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Definition

Let X be a set. Then the symmetric group on X is the group of all

bijections

f : X → X

with functional composition as operation. It is denoted by SX .
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Theorem

If X ,Y are sets, and φ : X → Y is a bijection, then the maps

SX 3 f 7→ φ ◦ f ◦ φ−1 ∈ SY

Sy 3 g 7→ φ−1 ◦ g ◦ φ ∈ SX

are each other’s inverses; thus, they are bijections. Furthermore, these

assignments respect the group operations of Sx and Sy , showing these two

groups to be isomorphic. We say that f and ~f = φ ◦ f ◦φ−1 are conjugate.

The following commutative diagram illustrates conjugation:

X X

Y Y

f

φ φ

~f
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Definition

For any positive integer n, we let [n] = {1, 2, . . . , n}. We define the

symmetric group on n letters as Sn = S[n].

Lemma

If X is a set with n elements, then SX ' Sn.

Proof.

Number the elements in X to get a bijection φ : [n] → X . Then the

desired isomorphism is the conjugation

SX 3 f 7→ φ−1 ◦ f ◦ φ ∈ Sn
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Representations of permutations

• Let σ ∈ Sn

• Since σ : [n] → [n], we can consider its graph, a subset of [n]2

• Can represent σ in two-row notation as
1 2 · · · n

σ(1) σ(2) · · · σ(n)

• One-row notation is [σ(1), σ(2), · · · , σ(n)]
• The associated bipartite graph has vertex set two copies of [n], a left

and a right set, and an edge from i on the left to σ(i) on the right

• The associated directed graph has vertex set [i ] and a directed edge

from i to σ(i)
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Example

• σ = [2, 9, 5, 6, 3, 4, 7, 1, 8]

• 1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9
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• σ = [2, 9, 5, 6, 3, 4, 7, 1, 8]

•

1
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5
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12

13

14
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• To understand the multiplication, the following representation is

useful

• The associated linear map is the map Fσ : V → V , where V is the

free vector space (over Q or whatever) with basis e1, . . . , en, and

with Fσ(ei ) = eσ(i)

• The associated permutation matrix Mσ is the matrix of the

aforementioned map w.r.t. the natural ordered basis (the matrix acts

on column vectors from the left)

• If τ is another permutation in Sn then

Fστ = Fσ ◦ Fτ
Mστ = MσMτ
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Example

• σ = [2, 9, 5, 6, 3, 4, 7, 1, 8]

• Mσ =



0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 1
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• In the directed graph each vertex has in-degree one and out-degree

one

• Hence the digraph decomposes into directed cycles

• The cycle notation of σ is obtained by listing the elements of each

cycles, as

(a1, . . . , a`1)(a`1+1, . . . , a`2) · · · ()

where, in each cycle, σ(av ) = av+1

• The cycle type of σ is the numerical partition of n given by the cycle

lengths. It can be encoded in various ways; we’ll usually write it as a

(non-strictly) decreasing sequence (c1, c2, . . . , ck) of cycle lengths.
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• σ = [2, 9, 5, 6, 3, 4, 7, 1, 8]

•

1

2

3

4
5

6

7
8

9

• σ = (1, 2, 9, 8)(3, 5)(4, 6)(7)

• Cycle type is 9 = 4 + 2 + 2 + 1, written as (4, 2, 2, 1).
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Theorem

σ, τ ∈ Sn are conjugate if and only if they have the same cycle type.

Proof.

Order the cycles in order of decreasing length, breaking ties arbitrarily. Let

φ be the bijection that associates the elements in correspoding cycles (in

cyclic order, picking a starting element in each cycle howsoever).

Conjugate using φ.

Note that in this case we have that X = Y = [n], and that φ ∈ Sn, as well.
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Example

σ = (1, 2, 9, 8)(3, 5)(4, 6)(7)

τ = (2, 3, 4, 5)(6, 7)(8, 9)(1)

are conjugate, for instance using φ =

1 2 3 4 5 6 7 8 9

2 3 6 8 7 9 1 5 4

Check that

τ = φσφ−1,

or is it

τ = φ−1σφ?
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Definition

Let Sn 3 σ = [σ(1), . . . , σ(n)].

• A descent is an index 1 ≤ i < n such that σ(i) > σ(i + 1). We use

Des(σ) ⊆ [n − 1] for the set of descents, and des(σ) for the number

of descents. The major index maj(σ) is the sum of the elements in

the descent set.

• An inversion is a pair of indices 1 ≤ i < j ≤ n such that σ(i) > σ(j).

We use Inv(σ) ⊆ [n]2 for the set of inversions, and inv(σ) for the

number of inversions.

• There are many, many more permutation statistics. Their

enumeration is a huge topic in algebra and combinatorics!
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Example

• σ = [2, 9, 5, 6, 3, 4, 7, 1, 8]

• 1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

• Descent set is 2, 4, 7

• Inversion set is

(2, 3), (2, 4), (2, 5), (2, 6),

(2, 7), (2, 8), (2, 9), (4, 5),

(4, 6), (4, 8), (6, 8), (7, 8).

There are thus 12 inversions.



Abstract Algebra, Lecture 5

Jan Snellman

The Symmetric
group

Permutations
Sn

Representations and
notations

Permutation Statistics

A note on left vs right

Transpositions,
k-cycles, generating
sets

S2, S3, S4

Even and Odd
Permutations

Groups of
Symmetries

Cayley’s theorem
— every group is a
permutation group

Left versus right

• We (I, Judson, Svensson) write f (x) for a function

• Furthermore, (g ◦ f )(x) = g(f (x))

• Arguments enter from the right, and gets transported leftwards

• In particular, if f , g ∈ Sn, then fg ∈ Sn is the bijection “first apply g,

then apply f to the result”

• Other authors prefer to write (x)f or just xf .

• Then fg means “first apply f, then apply g to the result”

• In particular, SAGE (and GAP) uses this convention

• Do not become confused!
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Definition

• A k-cycle is a permutation whose cycle type has a single cycle of

length k , and possibly a bunch of cycles of length one.

• For instance, (1, 2, 3)(4)(5) ∈ S5 is a 3-cycle.

• A transposition is another name for a 2-cycle.

• An involution is a permutation whose square is the identity

• The disjoint cycle factorization is the factorization of the permutation

into cycles as given by the cycle notation

• For instance, if f = (1, 2, 3)(4, 5, 6) ∈ S6 then we can write f = gh

with g = (1, 2, 3)(4)(5)(6) and h = (4, 5, 6)(1)(2)(3)

• It is common and convenient to omit the cycles of length one.
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Lemma

• Disjoint cycles commute

• Transpositions are involutions

• Involutions are products of disjoint transpositions, hence have cycle

type (2, 2, 2, . . . , 2, 1, . . . , 1).

• A k-cycle has order k.

• The order of a permutation is the l.c.m. of the sizes of its cycles
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Example

If σ = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12) then its powers have cycle structure

as follows:

0 ()

1 (1,2,3,4,5,6,7,8,9,10,11,12)

2 (1,3,5,7,9,11)(2,4,6,8,10,12)

3 (1,4,7,10)(2,5,8,11)(3,6,9,12)

4 (1,5,9)(2,6,10)(3,7,11)(4,8,12)

5 (1,6,11,4,9,2,7,12,5,10,3,8)

6 (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)

7 (1,8,3,10,5,12,7,2,9,4,11,6)

8 (1,9,5)(2,10,6)(3,11,7)(4,12,8)

9 (1,10,7,4)(2,11,8,5)(3,12,9,6)

10 (1,11,9,7,5,3)(2,12,10,8,6,4)

11 (1,12,11,10,9,8,7,6,5,4,3,2)

12 ()

In general, the k-th power of an m-cycle consists of (m/ gcd(k ,m))-cycles,

and gcd(k ,m) such cycles.
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Example

Non-disjoint cycles need not commute:

(1, 2)(1, 3) = (1, 3, 2)

(1, 3)(1, 2) = (1, 2, 3)
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Example

Let σ = (1, 2, 3, 4)(5, 6, 7)(8, 9, 10). Then o(σ) = lcm(4, 3, 3) = 12, and

its powers are

0 ()

1 (1,2,3,4)(5,6,7)(8,9,10)

2 (1,3)(2,4)(5,7,6)(8,10,9)

3 (1,4,3,2)

4 (5,6,7)(8,9,10)

5 (1,2,3,4)(5,7,6)(8,10,9)

6 (1,3)(2,4)

7 (1,4,3,2)(5,6,7)(8,9,10)

8 (5,7,6)(8,10,9)

9 (1,2,3,4)

10 (1,3)(2,4)(5,6,7)(8,9,10)

11 (1,4,3,2)(5,7,6)(8,10,9)

12 ()
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Lemma

Any k-cycle can be written as a product of transpositions.

Thus, since every permutation is the product of disjoint cycles, the

transpositions generate Sn.

Proof.

It is enough to note that

(1, 2, 3, . . . , k) = (1, 2) · · · (k − 2, k − 1)(k − 1, k)

Example

(1,2)(2,3)(3,4) = (1,2,3,4)
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Lemma

Every transposition is the product of an odd number of adjacent

transpositions, i.e. transpositions of the form (j , j + 1)

So Sn is generated by adjacent transpositions.

Proof.

Enough to note that

(1, k − 1)(k − 1, k)(1, k − 1) = (1, k)

Example

(1,4) = (1,3)(3,4)(1,3) = (1,2)(2,3)(1,2)(3,4)(1,2)(2,3)(1,2)
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Lemma

Sn is generated by {(1, 2), (1, 2, 3, . . . , n)}

So, while not cyclic, Sn has a generating set with just two elements.

Proof.

Enough to note that

(j + 1, j + 2) = (1, 2, 3, . . . , n)j(1, 2)(1, 2, 3, . . . , n)−j

Example

(1, 2, 3, 4)2(1, 2)(1, 2, 3, 4)−2 = (1)(2)(3, 4)
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S2

Example

S2 is cyclic:
∗ () (1, 2)

() () (1, 2)

(1, 2) (1, 2) ()
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S3

Example

S3 is the smallest non-abelian group:

∗ () (1, 3, 2) (1, 2, 3) (2, 3) (1, 3) (1, 2)

() () (1, 3, 2) (1, 2, 3) (2, 3) (1, 3) (1, 2)

(1, 3, 2) (1, 3, 2) (1, 2, 3) () (1, 2) (2, 3) (1, 3)

(1, 2, 3) (1, 2, 3) () (1, 3, 2) (1, 3) (1, 2) (2, 3)

(2, 3) (2, 3) (1, 3) (1, 2) () (1, 3, 2) (1, 2, 3)

(1, 3) (1, 3) (1, 2) (2, 3) (1, 2, 3) () (1, 3, 2)

(1, 2) (1, 2) (2, 3) (1, 3) (1, 3, 2) (1, 2, 3) ()
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S4

Example

S4 has 4! = 24 elements, with the following orders:

() 1 (3,4) 2

(1,3)(2,4) 2 (1,3,2,4) 4

(1,4)(2,3) 2 (1,4,2,3) 4

(1,2)(3,4) 2 (1,2) 2

(2,3,4) 3 (2,3) 2

(1,3,2) 3 (1,3,4,2) 4

(1,4,3) 3 (1,4) 2

(1,2,4) 3 (1,2,4,3) 4

(2,4,3) 3 (2,4) 2

(1,3,4) 3 (1,3) 2

(1,4,2) 3 (1,4,3,2) 4

(1,2,3) 3 (1,2,3,4) 4
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Definition

The sign of a permutation σ ∈ Sn is

sgn(σ) = (−1)inv(σ).

Permutations with sign +1 are even, the rest are odd.
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Lemma

sgn((i , i + 1)) = −1.

Proof.

We have that Inv((i , i + 1)) = {(i , i + 1)}.

Lemma

Any transposition is odd.

Proof.

If τ = (a, b) with a < b then Inv(τ) contains

• (a, c) for a < c < b,

• (c , b) for a < c < b, and

• (a, b).

This is an odd number.
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The only hard proof today — proof skipped

Theorem

If σ, τ ∈ Sn, and τ is a transposition, then |inv(σ) − inv(τσ)| is odd.

Proof.

You absolutely, unequivocally, positively, have to read this proof in your

textbook! (It is a case-by-case study, similar to the previous lemma)



Abstract Algebra, Lecture 5

Jan Snellman

The Symmetric
group

Permutations
Sn

Representations and
notations

Permutation Statistics

A note on left vs right

Transpositions,
k-cycles, generating
sets

S2, S3, S4

Even and Odd
Permutations

Groups of
Symmetries

Cayley’s theorem
— every group is a
permutation group

Example

1 σ = [2, 9, 5, 6, 3, 4, 7, 1, 8]

2 1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

3 (3, 7)σ = [2, 9, 5, 6, 7, 4, 3, 1, 8]

4 1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

New inversions: (5, 6), (5, 7), (5, 8)

Disappearing inversions: (3, 5), (4, 5)

Net gain: +1 inversions
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Corollary

Let σ ∈ Sn. Then, if

σ =

m∏
j=1

τj

is a factorization of σ as a product of transpositions, then

(−1)m = sgn(σ),

that is, m is odd if σ is an odd permutation, and even if σ is even.
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Corollary

If σ, γ ∈ Sn, then

sgn(σγ) = sgn(σ)sgn(γ).

Proof.

Write σ and γ as a product of transpositions.

Corollary

The determinant of Mσ is the sign of σ.

Proof.

It is true for transpositions.
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Definition

Let En be the n-dimensional Euclidean space, with the standard inner

product. A linear isometry is a linear map F : En → En preserving the

inner product, i.e,

〈F (u),F (v)〉 = 〈u,v〉

for all vectors u,v ∈ En.

Clearly, F also preserves norms, and distances.

Definition

We denote the group of linear isometries of En by LI(En).

This is a subgroup of SEn , the group of all bijections on En.
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Lemma

• The matrix M of the linear isometry F satisfies M ∗Mt = I . It has

either determinant +1, if F is orientation-preserving, or −1, if F is

orientation-reversing.

• In the plane, the isometries are either the orientation-preserving

rotations, with matrix (
cos(φ) − sin(φ)

sin(φ) cos(φ)

)
or reflections in a line through the origin with (unit) normal vector w,

given by

u 7→ u− 2〈u,w〉w

• In E 3, there are orientation-preserving rotations, and

orientation-reversing rotation-reflections
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Definition

Let, for n ≥ 3, Kn be the regular n-gon in E 2, realized as the convex hull

of its set of vertices

Vn = { (cos(2kπ/n), sin(2kπ/n)) 0 ≤ k < n }

Example

-0.4 -0.2 0.2 0.4 0.6 0.8 1

-0.5

0.5
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-1
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Definition

The Dihedral group Dn is the group of symmetries of Kn, i.e.

Dn = {F ∈ LI(En) F (Kn) = Kn }

Theorem

An element of Dn must restrict to a bijection on Vn. Two different

elements of Dn induce different permutations of Vn. Thus

Dn = {F ∈ LI(En) F (Vn) = Vn } ' G ≤ SVn ' Sn

In general, not every permutation of the vertices can be extended to a

linear isometry preserving Kn.
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Theorem

Dn has 2n elements; n rotations and n reflections.

Proof.

Imagine cutting out Kn from the plane and then putting it back, filling the

hole. You either flip the cut-out, or you don’t.

We will label the vertices counter-clockwise, starting with (1, 0) as vertex

number 1.
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Example

Any permutation of the vertices of the triangle K3 can be obtained by a

rotation or a reflection. Thus D3 ' S3.
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Example

Since adjacent vertices of K4 must remain adjacent after a symmetry, the

permutation (2, 3) is impossible.



In fact, D4 has multiplication table
∗ () (1, 3)(2, 4) (1, 4, 3, 2) (1, 2, 3, 4) (2, 4) (1, 3) (1, 4)(2, 3) (1, 2)(3, 4)

() () (1, 3)(2, 4) (1, 4, 3, 2) (1, 2, 3, 4) (2, 4) (1, 3) (1, 4)(2, 3) (1, 2)(3, 4)
(1, 3)(2, 4) (1, 3)(2, 4) () (1, 2, 3, 4) (1, 4, 3, 2) (1, 3) (2, 4) (1, 2)(3, 4) (1, 4)(2, 3)
(1, 4, 3, 2) (1, 4, 3, 2) (1, 2, 3, 4) (1, 3)(2, 4) () (1, 2)(3, 4) (1, 4)(2, 3) (2, 4) (1, 3)
(1, 2, 3, 4) (1, 2, 3, 4) (1, 4, 3, 2) () (1, 3)(2, 4) (1, 4)(2, 3) (1, 2)(3, 4) (1, 3) (2, 4)

(2, 4) (2, 4) (1, 3) (1, 4)(2, 3) (1, 2)(3, 4) () (1, 3)(2, 4) (1, 4, 3, 2) (1, 2, 3, 4)
(1, 3) (1, 3) (2, 4) (1, 2)(3, 4) (1, 4)(2, 3) (1, 3)(2, 4) () (1, 2, 3, 4) (1, 4, 3, 2)

(1, 4)(2, 3) (1, 4)(2, 3) (1, 2)(3, 4) (1, 3) (2, 4) (1, 2, 3, 4) (1, 4, 3, 2) () (1, 3)(2, 4)
(1, 2)(3, 4) (1, 2)(3, 4) (1, 4)(2, 3) (2, 4) (1, 3) (1, 4, 3, 2) (1, 2, 3, 4) (1, 3)(2, 4) ()
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Theorem

Let r ∈ Dn denote rotation by 2π/n radians counter-clockwise, and let s

denote reflection in the x-axis.

1 r induces the permutation (1, 2, . . . , n). It has order n.

2 s induces (1)(2, n − 1) · · · ((n + 1)/2c, (n + 3)/2) if n is odd, and

(1)(2, n − 1) · · · (n/2, n/2 + 2)((n + 1)/2) if n is even. It has order

two.
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Theorem (Contd)

3 If n is odd, then the reflection in the line through the vertex k can be

given as

rk−1sr1−k

If n is even, then the reflection in the line through the opposite vertices k

and (n + 1)/2 + (k − 1) is given by

rk−1sr1−k ,

whereas the reflection in the line through the midpoint between k and

k + 1 is given by

(k , k + 1)(k − 1, k + 2) · · ·
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Theorem (Contd)

4 All rotations commute

4 The product of two reflections is a rotation (which?)

4 Regardless of the parity of n, the following relation hold:

srs = r−1

4 Dn = 〈r , s〉, and all relations can be derived from

rn = s2 = srsr = 1

4 Thus, the elements of Dn can be listed as sarb with 0 ≤ a ≤ 1,

0 ≤ b < n
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Theorem

Let G be the group of symmetries of the regular tetrahedron. Then G has

4 ∗ 3 = 12 rotations, and equally many rotation-reflections. Thus G has 24

elements in total; since G permutes the four vertices of the tetrahedron,

and 4! = 24, we must have that G ' S4. The subgroup of rotations

correspond to even permutations.

From Wikipedia:
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Theorem

The symmetry group of the cube has 48 elements, of which half are

rotations. The subgroup of rotations is isomorphic to S4.
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Theorem

The symmetry group of the cube has 48 elements, of which half are

rotations. The subgroup of rotations is isomorphic to S4.
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Example

Consider again the symmetries of the tetrahedron

• Any symmetry permutes the vertices. For instance, the first rotation

induces (1, 2, 3)(4), labeling the vertices on the blue triangle first.

• The same rotation induces (a, b, c)(d , e, f ) on the edges
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Example

• The rotations of the cube acts on the four space diagonals, and each

possible permutation of space diagonals can be so obtained. This is

one way of showing that the rotations form a group isomorphic to S4

• The full isomorphism group of the cube has 48 elements.

• Thus there is a pair of different symmetries that permutes the space

diagonals in the same way!

• In fact, the antipodal map z 7→ −z fixes the space diagonals, just like

the identity map z 7→ z .



Abstract Algebra, Lecture 5

Jan Snellman

The Symmetric
group

Permutations

Groups of
Symmetries

Cayley’s theorem
— every group is a
permutation group

• There is a canonical way of representing group elements as
permutations, so that

1 Different group elements yields different permutations

2 Products of group elements correspond to products of their induced

permutations

• The name of this magnificent construction is...

• Cayley’s left regular representation!!!!!

• Works even for infinite groups!

• Is intuitive and straightforward — once learned, will never be

forgotten!

• Just make sure not to confuse left and right...
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Injective homomorphisms

Definition

Let G ,H be group. A map φ : G → H is a homomorphism if for all

x , y ∈ G ,

φ(xy) = φ(x)φ(y)

Lemma

φ(1) = 1, and φ(g−1) = φ(g)−1.

Proof.

Take x ∈ G . Then φ(x) = φ(1x) = φ(1)φ(x), so φ(1) acts as the

identity.

Consider φ(gg−1). On one hand, gg−1 = 1, and we have shown that

φ(1) = 1. On the other hand, φ(gg−1) = φ(g)φ(g−1). Hence φ(g−1)

acts as the inverse of φ(g).
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Lemma

• φ(G ) ≤ H.

• φ−1(H) ≤ G , and is trivial iff φ is injective.

• If φ is an injective homomorphism, then φ(G ) ' G .

• If G ≤ H then the inclusion is an injective homomorphism.
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Example

The exponential map

Z 3 k 7→ exp(ki) ∈ T

is a homomorphism, by the functional equation of the complex exponential

function. It is injective, since

exp(ki) = 1 ⇐⇒ k

2π
∈ Z ⇐⇒ k = 0

The image is the cyclic subgroup of T generated by exp(i); this subgroup

is infinite cyclic. The kernel is trivial.
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Theorem (Cayley)

Let G be a group. Then there is a set X , and a subgroup H ≤ SX , such

that G ' H.

Proof

1 Take any g ∈ G

2 Define vg : G → G as left multiplication by g , so vg (x) = gx

3 From lemma “Linear equations in group have unique soln” follows

that vg is a bijection (not an isomorphism though, does not respect

multiplication).

4 So vg ∈ SG
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Proof (contd)

5 vgh(x) = (gh) ∗ x = g ∗ (h ∗ x) = vg (vh(x)) = (vg ◦ vh)(x)
6 So G 3 g 7→ vg ∈ SG respects multiplication

7 Furthermore, g1 6= g2 =⇒ vg1 6= vg2 (evaluate at 1)

8 So G 3 g 7→ vg ∈ SG is an injective homomorphism.

9 Call its image H; this is a subgroup of SX , with X = G .

10 Furthermore G ' H.
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Example

Let G be Klein’s Viergruppe, in its

guise

* I S T R

I I S T R

S S I R T

T T R I S

R R T S I

Then left multiplication by the

various group elements induce the

folowing permutations (read the

rows in the multiplication table):

I −→ (I )(S)(T )(R)

S −→ (I , S)(T ,R)

T −→ (I ,T )(S ,R)

R −→ (I ,R)(S ,T )

These four permutations form a

subgroup of S{I ,S ,T ,R} ' S4 which is

isomorphic to G .



Abstract Algebra, Lecture 5

Jan Snellman

The Symmetric
group

Permutations

Groups of
Symmetries

Cayley’s theorem
— every group is a
permutation group

Example

Let G = S3, and label the elements as a through f , inte the order

[, (1, 3, 2), (1, 2, 3), (2, 3), (1, 3), (1, 2)] . The multiplication table is then

∗ a b c d e f

a a b c d e f

b b c a f d e

c c a b e f d

d d e f a b c

e e f d c a b

f f d e b c a

The group elements induce the permutations

(), (bca)(dfe), (acb)(def ), (ad)(be)(cf ), (ae)(bf )(cd), (af )(bd)(ce)

which form a subgroup of S{a,b,c,d ,e,f } ' S6
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