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Definition

An equivalence relation ~ on a semigroup S is a
@ left congruence if s ~ t implies as ~ at for all a,s,t € S
@ right congruence if s ~ t implies sa ~ ta for all a,s,t € S

© congruence if s ~ t and a ~ b implies sa ~ tb for all a,b,s,t € S

Example

Let IP denote the positive integers under multiplication; this is a semigroup
(even a monoid). Let 2P denote the subset of even positive integers.
Define an equivalence relation ~ by partitioning P into 2IP, together with
singleton partitions for the odd positive integers. Then ~ is a left
congruence, a right congruence, and a congruence.
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Lemma

An equivalence relation ~ on a semigroup S is a congruence if and only if it
is both a left and a right congruence.

Proof.

® Suppose ~ congruence. Take a,s,t € S with s ~ t. Since a ~ a, we
have as ~ at. Similarly for right.
® Suppose ~ left and right congruence. Take a, b,s,t € S with s ~ t,
a~b. Then
s~t =— as~at

and
a~b — at~ bt

so by transitivity
as ~ bt,

as desired.
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Assume: G group, ~ congruence, N = [1¢].
Definition
We say that a subgroup H < G is normal in G, written H< G, if

ghg™' € H for each h€ H, g € G. Thus H is closed under conjugation
with elements in G.

Theorem
N<G.

Proof.

N>h = h~1—= gh~g = ghgl~ggl=1—= ghgleN

O
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Definition
If A,B C G, then
AB ={ablae€ A b € B}.

We use aB for {a} B, an so on and so forth.

Example

For abelian groups written additively, we write A 4+ B instead. For
instance, 1 4+ 4Z are all integers congruent to 1 modulo 4.
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Theorem

® Forge G, [gl.=gN = Ng
® Forx,y € G, x~y iffxyt € Niffx 'ty € N.

Proof.
e xclgl. &= x~g &= xgl~1l &= xgleN &= xgl=
n & x=ng < xecNg
o x~y &= xy1~1 & xyleN
L]

So, a group congruence is completely determined by the equivalence class
[1].. This is not so for semigroups.
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Now let H < G be a not necessarily normal subgroup of G.

Definition

For x,y € G, define x ~, y iff y"Ix € H, and define x ~p y iff xy~1 € H.

Theorem
® x~  yiffxéeyH ® ~, is a left congruence
® x~yyiffx € Hy ® ~r is a right congruence
Proof.

X~y & yIxeH & xeyH = txectyH & tx~ ty.

Ol



Abstract Algebra, Lecture 6

Jan Snellman

g

TEKNISKA HOGSKOLAN
.....................

Congruences on groups
Cosets and Lagrange
Fermat and Euler

Definition
The equivalence class [x]., = xH is called the /eft coset of H containing x.
The right coset is [x]., = Hx

Theorem (Lagrange)

The left cosets (and the right cosets) are all equipotent with H. Thus, if
G is finite, then |G| = |H|m, where m is the number of distinct left cosets,
also called the index of H in G, denoted [G : H].

Proof.

Let g € G. Then H > h— gh € gH is surjective by definition, and
injective since ghy = ghy = g lgh1 = g 1gho. O
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Example

® In our example P = 2P Uicp {2k — 1} one equivalence is infinite, and
the rest singletons — this could never happen in a group!

* If G =53, H={(1,2)), then the left cosets are
OH={0, (1,2)},(1,3)H ={(1,3),(1,2,3)}, (2,3)H ={(2,3), (1,3, 2)},
whereas the right cosets are
H() ={0), (1,2)}, H(1,3) ={(1,3),(1,3,2)}, H(2,3) ={(2,3), (1,2,3)}.

So the left and right cosets, while equally many and equally big, are
different. Of course, ~;#~g. Furthermore, H is not normal.
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The following are equivalent:

Cosets and Lagrange

Fermat and Euler 0 H< G’

Homomorphisms O ~ =R,

Quotient ® gH = Hg forall g € G.
structures

When this holds, ~; and ~g are congruences.
Repetition:
Conjugacy, Normal
subgroups
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Corollary

Let G be a finite group with n elements. Let H be a subgroup of G, and
g €G.

® The size of H divides n,

® o(g) divides n.

Proof.
o(g) = |(g)l- O
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Example

There is no element in Sg of order 7. Nor is there a subgroup of size 25.

Example

The full symmetry group of a cube has 48 elements, so a priori, the
possible orders of elements are

1,2,3,4,6,8,12, 16, 24,32

Actually occuring orders are
1,2,3,4
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Recall that for a positive integer n, U, ={[kln|gcd(k,n) =1} is a group

Jan Snellman

AL under multiplication.
TEKNISKA HOGSKOLAN Definition
Euler’s totient ¢ is defined by ¢(n) = |U,|.
Congruences on groups Lemma
Cosets and Lagrange
Fermat and Euler © If p is a prime number, then ¢(p") = p" — p" 1,

® Ifged(m,n) =1, then $(mn) = db(m)d(n)
© If n has prime factorization n = 1_[ pj’j , then

n) =TT o(p7) = 1;(p? paf‘l).

Proof.

Elementary, CRT, immediate consequence. O
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Recall that if o(g) = n, then gk = 1 iff n|k.
Theorem (Euler)

If n fa then

a®" =1 modn
Proof.
By Lagrange, since ¢(n) = |U,|, and since

@k =M, e U,

=1 modn
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Historically, the special case of prime modulus was proved first, using

elementary means:
Theorem (Fermat)

If p prime, andp fa then,

1=1 modp
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Example
20258 = 3258 = 316*16+2 = (316)16 % 32 = 116 «9=9 mod 17

Example

x =73 = 71291043 = (7110, 73 = 73 = 49x7 =97 =3 mod 20

since $(20) = (4 % 5) = h(4)  h(5) = 3 4 = 12.
Alternatively,
x =323 =32%6141 —_3 10494

and
x =528 =3%30+l =3 pd 5

so by CRT, x =3 mod 20.
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Group homomorphisms

Definition

If S, T are semigroups, then a semigroup homomorphism is a function
f:S — T such that f(xy) = f(x)f(y) for all x,y € S. If S, T are both
monoids, we demand in addition that f(1) =1. If S, T are both groups,
then it follows that a monoid homomorphism will also preserve inverses.

We have previously defined group isomorphisms, which are bijective group
homomorphisms.

Lemma

The inverse of a group isomorphism is a group isomorphism.
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Homomorphisms
Group homomorphisms

Definition

Let G, H be semigroups, and let ¢ : G — H be a semigroup

homomorphism, i.e., d(g1g1) = $(g1)P(g2) for all g1, € G. We define

* Im(¢p) = d(G) ={d(g)lg € G},
* ker(d) ={(g1,8) € G|d(g1) = d(g2) ).

Lemma

Im(d) is a subsemigroup of H and ker(¢) is a congruence on G.

Proof.

If h1, ho € Im(p) then hy = P(g1), ho = P(g2), so
hihy = ¢(g1)d(g2) = d(g1g2) € Im().
If (g1,82), (ki, k2) € ker(d) then d(g1) =
Hence ¢(g1ki) = dlg1)dp(k1) = d(g2)d(k
(g1ki1, &2, k2) € ker(d).

d(g2) and d(k1) = P(k2).
2) = d(g2ko), so
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Group homomorphisms

Lemma
Ifd: G — H is agroup homomorphism, then
® Im(d) is a subgroup of H,
® & ({14)) is a normal subgroup of G. It coincides with the class
N = [1¢] of the identity element of G, under the kernel congruence.
© More explicitly, d(x) = &(y) iff (x,y) € ker b iff xy~ € N iff
xlyeN

Definition
By abuse of notation, when ¢ is a group homomorphism, we call N the
kernel of ¢, and denote it by ker(¢).

The kernel congruence is determined by N, in that all other classes are
translates of M.
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Lemma

Let ¢ : G — H be a group homomorphism. Then & is injective iff

ker(¢p) ={1¢}.

i Proof.
Group homomorphisms

By definition of group homomorphism, we have that ¢(1g) =14. If  is
injective, no other element of G maps to 1p.

Conversely, suppose that ker(¢) ={1¢}, and that ¢(x) = d(y). Then
d(x)p(y) L =1y, so d(xy 1) =1H, so xy~ ! € ker(dp). By assumption,
xy =1, and so x = y. L]
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Let ~ be a congruence on the semigroup S. Then the set of equivalence
classes is denoted by S/ ~.

Quotient Example

structures ) ) )

Quotient groups In our example with a congruence on P, the quotient P/ ~ contains one
The i hi: 0no .
theorems T element for each odd positive number, and one element representing the

The correspondence

TN even positive numbers.
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Theorem

@ S/ ~ becomes a semigroup under the (well-defined) operation

[x]~ * [yl. = [xyl-

® The canonical surjection

S—S5/~

X — [x]-

is a semigroup homomorphism, i.e., x * y is mapped to [x]. * [y].
© Conversely, for any surjective semigroup homomorphism f : S — T,
the kernel

ker f = { (x,y) € Sz‘f(X) =f(y)}

is a congruence.

O Finally, if ~ is a congruence on S, the kernel congruence of the
canonical surjection above is simply ~.
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Let & : G — H be a surjective group homomorphism, with kernel N, and
associated congruence ~. Then the quotient S/ ~= S§/N is the set of left
(or right) cosets of N. It becomes a group with the operation

X lyl. = [xyl-,
Quotient groups

The isomorphism .
theorems or eqUIva/ently,

The correspondence XN * _yN = (X_y) N

theorem

Conversely, if N < G then the canonical surjection m: G — G/N defined
by m(g) = g has kernel N.
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Epimorphisms, normal subgroups, congruences

N=ker(})

epimorphism ¢

G—HG/N

G—G/~

normal subgroup N <

xN=yN

congruence ~
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Ifb: G — His a group homomorphism with kernel N, then
G/N ~Im(d).
Proof.
The map gN — ¢(g) is well-defined, and has image Im(¢). Furthermore,
%::tii;:,;f::;,'iﬁn g1Ng2N = (g182)N — d(g182) = d(g1)d(g2), so it is a homomorphism.
theorems If gN — 1y then &(g) = 1y, thus g € N, thus gN = N. So the
e opondence assignment is injective, as well. O

The semigroup version is similar.
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Quotient groups
The isomorphism
theorems

The correspondence
theorem

One often makes use of the following version:

Theorem

Suppose that ¢ : G — H is a group homomorphism, and let M be a
normal subgroup of G contained in ker(&). Then there is a unique group
homomorphism ©: G/M — H, with Im(t) = Im(¢), and such that

Tom = ¢. In other words, the following diagram commutes:
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theorems

The correspondence
theorem

Example

Let G = (R,+,0) and let H = C*, *,1), and define

b:G—o H
¢ (x) = exp(27xi)

@ Then ker(¢p) = Z, and Im(¢p) = T. So first iso yields R/Z ~ ¥.

® Let M = 27Z. Convenient thm implies surj grp. hom. T: R/(2Z) —» ¥
well-defined by t(x + (2Z)) = ¢(x). We can think of R/(2Z) as a

“larger circle" .
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,}% Example
.'i".’:'.‘.'::ff:‘.?'.‘.‘ift‘.’f Let G be a group, and g € G. The map

Z>n—gleG

is a group homomorphism, with image (g), and kernel {0} if o(g) = oo,
kZ if o(g) = k. Thus first iso thm yields

Quotient groups 7
The isomorphism
theorems

The correspondence

theorem in the first case, and

in the second case.
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Example

Let GL,, denote the group of invertible, real, n by n matrices, with matrix
multiplication. The subset SGL, of matrices with determinant +1 forms a
subgroup. We claim that this subgroup is normal, and that the quotient is
isomorphic to R*, the group of the non-zero real numbers, under
multiplication.

Rather than proving this directly, note that the map

GL, > M — det(M) e R*

is a surjective group homomorphism, with kernel SGL,,.
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daniSncinan Suppose G group, H< G, N<G. Then HN < G, (HN N)<H, N < HN,
é% and
23 H  HN
R HON ™ N

Proof.
We omit the proofs that HN subgroup et cetera. Define a map

HN
H— —
¢ N
Quotient groups d)(h] = hN
The isomorphism .
theorems Group hom., surj. by def. But
The correspondence
theorem

ker() ={h e H|p(h) =1N}={he Hlhe N}=HNN

First iso. thm. gives

N ~ ker(¢p) HNN’
as desired. m
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G=7Z, H=10Z, N =12%Z. Then H+ N =27, HN N = 60%Z, and

10z  H H+N  2Z
60Z HNN~ N 127

This quotient is furthermore isomorphic to
Quotient groups

The isomorphism 7

theorems — ~ 7~ C
The correspondence 6Z - e e
theorem
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Theorem (Third iso. thm.)

G group, N, H normal subgroups of G, N C H. Then N < H, and
H/N<G/N, and

G/N _
H/N —

Tlo

Proof.

Consider the surjective (and well-defined) group homomorphism

€ &
CDN—)H
d(gN) = gH

Its kernel is H/N, so an appeal to the first iso. thm. finishes the proof.
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* Let G =7 x Z, H=((0,1)), N = ((0,2)). Then G/N =~ Z x Zy,
e G/H~1Z, H/N ~Zp and

G/N ZxZ» , G
H/N ~ 7, ~ H

Quotient groups Example

The isomorphism

theorems

::;irceor:]respondence 127, « 6Z 4 Z,

and
Z/(122) 7

(6Z)/(12Z) ~— 6Z
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Theorem (Correspondence thm)

G group, N normal subgroup, m: G — G/N canonical quotient
epimorphism, A set of all subgroups of G which contain N, BB set of all
subgroups of G/N. Then

o:A— B

o(H)=n(H)=H/N

T:B—> A

T(K) =7 '(K) ={g € G|gN € K}

are inclusion-preserving and each others inverses, thus establishing an
inclusion-preserving bijection between A and B. Furthermore, in this
bijection, normal subgroups correspond to normal subgroups.
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Example

Since Z <R and R/Z ~ ¥, subgroups of ¥ correspond to those subgroups
of R that contain Z.

Example

The set of subgroups of GL, which contain all matrices of determinant
one is in bijective correspondence with subgroups of R*.

Example

Subgroups of Z which contains 47 correspond to subgroups of
7./ (A7) ~ Z4, which has one proper, nontrivial subgroup, namely
{[0l4, [2]4}. The relevent subgroup of Z is 27Z.



Abstract Algebra, Lecture 6

Jan Snellman Example
"}{‘ We show Cep = (g) and its subgroups, and then the quotient by the
TeKNISkA HOGSKOLAN subgroup (g3°) and its subgroups; the subgroups in the quotient

correspond to subgroup in the large group containing thab by which we
mod out.

Quotient groups /T\

The isomorphism

theorems

The correspondence

theorem @ @ . @

S\
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Conjugacy

G group
Equivalence relation: hy ~¢ hy iff exists g € G s.t. hy = ghig~*.

Eg invertible matrices are conjugate if they correspon to the same
linear transformation, after change of basis

Conjugacy classes: equivalence classes under ~.
In S,,, correspond to cycle type

In G < S, necessary but not sufficient, must have g € G, not g € S,,.
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R C— ® The following are equivalent:
""""""""""""""" @ Forallg € g, he hit holds that ghg ! € H.
@ For all g € G it holds that gHg ™! = {ghgil‘h € H} CH
©® H is the union of conjugacy classes
@ H is the kernel of some group homomorphism ¢ : G — K, K some

group
@ H is the kernel of some group epimorphism ¢ : G — K, K some group

Repetition: @ There is some congruence T on G such that H = [1]..

Conjugacy, Normal @ The left congruence x ~ y iff y~1x € H is a congruence

b : i i
subgroups © The right congruence x ~g y iff xy~* € H is a congruence

@ For all g € G, the left coset gH is equal to the right coset Hg
@ The multiplication (g1 H)(g2H) = (g182)H is well defined
@® The multiplication (Hgy)(Hg) = H(g1g2) is well defined
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Example

Let G =S4, H=1{(),(12)(34), (13)(24), (14)(23)}. We check that H < G.
Is H normal in G? If so, what is G/H?
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Repetition:
Conjugacy, Normal
subgroups

Example

Let H, K be groups, and let G = H x K. Put H={(h,k) € G|k =1}
and K ={(h,k) € Glh=1}. Is H normal in G? If so, what is G/H?
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