ∈ G ,

φ(x ∗G y) = φ(x) ∗H φ(y)

If an isomorphism exists between G and H, the groups are said to be

isomorphic.

Isomorphic groups are, from a group-theoretic point of view, the same.

The multiplication is the same, after a relabeling of the elements, provided

by φ. Isomorphic groups have the same properties (beeing abelian, cyclic,

et cetera) and have of course the same size.
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Example

Consider the following four matrices, corresponding to reflections in the

coordinate axes in the plane:

I =

(
1 0

0 1

)
, S =

(
1 0

0 −1

)
, T =

(
−1 0

0 1

)
, R =

(
−1 0

0 −1

)
(well, the last one is a rotation by halv a turn). They form a group, with

multiplication table

* I S T R

I I S T R

S S I R T

T T R I S

R R T S I
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Example (Cont)

Now consider the invertible maps on {1, 2, 3, 4} given by

1 The identity

2 Swapping 2 and 4

3 Swapping 1 and 3

4 Swapping 1 and 3, and simultaneously 2 and 4

Call the maps i , a, b, c . They form a group unto themselves! The

multiplication table is

* i a b c

i i a b c

a a i c b

b b c i a

c c b a i
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Now place the multiplication tables side-by-side:

* I S T R

I I S T R

S S I R T

T T R I S

R R T S I

* i a b c

i i a b c

a a i c b

b b c i a

c c b a i

We see that the relabeling

I → i

S → a

T → b

R → c

turns one table into the other, proving that the groups are isomorphic.
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Theorem

Let G = 〈g〉 be a cyclic group. If G is infinite, then it is isomorphic to Z.

If it has finite order n, then it is isomorphic to Zn.

Proof

• G = 〈g〉 = { gn n ∈ Z }

• Case 1: all gn are different. Exponent laws: gn ∗ gm = gn+m,

bijection to Z which preserves multiplication.

• Case 2: exists some smallest 0 < m < n such that gm = gn (i.e. m

smallest, then n smallest for that m)

• Multiply by g−m, get 1 = g0 = gn−m, put k = n −m. Smallest

positive k such that gk = 1.

• (gk)s = 1 = gks , thus g t = 1 whenever k |t. If divides not, write

t = kt + r , then g t = gktg r = g r 6= 1 since 1 < r < k , and k

smallest.
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Proof.

Proof, cont

• Get that ga = gb if and only if a ≡ b mod n

• Thus [a]n 7→ ga well-defined bijection, and isomorphism by exponent

laws.
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For convenience (to avoid additive notation, and to avoid tying the

abstract notion to the concrete integers) we introduce

Definition

The infinite cyclic (multiplicative) group is denoted C∞, and the cyclic

group of order n is denoted Cn.
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Example

These cyclic groups are all isomorphic to C3:

1 Z3,

2

1 0 0

0 1 0

0 0 1

 ,
0 0 1

1 0 0

0 1 0

 , and

0 1 0

0 0 1

1 0 0



3
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Example

These cyclic groups are all isomorphic to C∞:

1 Z,

2

〈1 0 0

0 1 0

0 0 2

〉

3
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If A is an invertible matrix, then since it is an element of a group, its

positive powers A,A2,A3, . . . are either all different, or there is an n such

that An = I and the higher powers repeat, according to Ank+r = Ar . For

instance, if n = 6, we can depict the situation as follows:

0

1

2

3

4

5

The sequence of powers of A is purely periodic, with period 6:

A0 = I ,A1,A2,A3,A4,A5,A6 = I ,A7 = A1, . . .
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Compare what happens when we are in a semigroup: let

A =


0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0


This is a non-invertible matrix, hence we are in the semigroup of (not
necessarily invertible) 4x4 matrices. Let us compute its first 5 powers:




0 0 0 0
1 0 0 1
0 1 0 0
0 0 1 0

 ,


0 0 0 0
0 0 1 0
1 0 0 1
0 1 0 0

 ,


0 0 0 0
0 1 0 0
0 0 1 0
1 0 0 1

 ,


0 0 0 0
1 0 0 1
0 1 0 0
0 0 1 0

 ,


0 0 0 0
0 0 1 0
1 0 0 1
0 1 0 0




So the sequence repeats after a pre-period:

A1, A2, A3, A4, A5 = A2, A6 = A3, . . .
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A picture of the powers of A is now like this:

1

2

3

4
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Example (Cont)

The non-invertible map from {1, 2, . . . , n +m} which sends i to i + 1 for

1 ≤ i ≤ n +m − 1, and n +m to m + 1, has pre-period m and period n.

Here is a picture of m = 3 and n = 4:

1

2

3

4

5

6

7
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Theorem

The subgroups of the cyclic group G = 〈g〉 are all cyclic, given by

H = 〈gk〉. If G is infinite, all subgroups except 〈g0〉 = {1} are infinite

(hence isomorphic to G itself.)

If |G | = n, then H = G whenever gcd(k , n) = 1; otherwise, |H| = n
gcd(k,n) .

Proof.

First assertion: obvious. Second assertion: we prove that in any group, if

o(g) = n <∞, then o(gk) = n
gcd(n,k) . Put d = gcd(n, k). Then

(gk)t = gkt = 1 iff kt ≡ 0 mod n, which happens iff k
d t ≡ 0 mod n

d .

But gcd( kd ,
n
d ) = 1, so this happens iff t ≡ 0 mod n

d .
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To describe the inclusions among the subgroups of a cyclic group, we use

additive notations:

Theorem

• The subgroup nZ of Z is a subgroup of mZ if and only if m|n
• The subgroups of Zn are dZn for d |n; furthermore d1Zn ≤ d2Zn if

and only if d2|d1.

Proof.

Try to prove it yourself!
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Example

The subgroups of C24 = 〈g〉 are given by 〈g1〉, 〈g2〉, 〈g3〉, 〈g4〉, 〈g6〉,
〈g8〉, 〈g12〉, 〈g24〉, where 〈g1〉 is the largest, and 〈g24〉 = 〈g0〉 the

smallest. Compare with the divisor lattice of 24:

1

2 3

4 6

8 12

24
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Definition

G group, S ⊆ S a subset. We define 〈S〉 as the smallest subgroup of G

that contains S , i.e., as

〈S〉 =
⋂

S⊆H≤G
H

If S = {a, b}, then

〈S〉 = 1, a, b, a−1, b−1, a2, ab, ba, b2, ab−1, . . . , ab−1ab2a−2, . . .

i.e., it consists of all words

z1 ∗ z2 ∗ · · · ∗ zN , zi ∈
{
a, b, a−1, b−1

}
which are reduced, so a, a−1 are not adjacent, neither is b, b−1.
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Example

If there are no further relations between a and b, i.e, if the reduced words

represent distinct group elements, then we get the free group on two

generators. It can be depicted graphically as follows:
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Example

If we instead impose the commutativity relation ab = ba, then the set of

elements reduce to

ambn, n,m ∈ Z

This group, which is generated by a and b together, can be depicted as

-4 -2 2 4

-4

-2

2

4
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Example

If we impose ab = ba, a3 = 1, b5 = 1, the resulting group is the set of all

anbm, where n is to be taken modulo 3, and m is to be taken modulo 5.

The elements can be thought of as a pair of points on two concentric

circles:

-2 -1.5 -1 -0.5 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0.5

1

1.5

2
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Definition

Let G ,H be groups. Their direct product G × H has the cartesian

products of their underlying sets as its underlying set, and operation

derived from those on G and on H.

(g1, h1) ∗ (g2, h2) = (g1 ∗G g2, h1 ∗H h2)

The identity element is

(1G , 1H)

and the inverse is given by

(g , h)−1 = (g−1, h−1)
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Definition

For three groups G ,H,K , we have natural isomorphism

(G × H)× K ' G × (H × K )

so we can denote this product simply by G × H × K . The direct product

G × G is denoted G 2, G × G × G = G 3, and so on.

Note: it is also true that G × H ' H × G .
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Theorem

If g ∈ G, o(g) = m <∞, h ∈ H, o(h) = n <∞, then the order of

(g , h) ∈ G × H is lcm(m, n)

Proof.

We have that (g , h)s = (1, 1) if and only iff g s = !G and hs = 1H , which

happens if and only if

s ≡ 0 mod m

s ≡ 0 mod n

which in turns happens if and only if lcm(m, n)|s.
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Example

If the planet Mars takes 4 (Terran) years to make a revolution around the

Sun, and the tiny asteroid “Pluttinutt” takes 6 years, then the

constellations of the Sol-Mars-Pluttinutt system repeat with a period of

lcm(4, 6) = 12 years.
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Theorem

Let m, n be positive integers. Then Cm × Cn is cyclic if and only if

gcd(m, n) = 1.

Proof

Let g and h be generators of Cm and Cn, respectively. Put ~g = (g , 1), and
~h = (1, h). Then

o((g , h) = o(~g~h) = lcm(m, n) =
mn

gcd(m, n)
,

so if gcd(m, n) = 1, then

~g~h = mn = |Cm||Cn| = |Cm × Cn|

so Cm × Cn is cyclic.
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Proof, contd.

On the other hand, suppose that Cm × Cn is cyclic, with generator (x , y).

Then o((x , y)) = mn = lcm(o(x), o(y)). Since the maximal order of an

element in Cm is m, and the maximal order of an element in Cn is n, it

follows that o(x) = m and o(y) = n and lcm(m, n) = mn.
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Example

C3 × C5 ' C15. On the other hand, C2 × C2 is not cyclic, since all

non-indentity elements have order 2. We re-use one of the groups we

studied before, with multiplication table

* I S T R

I I S T R

S S I R T

T T R I S

R R T S I

This group is isomorphic to the direct product

{I , S}× {I ,T }

where each factor is isomorphic to C2. Note that the square of each

element is the identity, so elements have order one or two.
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