

Congruences on semigroups

Homomorphisms

Quotient structures

Repetition: Conjugacy, Normal subgroups

Abstract Algebra, Lecture 6

Congruences, cosets, and normal subgroups

Jan Snellman¹

¹Matematiska Institutionen Linköpings Universitet

Linköping, fall 2019

Lecture notes availabe at course homepage http://courses.mai.liu.se/GU/TATA55/

- Congruences on semigroups
- Homomorphisms
- Quotient structures

Repetition: Conjugacy, Normal subgroups

① Congruences on semigroups

Congruences on groups Cosets and Lagrange Fermat and Euler

Homomorphisms

Group homomorphisms

Quotient structures

Quotient groups The isomorphism theorems The correspondence theorem

Summary

Repetition: Conjugacy, Normal subgroups

- Congruences on semigroups
- Homomorphisms
- Quotient structures

Repetition: Conjugacy, Normal subgroups

① Congruences on semigroups

Congruences on groups Cosets and Lagrange Fermat and Euler

2 Homomorphisms

Group homomorphisms

Quotient structures

Quotient groups The isomorphism theorems The correspondence theorem

Summary

Repetition: Conjugacy, Normal subgroups

- Congruences on semigroups
- Homomorphisms
- Quotient structures

Repetition: Conjugacy, Normal subgroups

1 Congruences on semigroups

- Congruences on groups Cosets and Lagrange Fermat and Euler
- **2** Homomorphisms
 - Group homomorphisms

3 Quotient structures

Quotient groups The isomorphism theorems The correspondence theorem

Summary

Repetition: Conjugacy, Normal subgroups

- Congruences on semigroups
- Homomorphisms
- Quotient structures

Repetition: Conjugacy, Normal subgroups

1 Congruences on semigroups

- Congruences on groups Cosets and Lagrange Fermat and Euler
- **2** Homomorphisms

Group homomorphisms

3 Quotient structures

Quotient groups The isomorphism theorems The correspondence theorem

Summary

A Repetition: Conjugacy, Normal subgroups

Congruences on semigroups

Congruences on groups Cosets and Lagrange Fermat and Euler

Homomorphisms

Quotient structures

Repetition: Conjugacy, Normal subgroups

An equivalence relation \sim on a semigroup S is a

- 1 left congruence if $s \sim t$ implies $as \sim at$ for all $a, s, t \in S$
- 2 right congruence if $s \sim t$ implies $sa \sim ta$ for all $a, s, t \in S$
- **3** congruence if $s \sim t$ and $a \sim b$ implies $sa \sim tb$ for all $a, b, s, t \in S$

Example

Definition

Let \mathbb{P} denote the positive integers under multiplication; this is a semigroup (even a monoid). Let $2\mathbb{P}$ denote the subset of even positive integers. Define an equivalence relation ~ by partitioning \mathbb{P} into $2\mathbb{P}$, together with singleton partitions for the odd positive integers. Then ~ is a left congruence, a right congruence, and a congruence.

Jan Snellman

Congruences on semigroups

- Congruences on groups Cosets and Lagrange Fermat and Euler
- Homomorphisms
- Quotient structures
- Repetition: Conjugacy, Normal subgroups

Lemma

An equivalence relation \sim on a semigroup S is a congruence if and only if it is both a left and a right congruence.

Proof.

- Suppose ~ congruence. Take a, s, t ∈ S with s ~ t. Since a ~ a, we have as ~ at. Similarly for right.
- Suppose ~ left and right congruence. Take a, b, s, t ∈ S with s ~ t, a ~ b. Then

$$s \sim t \implies as \sim at$$

and

$$a \sim b \implies at \sim bt$$

so by transitivity

as $\sim bt$,

as desired.

Jan Snellman

Congruences on semigroups

Congruences on groups

Cosets and Lagrange Fermat and Euler

Homomorphisms

Quotient structures

Repetition: Conjugacy, Normal subgroups

```
Assume: G group, ~ congruence, N = [1_G].
```

Definition

We say that a subgroup $H \leq G$ is normal in G, written $H \triangleleft G$, if $ghg^{-1} \in H$ for each $h \in H$, $g \in G$. Thus H is closed under conjugation with elements in G.

Congruences on semigroups

Congruences on groups

Cosets and Lagrange Fermat and Euler

Homomorphisms

Quotient structures

Repetition: Conjugacy, Normal subgroups

If $A, B \subseteq G$, then $AB = \{ ab | a \in A, b \in B \}.$

We use aB for $\{a\}B$, an so on and so forth.

Example

Definition

For abelian groups written additively, we write A + B instead. For instance, $1 + 4\mathbb{Z}$ are all integers congruent to 1 modulo 4.

Jan Snellman

Congruences on semigroups

Congruences on groups Cosets and Lagrange Fermat and Euler

Homomorphisms

Quotient structures

Repetition: Conjugacy, Normal subgroups

Theorem

• For
$$g \in G$$
, $[g]_{\sim} = gN = Ng$

• For
$$x, y \in G$$
, $x \sim y$ iff $xy^{-1} \in N$ iff $x^{-1}y \in N$.

Proof.

•
$$x \in [g]_{\sim} \iff x \sim g \iff xg^{-1} \sim 1 \iff xg^{-1} \in N \iff xg^{-1} =$$

 $n \iff x = ng \iff x \in Ng$
• $x \sim y \iff xy^{-1} \sim 1 \iff xy^{-1} \in N$

So, a group congruence is completely determined by the equivalence class $[1]_{\sim}.$ This is not so for semigroups.

Jan Snellman

Congruences on semigroups

- Congruences on groups Cosets and Lagrange Fermat and Euler
- Homomorphisms

Quotient structures

Repetition: Conjugacy, Normal subgroups Now let $H \leq G$ be a *not necessarily normal* subgroup of G.

Definition

For $x, y \in G$, define $x \sim_L y$ iff $y^{-1}x \in H$, and define $x \sim_R y$ iff $xy^{-1} \in H$.

Theorem

- $x \sim_L y$ iff $x \in yH$
- $x \sim_H y$ iff $x \in Hy$

- ~_L is a left congruence
- \sim_R is a right congruence

Proof. $x \sim_{l} v \iff v^{-1}x \in H \iff x \in vH \implies tx \in tvH \iff tx \sim_{L} ty.$

Jan Snellman

Congruences on semigroups Congruences on groups Cosets and Lagrange

Fermat and Euler

Homomorphisms

Quotient structures

Repetition: Conjugacy, Normal subgroups

Definition

The equivalence class $[x]_{\sim_L} = xH$ is called the *left coset* of *H* containing *x*. The right coset is $[x]_{\sim_R} = Hx$

Theorem (Lagrange)

The left cosets (and the right cosets) are all equipotent with H. Thus, if G is finite, then |G| = |H|m, where m is the number of distinct left cosets, also called the index of H in G, denoted [G : H].

Proof.

Let $g \in G$. Then $H \ni h \mapsto gh \in gH$ is surjective by definition, and injective since $gh_1 = gh_2 \implies g^{-1}gh_1 = g^{-1}gh_2$.

Jan Snellman

Example

Congruences on semigroups Congruences on groups Cosets and Lagrange Fermat and Euler

Homomorphisms

Quotient structures

Repetition: Conjugacy, Normal subgroups

In our example P = 2P ∪_{k∈P} {2k − 1} one equivalence is infinite, and the rest singletons — this could never happen in a group!

• If $G=S_3$, $H=\langle (1,2)
angle$, then the left cosets are

 $()H = \{(), (1,2)\}, (1,3)H = \{(1,3), (1,2,3)\}, (2,3)H = \{(2,3), (1,3,2)\}, (2,3)H = \{(2,3), (1,3,2)\}, (2,3)H = \{(2,3), (1,3,2)\}, (3,3)H = \{(3,3), (1,3), (1,3)\}, (3,3)H = \{(3,3), (1,3), (1,3), (1,3)\}, (3,3)H = \{(3,3), (1,3), (1,3), (1,3), (1,3)\}, (3,3)H = \{(3,3), (1,3), (1,3), (1,3), (1,3), (1,3)\}, (3,3)H = \{(3,3), (1,3$

whereas the right cosets are

 $H() = \{(), (1,2)\}, H(1,3) = \{(1,3), (1,3,2)\}, H(2,3) = \{(2,3), (1,2,3)\}.$

So the left and right cosets, while equally many and equally big, are different. Of course, $\sim_L \neq \sim_R$. Furthermore, *H* is not normal.

Congruences on semigroups Congruences on groups

Cosets and Lagrange Fermat and Euler

Homomorphisms

Quotient structures

Repetition: Conjugacy, Normal subgroups

In fact:

Lemma

The following are equivalent:

 $\bullet H \triangleleft G,$

```
2 \sim_L = \sim_R,
```

```
3 gH = Hg for all g \in G.
```

When this holds, \sim_L and \sim_R are congruences.

Congruences on semigroups Congruences on groups

Cosets and Lagrange

Homomorphisms

Quotient structures

Repetition: Conjugacy, Normal subgroups

Corollary

Let G be a finite group with n elements. Let H be a subgroup of G, and $g \in G$.

• The size of H divides n,

Proof.

 $o(g) = |\langle g \rangle|.$

Jan Snellman

Congruences on semigroups Congruences on groups Cosets and Lagrange Format and Fuler

Homomorphisms

Quotient structures

Repetition: Conjugacy, Normal subgroups

Example

There is no element in S_6 of order 7. Nor is there a subgroup of size 25.

Example

The full symmetry group of a cube has 48 elements, so *a priori*, the possible orders of elements are

1, 2, 3, 4, 6, 8, 12, 16, 24, 32

Actually occuring orders are

1, 2, 3, 4

Jan Snellman

TEKNISKA HÖGSKOLAN

Congruences on semigroups

- Congruences on groups Cosets and Lagrange Fermat and Euler
- Homomorphisms

Quotient structures

Repetition: Conjugacy, Normal subgroups Recall that for a positive integer *n*, $U_n = \{ [k]_n | gcd(k, n) = 1 \}$ is a group under multiplication.

Definition

```
Euler's totient \phi is defined by \phi(n) = |U_n|.
```

Lemma

Proof.

Elementary, CRT, immediate consequence.

Jan Snellman

Congruences on semigroups

Congruences on groups Cosets and Lagrange Fermat and Euler

Homomorphisms

Quotient structures

Repetition: Conjugacy, Normal subgroups

Recall that if o(g) = n, then $g^k = 1$ iff n|k.

Theorem (Euler)

If n ∦a then

$$a^{\phi(n)} \equiv 1 \mod n$$

Proof.

By Lagrange, since $\phi(n) = |U_n|$, and since

$$[a]_n^k = [1]_n \in U_n \quad \Longleftrightarrow \quad a^k \equiv 1 \mod n$$

Congruences on semigroups

Congruences on groups Cosets and Lagrange Fermat and Euler

Homomorphisms

Quotient structures

Repetition: Conjugacy, Normal subgroups Historically, the special case of prime modulus was proved first, using elementary means:

Theorem (Fermat)

If p prime, andp ∦a then,

 $a^{p-1} \equiv 1 \mod p$

Jan Snellman

TEKNISKA HÖGSKOLAN

Congruences on semigroups

Congruences on groups Cosets and Lagrange Fermat and Euler

Homomorphisms

Quotient structures

Repetition: Conjugacy, Normal subgroups

Example

$$20^{258} \equiv 3^{258} \equiv 3^{16*16+2} \equiv (3^{16})^{16} * 3^2 \equiv 1^{16} * 9 \equiv 9 \mod 17$$

Example

$$x = 7^{123} \equiv 7^{12*10+3} \equiv (7^{12})^{10} * 7^3 \equiv 7^3 \equiv 49 * 7 \equiv 9 * 7 \equiv 3 \mod 20$$

since
$$\varphi(20)=\varphi(4*5)=\varphi(4)*\varphi(5)=3*4=12.$$
 Alternatively,

$$x\equiv 3^{123}\equiv 3^{2*61+1}\equiv 3 \mod 4$$

and

$$x \equiv 5^{123} \equiv 3^{4*30+1} \equiv 3 \mod 5$$

so by CRT, $x \equiv 3 \mod 20$.

Jan Snellman

Congruences on semigroups

Homomorphisms

Group homomorphisms

Quotient structures

Repetition: Conjugacy, Normal subgroups Definition

If S, T are semigroups, then a semigroup homomorphism is a function $f: S \to T$ such that f(xy) = f(x)f(y) for all $x, y \in S$. If S, T are both monoids, we demand in addition that f(1) = 1. If S, T are both groups, then it follows that a monoid homomorphism will also preserve inverses.

We have previously defined group isomorphisms, which are bijective group homomorphisms.

Lemma

The inverse of a group isomorphism is a group isomorphism.

Jan Snellman

Congruences on semigroups

Homomorphisms

Group homomorphisms

Quotient structures

Repetition: Conjugacy, Normal subgroups

Definition

Let G, H be semigroups, and let $\phi : G \to H$ be a semigroup homomorphism, i.e., $\phi(g_1g_1) = \phi(g_1)\phi(g_2)$ for all $g_1, g_2 \in G$. We define

•
$$\operatorname{Im}(\phi) = \phi(G) = \{ \phi(g) | g \in G \},\$$

•
$$\ker(\phi) = \{ (g_1, g_2) \in G | \phi(g_1) = \phi(g_2) \}.$$

Lemma

 $Im(\varphi)$ is a subsemigroup of H and $ker(\varphi)$ is a congruence on G.

Proof.

If $h_1, h_2 \in \text{Im}(\phi)$ then $h_1 = \phi(g_1)$, $h_2 = \phi(g_2)$, so $h_1h_2 = \phi(g_1)\phi(g_2) = \phi(g_1g_2) \in \text{Im}(\phi)$. If $(g_1, g_2), (k_1, k_2) \in \text{ker}(\phi)$ then $\phi(g_1) = \phi(g_2)$ and $\phi(k_1) = \phi(k_2)$. Hence $\phi(g_1k_1) = \phi(g_1)\phi(k_1) = \phi(g_2)\phi(k_2) = \phi(g_2k_2)$, so $(g_1k_1, g_2, k_2) \in \text{ker}(\phi)$.

Congruences on semigroups

Homomorphisms

Group homomorphisms

Quotient structures

Repetition: Conjugacy, Normal subgroups

Lemma

- If $\varphi: G \to H$ is a group homomorphism, then
 - **1** $Im(\phi)$ is a subgroup of H,

φ⁻¹({1_H}) is a normal subgroup of G. It coincides with the class
 N = [1_G] of the identity element of G, under the kernel congruence.

3 More explicitly, $\phi(x) = \phi(y)$ iff $(x, y) \in \ker \phi$ iff $xy^{-1} \in N$ iff $x^{-1}y \in N$

Definition

By abuse of notation, when ϕ is a group homomorphism, we call *N* the kernel of ϕ , and denote it by ker(ϕ).

The kernel congruence is determined by N, in that all other classes are translates of N.

Congruences on semigroups

Homomorphisms Group homomorphisms

Quotient structures

Repetition: Conjugacy, Normal subgroups

Lemma

Let $\varphi:G\to H$ be a group homomorphism. Then φ is injective iff $ker(\varphi)=\{1_G\}.$

Proof.

By definition of group homomorphism, we have that $\phi(1_G) = 1_H$. If ϕ is injective, no other element of G maps to 1_H .

Conversely, suppose that $\ker(\phi) = \{1_G\}$, and that $\phi(x) = \phi(y)$. Then $\phi(x)\phi(y)^{-1} = 1_H$, so $\phi(xy^{-1}) = 1H$, so $xy^{-1} \in \ker(\phi)$. By assumption, $xy^{-1} = 1_G$, and so x = y.

Congruences on semigroups

Homomorphisms

Quotient structures

Quotient groups The isomorphism

theorems

The correspondence theorem

Repetition: Conjugacy, Normal subgroups

Definition

Let \sim be a congruence on the semigroup S. Then the set of equivalence classes is denoted by S/ \sim .

Example

In our example with a congruence on $\mathbb P$, the quotient $\mathbb P/\sim$ contains one element for each odd positive number, and one element representing the even positive numbers.

Jan Snellman

Congruences on semigroups

Homomorphisms

Quotient structures

- Quotient groups
- The isomorphism theorems
- The correspondence theorem

Repetition: Conjugacy, Normal subgroups

Theorem

1 S/\sim becomes a semigroup under the (well-defined) operation

$$[x]_{\sim} * [y]_{\sim} = [xy]_{\sim}$$

2 The canonical surjection

$$S o S / \sim$$

 $x \mapsto [x]_{\sim}$

is a semigroup homomorphism, i.e., x * y is mapped to [x]_~ * [y]_~
Conversely, for any surjective semigroup homomorphism f : S → T, the kernel

$$\ker f = \left\{ \left(x, y \right) \in S^2 \middle| f(x) = f(y) \right\}$$

is a congruence.

④ Finally, if ~ is a congruence on S, the kernel congruence of the canonical surjection above is simply ~.

Jan Snellman

Congruences on semigroups

Homomorphisms

Quotient structures

Quotient groups

The isomorphism theorems The correspondence

theorem

Repetition: Conjugacy, Normal subgroups

The group version is as follows:

Theorem

Let $\phi: G \to H$ be a surjective group homomorphism, with kernel N, and associated congruence \sim . Then the quotient $S/\sim = S/N$ is the set of left (or right) cosets of N. It becomes a group with the operation

$$[x]_{\sim}[y]_{\sim} = [xy]_{\sim}$$

or equivalently,

$$xN * yN = (xy)N$$

Conversely, if $N \triangleleft G$ then the canonical surjection $\pi : G \rightarrow G/N$ defined by $\pi(g) = gN$ has kernel N.

Congruences on semigroups

Homomorphisms

Quotient structures

Quotient groups

The isomorphism theorems The correspondence theorem

Repetition: Conjugacy, Normal subgroups

Epimorphisms, normal subgroups, congruences

Jan Snellman

Congruences on semigroups

Homomorphisms

Quotient structures

Quotient groups

The isomorphism theorems

The correspondence theorem

Repetition: Conjugacy, Normal subgroups

Theorem (First isomorphism thm)

If $\varphi:G\to H$ is a group homomorphism with kernel N, then $G/N\simeq Im(\varphi).$

Proof.

The map $gN \mapsto \varphi(g)$ is well-defined, and has image $\operatorname{Im}(\varphi)$. Furthermore, $g_1Ng_2N = (g_1g_2)N \mapsto \varphi(g_1g_2) = \varphi(g_1)\varphi(g_2)$, so it is a homomorphism. If $gN \mapsto 1_H$ then $\varphi(g) = 1_H$, thus $g \in N$, thus gN = N. So the assignment is injective, as well.

The semigroup version is similar.

Jan Snellman

Congruences on semigroups

Homomorphisms

Quotient structures

Quotient groups

The isomorphism theorems

The correspondence theorem

Repetition: Conjugacy, Normal subgroups One often makes use of the following version:

Theorem

Suppose that $\phi: G \to H$ is a group homomorphism, and let M be a normal subgroup of G contained in ker (ϕ) . Then there is a unique group homomorphism $\tau: G/M \to H$, with $\operatorname{Im}(\tau) = \operatorname{Im}(\phi)$, and such that $\tau \circ \pi = \phi$. In other words, the following diagram commutes:

$$\begin{array}{ccc}
G & \stackrel{\Phi}{\longrightarrow} H \\
 \pi \downarrow & \stackrel{\tau}{\longrightarrow} & \\
G/M
\end{array}$$

Jan Snellman

Congruences on semigroups

Homomorphisms

Quotient structures

Quotient groups

The isomorphism theorems

The correspondence theorem

Repetition: Conjugacy, Normal subgroups

Example

Let $G = (\mathbb{R}, +, 0)$ and let $H = \mathbb{C}^*, *, 1)$, and define

 $\begin{aligned} \varphi: G \to H \\ \varphi(x) = \exp(2\pi x i) \end{aligned}$

1 Then $ker(\phi) = \mathbb{Z}$, and $Im(\phi) = \mathfrak{T}$. So first iso yields $\mathbb{R}/\mathbb{Z} \simeq \mathfrak{T}$.

② Let $M = 2\mathbb{Z}$. Convenient thm implies surj grp. hom. $\tau : \mathbb{R}/(2\mathbb{Z}) \to \mathfrak{T}$ well-defined by $\tau(x + (2\mathbb{Z})) = \phi(x)$. We can think of $\mathbb{R}/(2\mathbb{Z})$ as a "larger circle".

Jan Snellman

Congruences on semigroups

Homomorphisms

Quotient structures

Quotient groups

The isomorphism theorems

The correspondence theorem

Repetition: Conjugacy, Normal subgroups

Example

Let G be a group, and $g \in G$. The map

$$\mathbb{Z} \ni n \mapsto g^n \in G$$

is a group homomorphism, with image $\langle g \rangle$, and kernel {0} if $o(g) = \infty$, $k\mathbb{Z}$ if o(g) = k. Thus first iso thm yields

$$\mathbb{Z}\simeq \langle g
angle$$

in the first case, and

$$\mathbb{Z}/(k\mathbb{Z})\simeq \langle g
angle$$

in the second case.

Jan Snellman

Congruences on semigroups

Homomorphisms

Quotient structures

Quotient groups

The isomorphism theorems

The correspondence theorem

Repetition: Conjugacy, Normal subgroups

Example

Let GL_n denote the group of invertible, real, *n* by *n* matrices, with matrix multiplication. The subset SGL_n of matrices with determinant +1 forms a subgroup. We claim that this subgroup is normal, and that the quotient is isomorphic to \mathbb{R}^* , the group of the non-zero real numbers, under multiplication.

Rather than proving this directly, note that the map

 $\operatorname{GL}_n \ni M \mapsto \operatorname{det}(M) \in \mathbb{R}^*$

is a surjective group homomorphism, with kernel SGL_n .

Congruences on semigroups

Homomorphisms

Quotient structures

Quotient groups

The isomorphism theorems

The correspondence theorem

Repetition: Conjugacy, Normal subgroups

Theorem (Second iso thm)

Suppose G group, $H \leq G$, $N \triangleleft G$. Then $HN \leq G$, $(H \cap N) \triangleleft H$, $N \triangleleft HN$, and

$$\frac{H}{H\cap N}\simeq\frac{HN}{N}$$

Proof.

We omit the proofs that HN subgroup et cetera. Define a map

$$\Phi: H \to \frac{HN}{N}$$
$$\Phi(h) = hN$$

Group hom., surj. by def. But

 $\ker(\phi) = \{ h \in H | \phi(h) = 1N \} = \{ h \in H | h \in N \} = H \cap N$

First iso. thm. gives

$$rac{HN}{N}\simeq rac{H}{\ker(\Phi)}=rac{H}{H\cap N},$$

as desired.

Jan Snellman

Congruences on semigroups

Homomorphisms

Quotient structures

Quotient groups

The isomorphism theorems

The correspondence theorem

Repetition: Conjugacy, Normal subgroups

Example

 $G = \mathbb{Z}, H = 10\mathbb{Z}, N = 12\mathbb{Z}$. Then $H + N = 2\mathbb{Z}, H \cap N = 60\mathbb{Z}$, and $\frac{10\mathbb{Z}}{60\mathbb{Z}} = \frac{H}{H \cap N} \simeq \frac{H + N}{N} = \frac{2\mathbb{Z}}{12\mathbb{Z}}$

This quotient is furthermore isomorphic to

$$rac{\mathbb{Z}}{6\mathbb{Z}}\simeq\mathbb{Z}_6\simeq C_6$$

Jan Snellman

Congruences on semigroups

Homomorphisms

Quotient structures

Quotient groups

The isomorphism theorems

The correspondence theorem

Repetition: Conjugacy, Normal subgroups

Theorem (Third iso. thm.)

G group, N, H normal subgroups of G, $N \subseteq H$. Then $N \triangleleft H$, and $H/N \triangleleft G/N$, and

 $\frac{G/N}{H/N} \simeq \frac{G}{H}$

Proof.

Consider the surjective (and well-defined) group homomorphism

$$\begin{aligned} \varphi: \frac{G}{N} \to \frac{G}{H} \\ \varphi(gN) = gH \end{aligned}$$

Its kernel is H/N, so an appeal to the first iso. thm. finishes the proof.

Jan Snellman

Congruences on semigroups

Homomorphisms

Quotient structures

Quotient groups

The isomorphism theorems

The correspondence theorem

Repetition: Conjugacy, Normal subgroups

Example

Let $G = \mathbb{Z} \times \mathbb{Z}$, $H = \langle (0,1) \rangle$, $N = \langle (0,2) \rangle$. Then $G/N \simeq \mathbb{Z} \times \mathbb{Z}_2$, $G/H \simeq \mathbb{Z}$, $H/N \simeq \mathbb{Z}_2$, and

$$\frac{G/N}{H/N} \simeq \frac{\mathbb{Z} \times \mathbb{Z}_2}{\mathbb{Z}_2} \simeq \mathbb{Z} \simeq \frac{G}{H}$$

Example

and

 $12\mathbb{Z} \triangleleft 6\mathbb{Z} \triangleleft \mathbb{Z},$

$$\frac{\mathbb{Z}/(12\mathbb{Z})}{(6\mathbb{Z})/(12\mathbb{Z})}\simeq \frac{\mathbb{Z}}{6\mathbb{Z}}$$

Jan Snellman

Congruences on semigroups

Homomorphisms

Quotient structures

Quotient groups The isomorphism theorems

The correspondence theorem

Repetition: Conjugacy, Normal subgroups

Theorem (Correspondence thm)

G group, N normal subgroup, $\pi: G \to G/N$ canonical quotient epimorphism, A set of all subgroups of G which contain N, B set of all subgroups of G/N. Then

 $egin{aligned} &\sigma:\mathcal{A}
ightarrow\mathcal{B}\ &\sigma(\mathcal{H})=\pi(\mathcal{H})=\mathcal{H}/\mathcal{N}\ & au:\mathcal{B}
ightarrow\mathcal{A}\ & au(\mathcal{K})=\pi^{-1}(\mathcal{K})=\{g\in \mathcal{G}|g\mathcal{N}\in\mathcal{K}\} \end{aligned}$

are inclusion-preserving and each others inverses, thus establishing an inclusion-preserving bijection between A and B. Furthermore, in this bijection, normal subgroups correspond to normal subgroups.

Jan Snellman

Congruences on semigroups

Homomorphisms

Quotient structures

Quotient groups The isomorphism theorems

The correspondence theorem

Repetition: Conjugacy, Normal subgroups

Example

Since $\mathbb{Z} \triangleleft \mathbb{R}$ and $\mathbb{R}/\mathbb{Z} \simeq \mathfrak{T}$, subgroups of \mathfrak{T} correspond to those subgroups of \mathbb{R} that contain \mathbb{Z} .

Example

The set of subgroups of GL_n which contain all matrices of determinant one is in bijective correspondence with subgroups of \mathbb{R}^* .

Example

Subgroups of \mathbb{Z} which contains $4\mathbb{Z}$ correspond to subgroups of $\mathbb{Z}/(4\mathbb{Z}) \simeq \mathbb{Z}_4$, which has **one** proper, nontrivial subgroup, namely $\{[0]_4, [2]_4\}$. The relevant subgroup of \mathbb{Z} is $2\mathbb{Z}$.

Congruences on semigroups

Homomorphisms

Quotient structures

Quotient groups The isomorphism theorems

The correspondence theorem

Repetition: Conjugacy, Normal subgroups Example

We show $C_{60} = \langle g \rangle$ and its subgroups, and then the quotient by the subgroup $\langle g^{30} \rangle$ and its subgroups; the subgroups in the quotient correspond to subgroup in the large group containing thab by which we mod out.

- Congruences on semigroups
- Homomorphisms
- Quotient structures

Repetition: Conjugacy, Normal subgroups

- G group
- Equivalence relation: $h_1 \sim_c h_2$ iff exists $g \in G$ s.t. $h_2 = gh_1g^{-1}$.
- Eg invertible matrices are conjugate if they correspon to the same linear transformation, after change of basis
- Conjugacy classes: equivalence classes under ~c.
- In S_n , correspond to cycle type
- In $G \leq S_n$, necessary but not sufficient, must have $g \in G$, not $g \in S_n$.

Conjugacy

Jan Snellman

Congruences on semigroups

Homomorphisms

Quotient structures

Repetition: Conjugacy, Normal subgroups • G still group, $H \leq G$ subgroup

• The following are equivalent:

1 For all $g \in g$, $h \in h$ it holds that $ghg^{-1} \in H$.

2 For all $g \in G$ it holds that $gHg^{-1} = \left\{ ghg^{-1} \middle| h \in H \right\} \subseteq H$

- **3** H is the union of conjugacy classes
- **4** *H* is the kernel of some group homomorphism $\phi : G \to K$, *K* some group
- **5** *H* is the kernel of some group epimorphism $\phi : G \to K$, *K* some group
- **6** There is some congruence τ on G such that $H = [1]_{\tau}$.
- 7 The left congruence $x \sim_L y$ iff $y^{-1}x \in H$ is a congruence
- **(3)** The right congruence $x \sim_R y$ iff $xy^{-1} \in H$ is a congruence
- **9** For all $g \in G$, the left coset gH is equal to the right coset Hg
- 1 The multiplication $(g_1H)(g_2H) = (g_1g_2)H$ is well defined
- **①** The multiplication $(Hg_1)(Hg_2) = H(g_1g_2)$ is well defined

Congruences on semigroups

Homomorphisms

Quotient structures

Repetition: Conjugacy, Normal subgroups

Example

Let $G = S_4$, $H = \{(), (12)(34), (13)(24), (14)(23)\}$. We check that $H \le G$. Is H normal in G? If so, what is G/H?

Congruences on semigroups

Homomorphisms

Quotient structures

Repetition: Conjugacy, Normal subgroups

Example

Let H, K be groups, and let $G = H \times K$. Put $\tilde{H} = \{(h, k) \in G | k = 1\}$ and $\tilde{K} = \{(h, k) \in G | h = 1\}$. Is \tilde{H} normal in G? If so, what is G/H?