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Definition

An equivalence relation ∼ on a semigroup S is a

1 left congruence if s ∼ t implies as ∼ at for all a, s, t ∈ S

2 right congruence if s ∼ t implies sa ∼ ta for all a, s, t ∈ S

3 congruence if s ∼ t and a ∼ b implies sa ∼ tb for all a, b, s, t ∈ S

Example

Let P denote the positive integers under multiplication; this is a semigroup

(even a monoid). Let 2P denote the subset of even positive integers.

Define an equivalence relation ∼ by partitioning P into 2P, together with

singleton partitions for the odd positive integers. Then ∼ is a left

congruence, a right congruence, and a congruence.
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Lemma

An equivalence relation ∼ on a semigroup S is a congruence if and only if it

is both a left and a right congruence.

Proof.

• Suppose ∼ congruence. Take a, s, t ∈ S with s ∼ t. Since a ∼ a, we

have as ∼ at. Similarly for right.
• Suppose ∼ left and right congruence. Take a, b, s, t ∈ S with s ∼ t,

a ∼ b. Then

s ∼ t =⇒ as ∼ at

and

a ∼ b =⇒ at ∼ bt

so by transitivity

as ∼ bt,

as desired.
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Assume: G group, ∼ congruence, N = [1G ].

Definition

We say that a subgroup H ≤ G is normal in G , written H / G , if

ghg−1 ∈ H for each h ∈ H, g ∈ G . Thus H is closed under conjugation

with elements in G .

Theorem

N / G .

Proof.

N 3 h =⇒ h ∼ 1 =⇒ gh ∼ g =⇒ ghg−1 ∼ gg−1 = 1 =⇒ ghg−1 ∈ N
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Definition

If A,B ⊆ G , then

AB = { ab a ∈ A, b ∈ B } .

We use aB for {a}B, an so on and so forth.

Example

For abelian groups written additively, we write A + B instead. For

instance, 1 + 4Z are all integers congruent to 1 modulo 4.
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Theorem

• For g ∈ G , [g ]∼ = gN = Ng

• For x , y ∈ G , x ∼ y iff xy−1 ∈ N iff x−1y ∈ N.

Proof.

• x ∈ [g ]∼ ⇐⇒ x ∼ g ⇐⇒ xg−1 ∼ 1 ⇐⇒ xg−1 ∈ N ⇐⇒ xg−1 =

n ⇐⇒ x = ng ⇐⇒ x ∈ Ng

• x ∼ y ⇐⇒ xy−1 ∼ 1 ⇐⇒ xy−1 ∈ N

So, a group congruence is completely determined by the equivalence class

[1]∼. This is not so for semigroups.
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Now let H ≤ G be a not necessarily normal subgroup of G .

Definition

For x , y ∈ G , define x ∼L y iff y−1x ∈ H, and define x ∼R y iff xy−1 ∈ H.

Theorem

• x ∼L y iff x ∈ yH

• x ∼H y iff x ∈ Hy

• ∼L is a left congruence

• ∼R is a right congruence

Proof.

x ∼L y ⇐⇒ y−1x ∈ H ⇐⇒ x ∈ yH =⇒ tx ∈ tyH ⇐⇒ tx ∼L ty .
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Definition

The equivalence class [x ]∼L = xH is called the left coset of H containing x .

The right coset is [x ]∼R = Hx

Theorem (Lagrange)

The left cosets (and the right cosets) are all equipotent with H. Thus, if

G is finite, then |G | = |H|m, where m is the number of distinct left cosets,

also called the index of H in G , denoted [G : H].

Proof.

Let g ∈ G . Then H 3 h 7→ gh ∈ gH is surjective by definition, and

injective since gh1 = gh2 =⇒ g−1gh1 = g−1gh2.
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Example

• In our example P = 2P ∪k∈P {2k − 1} one equivalence is infinite, and

the rest singletons — this could never happen in a group!

• If G = S3, H = 〈(1, 2)〉, then the left cosets are

()H = {(), (1, 2)} , (1, 3)H = {(1, 3), (1, 2, 3)} , (2, 3)H = {(2, 3), (1, 3, 2)} ,

whereas the right cosets are

H() = {(), (1, 2)} ,H(1, 3) = {(1, 3), (1, 3, 2)} ,H(2, 3) = {(2, 3), (1, 2, 3)} .

So the left and right cosets, while equally many and equally big, are

different. Of course, ∼L 6=∼R . Furthermore, H is not normal.
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In fact:

Lemma

The following are equivalent:

1 H / G ,

2 ∼L=∼R ,

3 gH = Hg for all g ∈ G .

When this holds, ∼L and ∼R are congruences.



Abstract Algebra, Lecture 6

Jan Snellman

Congruences on
semigroups
Congruences on groups

Cosets and Lagrange

Fermat and Euler

Homomorphisms

Quotient
structures

Repetition:
Conjugacy, Normal
subgroups

Corollary

Let G be a finite group with n elements. Let H be a subgroup of G , and

g ∈ G .

• The size of H divides n,

• o(g) divides n.

Proof.

o(g) = |〈g〉|.
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Example

There is no element in S6 of order 7. Nor is there a subgroup of size 25.

Example

The full symmetry group of a cube has 48 elements, so a priori, the

possible orders of elements are

1, 2, 3, 4, 6, 8, 12, 16, 24, 32

Actually occuring orders are

1, 2, 3, 4
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Recall that for a positive integer n, Un = { [k ]n gcd(k , n) = 1 } is a group

under multiplication.

Definition

Euler’s totient φ is defined by φ(n) = |Un|.

Lemma

1 If p is a prime number, then φ(pr ) = pr − pr−1,

2 If gcd(m, n) = 1, then φ(mn) = φ(m)φ(n)

3 If n has prime factorization n =
∏

j p
aj
j , then

φ(n) =
∏

j φ(p
aj
j ) =

∏
j(p

aj
j − p

aj−1
j ).

Proof.

Elementary, CRT, immediate consequence.
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Recall that if o(g) = n, then gk = 1 iff n|k.

Theorem (Euler)

If n 6 |a then

aφ(n) ≡ 1 mod n

Proof.

By Lagrange, since φ(n) = |Un|, and since

[a]kn = [1]n ∈ Un ⇐⇒ ak ≡ 1 mod n
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Historically, the special case of prime modulus was proved first, using

elementary means:

Theorem (Fermat)

If p prime, andp 6 |a then,

ap−1 ≡ 1 mod p
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Example

20258 ≡ 3258 ≡ 316∗16+2 ≡ (316)16 ∗ 32 ≡ 116 ∗ 9 ≡ 9 mod 17

Example

x = 7123 ≡ 712∗10+3 ≡ (712)10 ∗ 73 ≡ 73 ≡ 49 ∗ 7 ≡ 9 ∗ 7 ≡ 3 mod 20

since φ(20) = φ(4 ∗ 5) = φ(4) ∗ φ(5) = 3 ∗ 4 = 12.

Alternatively,

x ≡ 3123 ≡ 32∗61+1 ≡ 3 mod 4

and

x ≡ 5123 ≡ 34∗30+1 ≡ 3 mod 5

so by CRT, x ≡ 3 mod 20.
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Definition

If S ,T are semigroups, then a semigroup homomorphism is a function

f : S → T such that f (xy) = f (x)f (y) for all x , y ∈ S . If S ,T are both

monoids, we demand in addition that f (1) = 1. If S ,T are both groups,

then it follows that a monoid homomorphism will also preserve inverses.

We have previously defined group isomorphisms, which are bijective group

homomorphisms.

Lemma

The inverse of a group isomorphism is a group isomorphism.
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Definition

Let G ,H be semigroups, and let φ : G → H be a semigroup

homomorphism, i.e., φ(g1g1) = φ(g1)φ(g2) for all g1, g2 ∈ G . We define

• Im(φ) = φ(G ) = {φ(g) g ∈ G },

• ker(φ) = { (g1, g2) ∈ G φ(g1) = φ(g2) }.

Lemma

Im(φ) is a subsemigroup of H and ker(φ) is a congruence on G .

Proof.

If h1, h2 ∈ Im(φ) then h1 = φ(g1), h2 = φ(g2), so

h1h2 = φ(g1)φ(g2) = φ(g1g2) ∈ Im(φ).

If (g1, g2), (k1, k2) ∈ ker(φ) then φ(g1) = φ(g2) and φ(k1) = φ(k2).

Hence φ(g1k1) = φ(g1)φ(k1) = φ(g2)φ(k2) = φ(g2k2), so

(g1k1, g2, k2) ∈ ker(φ).
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Lemma

If φ : G → H is a group homomorphism, then

1 Im(φ) is a subgroup of H,

2 φ−1({1H }) is a normal subgroup of G. It coincides with the class

N = [1G ] of the identity element of G , under the kernel congruence.

3 More explicitly, φ(x) = φ(y) iff (x , y) ∈ kerφ iff xy−1 ∈ N iff

x−1y ∈ N

Definition

By abuse of notation, when φ is a group homomorphism, we call N the

kernel of φ, and denote it by ker(φ).

The kernel congruence is determined by N, in that all other classes are

translates of N.
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Lemma

Let φ : G → H be a group homomorphism. Then φ is injective iff

ker(φ) = {1G }.

Proof.

By definition of group homomorphism, we have that φ(1G ) = 1H . If φ is

injective, no other element of G maps to 1H .

Conversely, suppose that ker(φ) = {1G }, and that φ(x) = φ(y). Then

φ(x)φ(y)−1 = 1H , so φ(xy−1) = 1H, so xy−1 ∈ ker(φ). By assumption,

xy−1 = 1G , and so x = y .
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Definition

Let ∼ be a congruence on the semigroup S . Then the set of equivalence

classes is denoted by S/ ∼.

Example

In our example with a congruence on P, the quotient P/ ∼ contains one

element for each odd positive number, and one element representing the

even positive numbers.
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Theorem

1 S/ ∼ becomes a semigroup under the (well-defined) operation

[x ]∼ ∗ [y ]∼ = [xy ]∼

2 The canonical surjection

S → S/ ∼

x 7→ [x ]∼

is a semigroup homomorphism, i.e., x ∗ y is mapped to [x ]∼ ∗ [y ]∼
3 Conversely, for any surjective semigroup homomorphism f : S → T ,

the kernel

ker f =
{
(x , y) ∈ S2 f (x) = f (y)

}
is a congruence.

4 Finally, if ∼ is a congruence on S, the kernel congruence of the

canonical surjection above is simply ∼.
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The group version is as follows:

Theorem

Let φ : G → H be a surjective group homomorphism, with kernel N, and

associated congruence ∼. Then the quotient S/ ∼= S/N is the set of left

(or right) cosets of N. It becomes a group with the operation

[x ]∼[y ]∼ = [xy ]∼,

or equivalently,

xN ∗ yN = (xy)N

Conversely, if N / G then the canonical surjection π : G → G/N defined

by π(g) = gN has kernel N.
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Epimorphisms, normal subgroups, congruences

epimorphism φ

normal subgroup N congruence ∼

φ(x)=φ(y)N=ker(φ)

xN=yN

G→G/N

N=[1]

G→G/∼
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Theorem (First isomorphism thm)

If φ : G → H is a group homomorphism with kernel N, then

G/N ' Im(φ).

Proof.

The map gN 7→ φ(g) is well-defined, and has image Im(φ). Furthermore,

g1Ng2N = (g1g2)N 7→ φ(g1g2) = φ(g1)φ(g2), so it is a homomorphism.

If gN 7→ 1H then φ(g) = 1H , thus g ∈ N, thus gN = N. So the

assignment is injective, as well.

The semigroup version is similar.
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One often makes use of the following version:

Theorem

Suppose that φ : G → H is a group homomorphism, and let M be a

normal subgroup of G contained in ker(φ). Then there is a unique group

homomorphism τ : G/M → H, with Im(τ) = Im(φ), and such that

τ ◦ π = φ. In other words, the following diagram commutes:

G H

G/M

φ

π
τ
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Example

Let G = (R,+, 0) and let H = C∗, ∗, 1), and define

φ : G → H

φ(x) = exp(2πxi)

1 Then ker(φ) = Z, and Im(φ) = T. So first iso yields R/Z ' T.

2 Let M = 2Z. Convenient thm implies surj grp. hom. τ : R/(2Z)→ T

well-defined by τ(x + (2Z)) = φ(x). We can think of R/(2Z) as a

“larger circle”.
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Example

Let G be a group, and g ∈ G . The map

Z 3 n 7→ gn ∈ G

is a group homomorphism, with image 〈g〉, and kernel {0} if o(g) =∞,

kZ if o(g) = k . Thus first iso thm yields

Z ' 〈g〉

in the first case, and

Z/(kZ) ' 〈g〉

in the second case.
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Example

Let GLn denote the group of invertible, real, n by n matrices, with matrix

multiplication. The subset SGLn of matrices with determinant +1 forms a

subgroup. We claim that this subgroup is normal, and that the quotient is

isomorphic to R∗, the group of the non-zero real numbers, under

multiplication.

Rather than proving this directly, note that the map

GLn 3 M 7→ det(M) ∈ R∗

is a surjective group homomorphism, with kernel SGLn.
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Theorem (Second iso thm)

Suppose G group, H ≤ G , N / G . Then HN ≤ G , (H ∩ N) / H, N / HN,

and
H

H ∩ N
' HN

N

Proof.

We omit the proofs that HN subgroup et cetera. Define a map

φ : H → HN

N

φ(h) = hN

Group hom., surj. by def. But

ker(φ) = { h ∈ H φ(h) = 1N } = { h ∈ H h ∈ N } = H ∩ N

First iso. thm. gives

HN

N
' H

ker(φ)
=

H

H ∩ N
,

as desired.
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Example

G = Z, H = 10Z, N = 12Z. Then H + N = 2Z, H ∩ N = 60Z, and

10Z
60Z

=
H

H ∩ N
' H + N

N
=

2Z
12Z

This quotient is furthermore isomorphic to

Z
6Z
' Z6 ' C6
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Theorem (Third iso. thm.)

G group, N,H normal subgroups of G , N ⊆ H. Then N / H, and

H/N / G/N, and
G/N

H/N
' G

H

Proof.

Consider the surjective (and well-defined) group homomorphism

φ :
G

N
→ G

H

φ(gN) = gH

Its kernel is H/N, so an appeal to the first iso. thm. finishes the proof.
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Example

Let G = Z× Z, H = 〈(0, 1)〉, N = 〈(0, 2)〉. Then G/N ' Z× Z2,

G/H ' Z, H/N ' Z2, and

G/N

H/N
' Z× Z2

Z2
' Z ' G

H

Example

12Z / 6Z / Z,

and
Z/(12Z)

(6Z)/(12Z)
' Z

6Z



Abstract Algebra, Lecture 6

Jan Snellman

Congruences on
semigroups

Homomorphisms

Quotient
structures
Quotient groups

The isomorphism
theorems

The correspondence
theorem

Repetition:
Conjugacy, Normal
subgroups

Theorem (Correspondence thm)

G group, N normal subgroup, π : G → G/N canonical quotient

epimorphism, A set of all subgroups of G which contain N, B set of all

subgroups of G/N. Then

σ : A→ B
σ(H) = π(H) = H/N

τ : B → A
τ(K ) = π−1(K ) = { g ∈ G gN ∈ K }

are inclusion-preserving and each others inverses, thus establishing an

inclusion-preserving bijection between A and B. Furthermore, in this

bijection, normal subgroups correspond to normal subgroups.
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Example

Since Z / R and R/Z ' T, subgroups of T correspond to those subgroups

of R that contain Z.

Example

The set of subgroups of GLn which contain all matrices of determinant

one is in bijective correspondence with subgroups of R∗.

Example

Subgroups of Z which contains 4Z correspond to subgroups of

Z/(4Z) ' Z4, which has one proper, nontrivial subgroup, namely

{[0]4, [2]4}. The relevent subgroup of Z is 2Z.
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Example

We show C60 = 〈g〉 and its subgroups, and then the quotient by the

subgroup 〈g30〉 and its subgroups; the subgroups in the quotient

correspond to subgroup in the large group containing thab by which we

mod out.
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Conjugacy

• G group

• Equivalence relation: h1 ∼c h2 iff exists g ∈ G s.t. h2 = gh1g−1.

• Eg invertible matrices are conjugate if they correspon to the same

linear transformation, after change of basis

• Conjugacy classes: equivalence classes under ∼c .

• In Sn, correspond to cycle type

• In G ≤ Sn, necessary but not sufficient, must have g ∈ G , not g ∈ Sn.
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• G still group, H ≤ G subgroup

• The following are equivalent:

1 For all g ∈ g , h ∈ h it holds that ghg−1 ∈ H.

2 For all g ∈ G it holds that gHg−1 =
{

ghg−1 h ∈ H
}
⊆ H

3 H is the union of conjugacy classes

4 H is the kernel of some group homomorphism φ : G → K , K some

group

5 H is the kernel of some group epimorphism φ : G → K , K some group

6 There is some congruence τ on G such that H = [1]τ.

7 The left congruence x ∼L y iff y−1x ∈ H is a congruence

8 The right congruence x ∼R y iff xy−1 ∈ H is a congruence

9 For all g ∈ G , the left coset gH is equal to the right coset Hg

10 The multiplication (g1H)(g2H) = (g1g2)H is well defined

11 The multiplication (Hg1)(Hg2) = H(g1g2) is well defined
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Example

Let G = S4, H = {(), (12)(34), (13)(24), (14)(23)}. We check that H ≤ G .

Is H normal in G ? If so, what is G/H?
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Example

Let H,K be groups, and let G = H × K . Put ~H = { (h, k) ∈ G k = 1 }

and ~K = { (h, k) ∈ G h = 1 }. Is ~H normal in G ? If so, what is G/H?
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