Jan Snellman

TEKNISKA HÖGSKOLAN LINKÖPINGS UNIVERSITET

Congruences on semigroups

Homomorphisms
Quotient
structures
Repetition: Conjugacy, Normal subgroups

Abstract Algebra, Lecture 6

Congruences, cosets, and normal subgroups

Jan Snellman ${ }^{1}$
${ }^{1}$ Matematiska Institutionen
Linköpings Universitet

TEKNISKA HÖGSKOLAN
LINKÖPINGS UNIVERSITET
Linköping, fall 2019

Lecture notes availabe at course homepage http://courses.mai.liu.se/GU/TATA55/

Abstract Algebra, Lecture 6
Jan Snellman

TEKNISKA HÖGSKOLAN IINKÖPINGS UNIVERSITET

Congruences on

 semigroupsHomomorphisms
Quotient
structures
Repetition:
Conjugacy, Normal subgroups

Summary

(1) Congruences on semigroups

 Congruences on groups Cosets and Lagrange Fermat and Euler2. Homomorphisms Group homomorphisms
(3) Quotient structures

Quotient groups The isomorphism theorems The correspondence theorem
(4) Renetition: Conjugacy Normal subgroups

Abstract Algebra, Lecture 6
Jan Snellman

TEKNISKA HÖGSKOLAN
LINKÖPINGS UNIVERSITET

Congruences on

 semigroupsHomomorphisms
Quotient
structures
Repetition: Conjugacy, Normal subgroups

Summary

(1) Congruences on semigroups

 Congruences on groups Cosets and Lagrange Fermat and Euler(2) Homomorphisms

Group homomorphisms
(3) Quotient structures

Quotient groups The isomorphism theorems The correspondence theorem
(4) Renetition: Conjugacy, Normal subgroups

Jan Snellman

TEKNISKA HÖGSKOLAN
INKÖPINGS UNIVERSITET

Congruences on

 semigroupsHomomorphisms
Quotient
structures
Repetition: Conjugacy, Normal subgroups

Summary

(1) Congruences on semigroups Congruences on groups Cosets and Lagrange Fermat and Euler
(2) Homomorphisms

Group homomorphisms
(3) Quotient structures

Quotient groups
The isomorphism theorems
The correspondence theorem
4) Repetition: Conjugacy, Normal subgroups

Jan Snellman

TEKNISKA HÖGSKOLAN
INKÖPINGS UNIVERSITET

Congruences on semigroups

Homomorphisms
Quotient
structures
Repetition: Conjugacy, Normal subgroups

Summary

(1) Congruences on semigroups Congruences on groups Cosets and Lagrange Fermat and Euler
(2) Homomorphisms

Group homomorphisms
(3) Quotient structures

Quotient groups
The isomorphism theorems
The correspondence theorem
(4) Repetition: Conjugacy, Normal subgroups

Jan Snellman

Congruences on semigroups
Congruences on groups Cosets and Lagrange Fermat and Euler

Quotient
structures

Definition

An equivalence relation \sim on a semigroup S is a
(1) left congruence if $s \sim t$ implies as \sim at for all $a, s, t \in S$
(2) right congruence if $s \sim t$ implies sa $\sim t$ for all $a, s, t \in S$
(3) congruence if $s \sim t$ and $a \sim b$ implies $s a \sim t b$ for all $a, b, s, t \in S$

Example

Let \mathbb{P} denote the positive integers under multiplication; this is a semigroup (even a monoid). Let $2 \mathbb{P}$ denote the subset of even positive integers.
Define an equivalence relation \sim by partitioning \mathbb{P} into $2 \mathbb{P}$, together with singleton partitions for the odd positive integers. Then \sim is a left congruence, a right congruence, and a congruence.

Jan Snellman

TEKNISKA HÖGSKOLAN
LINKÖPINGS UNIVERSITET

Congruences on

 semigroupsCongruences on groups Cosets and Lagrange Fermat and Euler

Homomorphisms
Quotient
structures

Lemma

An equivalence relation ~ on a semigroup S is a congruence if and only if it is both a left and a right congruence.

Proof.

- Suppose \sim congruence. Take $a, s, t \in S$ with $s \sim t$. Since $a \sim a$, we have as ~ at. Similarly for right.
- Suppose \sim left and right congruence. Take $a, b, s, t \in S$ with $s \sim t$, $a \sim b$. Then

$$
s \sim t \Longrightarrow a s \sim a t
$$

and

$$
a \sim b \Longrightarrow a t \sim b t
$$

so by transitivity

$$
a s \sim b t
$$

as desired.

Jan Snellman

TEKNISKA HÖGSKOLAN LINKÖPINGS UNIVERSITET

Congruences on semigroups

Congruences on groups

 Cosets and Lagrange Fermat and EulerHomomorphisms
Quotient
structures
Repetition:

Assume: G group, \sim congruence, $N=\left[1_{G}\right]$.

Definition

We say that a subgroup $H \leq G$ is normal in G, written $H \triangleleft G$, if $g^{\prime} g^{-1} \in H$ for each $h \in H, g \in G$. Thus H is closed under conjugation with elements in G.

Theorem

$N \triangleleft G$.

Proof.

$$
N \ni h \Longrightarrow h \sim 1 \Longrightarrow g h \sim g \Longrightarrow g h g^{-1} \sim g g^{-1}=1 \Longrightarrow g h g^{-1} \in N
$$

Jan Snellman

TEKNISKA HÖGSKOLAN LINKÖPINGS UNIVERSITET

Congruences on semigroups

Congruences on groups

 Cosets and Lagrange Fermat and EulerHomomorphisms
Quotient
structures
Repetition:

Definition
If $A, B \subseteq G$, then

$$
A B=\{a b \mid a \in A, b \in B\} .
$$

We use $a B$ for $\{a\} B$, an so on and so forth.

Example

For abelian groups written additively, we write $A+B$ instead. For instance, $1+4 \mathbb{Z}$ are all integers congruent to 1 modulo 4 .

Jan Snellman

TEKNISKA HÖGSKOLAN
LINKÖPINGS UNIVERSITET

Congruences on semigroups

Congruences on groups

Cosets and Lagrange Fermat and Euler

Homomorphisms
Quotient
structures

Theorem

- For $g \in G,[g]_{\sim}=g N=N g$
- For $x, y \in G, x \sim y$ iff $x y^{-1} \in N$ iff $x^{-1} y \in N$.

Proof.

$\bullet x \in[g]_{\sim} \Longleftrightarrow x \sim g \Longleftrightarrow x g^{-1} \sim 1 \Longleftrightarrow x g^{-1} \in N \Longleftrightarrow x g^{-1}=$ $n \Longleftrightarrow x=n g \Longleftrightarrow x \in N g$

- $x \sim y \Longleftrightarrow x y^{-1} \sim 1 \Longleftrightarrow x y^{-1} \in N$

So, a group congruence is completely determined by the equivalence class [1] . This is not so for semigroups.

Jan Snellman

Congruences on groups

Cosets and Lagrange Fermat and Euler

Homomorphisms
Quotient
structures

Now let $H \leq G$ be a not necessarily normal subgroup of G.

Definition

For $x, y \in G$, define $x \sim_{L} y$ iff $y^{-1} x \in H$, and define $x \sim_{R} y$ iff $x y^{-1} \in H$.

Theorem

- $x \sim L y$ iff $x \in y H$
- \sim_{L} is a left congruence
- $x \sim H$ y iff $x \in H y$
- \sim_{R} is a right congruence

Proof.

$x \sim L y \Longleftrightarrow y^{-1} x \in H \Longleftrightarrow x \in y H \Longrightarrow t x \in t y H \Longleftrightarrow t x \sim L t y$.

Jan Snellman

Definition

The equivalence class $[x]_{\sim_{L}}=x H$ is called the left coset of H containing x.
The right coset is $[x]_{\sim_{R}}=H x$

Theorem (Lagrange)

The left cosets (and the right cosets) are all equipotent with H. Thus, if G is finite, then $|G|=|H| m$, where m is the number of distinct left cosets, also called the index of H in G, denoted $[G: H$].

Proof.

Let $g \in G$. Then $H \ni h \mapsto g h \in g H$ is surjective by definition, and injective since $g h_{1}=g h_{2} \Longrightarrow g^{-1} g h_{1}=g^{-1} g h_{2}$.

Jan Snellman

Example

- In our example $\mathbb{P}=2 \mathbb{P} \cup_{k \in \mathbb{P}}\{2 k-1\}$ one equivalence is infinite, and the rest singletons - this could never happen in a group!
- If $G=S_{3}, H=\langle(1,2)\rangle$, then the left cosets are

$$
() H=\{(),(1,2)\},(1,3) H=\{(1,3),(1,2,3)\},(2,3) H=\{(2,3),(1,3,2)\},
$$

whereas the right cosets are

$$
H()=\{(),(1,2)\}, H(1,3)=\{(1,3),(1,3,2)\}, H(2,3)=\{(2,3),(1,2,3)\} .
$$

So the left and right cosets, while equally many and equally big, are different. Of course, $\sim_{L} \neq \sim_{R}$. Furthermore, H is not normal.

$$
\begin{aligned}
& \square^{4}= \\
& 8
\end{aligned}
$$

Jan Snellman

TEKNISKA HÖGSKOLAN IINKÖPINGS UNIVERSITET

Congruences on semigroups
Congruences on groups Cosets and Lagrange Fermat and Euler

Homomorphisms

Quotient

structures

In fact:

Lemma

The following are equivalent:
(1) $H \triangleleft G$,
(2) $\sim L=\sim R$,
(3) $g H=H g$ for all $g \in G$.

When this holds, \sim_{L} and \sim_{R} are congruences.

Jan Snellman

TEKNISKA HÖGSKOLAN LINKÖPINGS UNIVERSITET

Congruences on semigroups
Congruences on groups Cosets and Lagrange Fermat and Euler
Homomorphisms
Quotient
structures
Repetition:

Corollary

Let G be a finite group with n elements. Let H be a subgroup of G, and $g \in G$.

- The size of H divides n,
- o(g) divides n.

Proof.

$$
o(g)=|\langle g\rangle| .
$$

\square

Example

There is no element in S_{6} of order 7 . Nor is there a subgroup of size 25 .

Example

The full symmetry group of a cube has 48 elements, so a priori, the possible orders of elements are

$$
1,2,3,4,6,8,12,16,24,32
$$

Actually occuring orders are

$$
1,2,3,4
$$

Jan Snellman

Recall that for a positive integer $n, U_{n}=\left\{[k]_{n} \mid \operatorname{gcd}(k, n)=1\right\}$ is a group under multiplication.

Definition

Euler's totient ϕ is defined by $\phi(n)=\left|U_{n}\right|$.

Lemma

(1) If p is a prime number, then $\phi\left(p^{r}\right)=p^{r}-p^{r-1}$,
(2) If $\operatorname{gcd}(m, n)=1$, then $\phi(m n)=\phi(m) \phi(n)$
(3) If n has prime factorization $n=\prod_{j} p_{j}^{a_{j}}$, then

$$
\phi(n)=\prod_{j} \phi\left(p_{j}^{a_{j}}\right)=\prod_{j}\left(p_{j}^{a_{j}}-p_{j}^{a_{j}-1}\right) .
$$

Proof.

Elementary, CRT, immediate consequence.

Jan Snellman

Recall that if $o(g)=n$, then $g^{k}=1$ iff $n \mid k$.

Theorem (Euler)

If n Xa then

$$
a^{\phi(n)} \equiv 1 \quad \bmod n
$$

Proof.

By Lagrange, since $\phi(n)=\left|U_{n}\right|$, and since

$$
[a]_{n}^{k}=[1]_{n} \in U_{n} \quad \Longleftrightarrow \quad a^{k} \equiv 1 \quad \bmod n
$$

Jan Snellman

TEKNISKA HÖGSKOLAN LINKÖPINGS UNIVERSITET

Congruences on semigroups
Congruences on groups Cosets and Lagrange Fermat and Euler

Homomorphisms
Quotient
structures

Historically, the special case of prime modulus was proved first, using elementary means:

Theorem (Fermat)

If p prime, andp Xa then,

$$
a^{p-1} \equiv 1 \quad \bmod p
$$

Example

$$
20^{258} \equiv 3^{258} \equiv 3^{16 * 16+2} \equiv\left(3^{16}\right)^{16} * 3^{2} \equiv 1^{16} * 9 \equiv 9 \bmod 17
$$

Example

$$
x=7^{123} \equiv 7^{12 * 10+3} \equiv\left(7^{12}\right)^{10} * 7^{3} \equiv 7^{3} \equiv 49 * 7 \equiv 9 * 7 \equiv 3 \bmod 20
$$

since $\phi(20)=\phi(4 * 5)=\phi(4) * \phi(5)=3 * 4=12$.
Alternatively,

$$
x \equiv 3^{123} \equiv 3^{2 * 61+1} \equiv 3 \quad \bmod 4
$$

and

$$
x \equiv 5^{123} \equiv 3^{4 * 30+1} \equiv 3 \bmod 5
$$

so by CRT, $x \equiv 3 \bmod 20$.

Jan Snellman

Definition

If S, T are semigroups, then a semigroup homomorphism is a function $f: S \rightarrow T$ such that $f(x y)=f(x) f(y)$ for all $x, y \in S$. If S, T are both monoids, we demand in addition that $f(1)=1$. If S, T are both groups, then it follows that a monoid homomorphism will also preserve inverses.

We have previously defined group isomorphisms, which are bijective group homomorphisms.

Lemma

The inverse of a group isomorphism is a group isomorphism.

Jan Snellman

Definition

Let G, H be semigroups, and let $\phi: G \rightarrow H$ be a semigroup homomorphism, i.e., $\phi\left(g_{1} g_{1}\right)=\phi\left(g_{1}\right) \phi\left(g_{2}\right)$ for all $g_{1}, g_{2} \in G$. We define

- $\operatorname{Im}(\phi)=\phi(G)=\{\phi(g) \mid g \in G\}$,
- $\operatorname{ker}(\phi)=\left\{\left(g_{1}, g_{2}\right) \in G \mid \phi\left(g_{1}\right)=\phi\left(g_{2}\right)\right\}$.

Lemma

$\operatorname{Im}(\phi)$ is a subsemigroup of H and $\operatorname{ker}(\phi)$ is a congruence on G.

Proof.

If $h_{1}, h_{2} \in \operatorname{Im}(\phi)$ then $h_{1}=\phi\left(g_{1}\right), h_{2}=\phi\left(g_{2}\right)$, so
$h_{1} h_{2}=\phi\left(g_{1}\right) \phi\left(g_{2}\right)=\phi\left(g_{1} g_{2}\right) \in \operatorname{Im}(\phi)$.
If $\left(g_{1}, g_{2}\right),\left(k_{1}, k_{2}\right) \in \operatorname{ker}(\phi)$ then $\phi\left(g_{1}\right)=\phi\left(g_{2}\right)$ and $\phi\left(k_{1}\right)=\phi\left(k_{2}\right)$. Hence $\phi\left(g_{1} k_{1}\right)=\phi\left(g_{1}\right) \phi\left(k_{1}\right)=\phi\left(g_{2}\right) \phi\left(k_{2}\right)=\phi\left(g_{2} k_{2}\right)$, so $\left(g_{1} k_{1}, g_{2}, k_{2}\right) \in \operatorname{ker}(\phi)$.

Jan Snellman

TEKNISKA HÖGSKOLAN
LINKÖPINGS UNIVERSITET

Congruences on

 semigroupsHomomorphisms
Group homomorphisms
Quotient
structures subgroups

Lemma

If $\phi: G \rightarrow H$ is a group homomorphism, then
(1) $\operatorname{Im}(\phi)$ is a subgroup of H,
(2) $\phi^{-1}\left(\left\{1_{H}\right\}\right)$ is a normal subgroup of G. It coincides with the class $N=\left[1_{G}\right]$ of the identity element of G, under the kernel congruence.
(3) More explicitly, $\phi(x)=\phi(y)$ iff $(x, y) \in \operatorname{ker} \phi$ iff $x y^{-1} \in N$ iff $x^{-1} y \in N$

Definition

By abuse of notation, when ϕ is a group homomorphism, we call N the kernel of ϕ, and denote it by $\operatorname{ker}(\phi)$.

The kernel congruence is determined by N, in that all other classes are translates of N.

Jan Snellman

Lemma

Let $\phi: G \rightarrow H$ be a group homomorphism. Then ϕ is injective iff $\operatorname{ker}(\phi)=\left\{1_{G}\right\}$.

Proof.

By definition of group homomorphism, we have that $\phi\left(1_{G}\right)=1_{H}$. If ϕ is injective, no other element of G maps to 1_{H}.
Conversely, suppose that $\operatorname{ker}(\phi)=\left\{1_{G}\right\}$, and that $\phi(x)=\phi(y)$. Then $\phi(x) \phi(y)^{-1}=1_{H}$, so $\phi\left(x y^{-1}\right)=1 H$, so $x y^{-1} \in \operatorname{ker}(\phi)$. By assumption, $x y^{-1}=1_{G}$, and so $x=y$.

Jan Snellman

TEKNISKA HÖGSKOLAN IINKÖPINGS UNIVERSITET

Congruences on semigroups
Homomorphisms
Quotient
structures
Quotient groups
The isomorphism theorems
The correspondence theorem

Definition

Let \sim be a congruence on the semigroup S. Then the set of equivalence classes is denoted by S / \sim.

Example

In our example with a congruence on \mathbb{P}, the quotient \mathbb{P} / \sim contains one element for each odd positive number, and one element representing the even positive numbers.

Jan Snellman

TEKNISKA HÖGSKOLAN LINKÖPINGS UNIVERSITET

Congruences on semigroups

Homomorphisms
Quotient
structures
Quotient groups
The isomorphism theorems
The correspondence theorem

Theorem
(1) S/ ~ becomes a semigroup under the (well-defined) operation

$$
[x]_{\sim} *[y]_{\sim}=[x y]_{\sim}
$$

(2) The canonical surjection

$$
\begin{aligned}
& S \rightarrow S / \sim \\
& x \mapsto[x]_{\sim}
\end{aligned}
$$

is a semigroup homomorphism, i.e., $x * y$ is mapped to $[x]_{\sim} *[y]_{\sim}$
(3) Conversely, for any surjective semigroup homomorphism $f: S \rightarrow T$, the kernel

$$
\operatorname{ker} f=\left\{(x, y) \in S^{2} \mid f(x)=f(y)\right\}
$$

is a congruence.
(4) Finally, if ~ is a congruence on S, the kernel congruence of the canonical surjection above is simply \sim.

Jan Snellman

The group version is as follows:

Theorem

Let $\phi: G \rightarrow H$ be a surjective group homomorphism, with kernel N, and associated congruence \sim. Then the quotient $S / \sim=S / N$ is the set of left (or right) cosets of N. It becomes a group with the operation

$$
[x]_{\sim}[y]_{\sim}=[x y]_{\sim},
$$

or equivalently,

$$
x N * y N=(x y) N
$$

Conversely, if $N \triangleleft G$ then the canonical surjection $\pi: G \rightarrow G / N$ defined by $\pi(g)=g N$ has kernel N.

Jan Snellman

TEKNISKA HÖGSKOLAN LINKÖPINGS UNIVERSITET

Congruences on

 semigroupsHomomorphisms

Quotient

structures

Quotient groups

The isomorphism theorems
The correspondence theorem

Repetition:

Conjugacy, Normal subgroups

Epimorphisms, normal subgroups, congruences

Theorem (First isomorphism thm)

If $\phi: G \rightarrow H$ is a group homomorphism with kernel N, then $G / N \simeq \operatorname{Im}(\phi)$.

Proof.

The map $g N \mapsto \phi(g)$ is well-defined, and has image $\operatorname{Im}(\phi)$. Furthermore, $g_{1} N g_{2} N=\left(g_{1} g_{2}\right) N \mapsto \phi\left(g_{1} g_{2}\right)=\phi\left(g_{1}\right) \phi\left(g_{2}\right)$, so it is a homomorphism. If $g N \mapsto 1_{H}$ then $\phi(g)=1_{H}$, thus $g \in N$, thus $g N=N$. So the assignment is injective, as well.

The semigroup version is similar.

Jan Snellman

TEKNISKA HÖGSKOLAN INKÖPINGS UNIVERSITET

Congruences on

 semigroupsHomomorphisms

Quotient

structures

Quotient groups

The isomorphism

 theoremsThe correspondence theorem

One often makes use of the following version:

Theorem

Suppose that $\phi: G \rightarrow H$ is a group homomorphism, and let M be a normal subgroup of G contained in $\operatorname{ker}(\phi)$. Then there is a unique group homomorphism $\tau: G / M \rightarrow H$, with $\operatorname{Im}(\tau)=\operatorname{Im}(\phi)$, and such that $\tau \circ \pi=\phi$. In other words, the following diagram commutes:

Jan Snellman

Example

Let $G=(\mathbb{R},+, 0)$ and let $\left.H=\mathbb{C}^{*}, *, 1\right)$, and define

$$
\begin{aligned}
\phi: G & \rightarrow H \\
\phi(x) & =\exp (2 \pi x i)
\end{aligned}
$$

(1) Then $\operatorname{ker}(\phi)=\mathbb{Z}$, and $\operatorname{Im}(\phi)=\mathfrak{T}$. So first iso yields $\mathbb{R} / \mathbb{Z} \simeq \mathfrak{T}$.
(2) Let $M=2 \mathbb{Z}$. Convenient thm implies surj grp. hom. $\tau: \mathbb{R} /(2 \mathbb{Z}) \rightarrow \mathfrak{T}$ well-defined by $\tau(x+(2 \mathbb{Z}))=\phi(x)$. We can think of $\mathbb{R} /(2 \mathbb{Z})$ as a "larger circle".

Jan Snellman

TEKNISKA HÖGSKOLAN LINKÖPINGS UNIVERSITET

Quotient

structures

Quotient groups

The isomorphism

 theoremsThe correspondence theorem

Example

Let G be a group, and $g \in G$. The map

$$
\mathbb{Z} \ni n \mapsto g^{n} \in G
$$

is a group homomorphism, with image $\langle g\rangle$, and kernel $\{0\}$ if $o(g)=\infty$, $k \mathbb{Z}$ if $o(g)=k$. Thus first iso thm yields

$$
\mathbb{Z} \simeq\langle g\rangle
$$

in the first case, and

$$
\mathbb{Z} /(k \mathbb{Z}) \simeq\langle g\rangle
$$

in the second case.

Example

Let GL_{n} denote the group of invertible, real, n by n matrices, with matrix multiplication. The subset SGL_{n} of matrices with determinant +1 forms a subgroup. We claim that this subgroup is normal, and that the quotient is isomorphic to \mathbb{R}^{*}, the group of the non-zero real numbers, under multiplication.
Rather than proving this directly, note that the map

$$
\mathrm{GL}_{n} \ni M \mapsto \operatorname{det}(M) \in \mathbb{R}^{*}
$$

is a surjective group homomorphism, with kernel SGL_{n}.

Jan Snellman

TEKNISKA HÖGSKOLAN LINKÖPINGS UNIVERSITET

Congruences on

 semigroupsHomomorphisms

Quotient

structures

Quotient groups
The isomorphism theorems
The correspondence theorem

Repetition:

 Conjugacy, Normal subgroupsTheorem (Second iso thm)
Suppose G group, $H \leq G, N \triangleleft G$. Then $H N \leq G,(H \cap N) \triangleleft H, N \triangleleft H N$, and

$$
\frac{H}{H \cap N} \simeq \frac{H N}{N}
$$

Proof.

We omit the proofs that $H N$ subgroup et cetera. Define a map

$$
\begin{aligned}
\phi: H & \rightarrow \frac{H N}{N} \\
\phi(h) & =h N
\end{aligned}
$$

Group hom., surj. by def. But

$$
\operatorname{ker}(\phi)=\{h \in H \mid \phi(h)=1 N\}=\{h \in H \mid h \in N\}=H \cap N
$$

First iso. thm. gives

$$
\frac{H N}{N} \simeq \frac{H}{\operatorname{ker}(\phi)}=\frac{H}{H \cap N},
$$

as desired.

Jan Snellman

TEKNISKA HÖGSKOLAN
LINKÖPINGS UNIVERSITET

Congruences on semigroups
Homomorphisms

Quotient

structures
Quotient groups
The isomorphism theorems
The correspondence theorem

Repetition:

Example

$$
G=\mathbb{Z}, H=10 \mathbb{Z}, N=12 \mathbb{Z} . \text { Then } H+N=2 \mathbb{Z}, H \cap N=60 \mathbb{Z} \text {, and }
$$

$$
\frac{10 \mathbb{Z}}{60 \mathbb{Z}}=\frac{H}{H \cap N} \simeq \frac{H+N}{N}=\frac{2 \mathbb{Z}}{12 \mathbb{Z}}
$$

This quotient is furthermore isomorphic to

$$
\frac{\mathbb{Z}}{6 \mathbb{Z}} \simeq \mathbb{Z}_{6} \simeq C_{6}
$$

Jan Snellman

Quotient

structures

Quotient groups

The isomorphism

 theoremsTheorem (Third iso. thm.)
G group, N, H normal subgroups of $G, N \subseteq H$. Then $N \triangleleft H$, and $H / N \triangleleft G / N$, and

$$
\frac{G / N}{H / N} \simeq \frac{G}{H}
$$

Proof.

Consider the surjective (and well-defined) group homomorphism

$$
\begin{gathered}
\phi: \frac{G}{N} \rightarrow \frac{G}{H} \\
\phi(g N)=g H
\end{gathered}
$$

Its kernel is H / N, so an appeal to the first iso. thm. finishes the proof.

Jan Snellman

TEKNISKA HÖGSKOLAN IINKOPINGS UNIVERSITET

Congruences on semigroups

Homomorphisms

Quotient

structures

Quotient groups
The isomorphism theorems
The correspondence theorem

Repetition:

Conjugacy, Normal subgroups

Example

Let $G=\mathbb{Z} \times \mathbb{Z}, H=\langle(0,1)\rangle, N=\langle(0,2)\rangle$. Then $G / N \simeq \mathbb{Z} \times \mathbb{Z}_{2}$, $G / H \simeq \mathbb{Z}, H / N \simeq \mathbb{Z}_{2}$, and

$$
\frac{G / N}{H / N} \simeq \frac{\mathbb{Z} \times \mathbb{Z}_{2}}{\mathbb{Z}_{2}} \simeq \mathbb{Z} \simeq \frac{G}{H}
$$

Example

$$
12 \mathbb{Z} \triangleleft 6 \mathbb{Z} \triangleleft \mathbb{Z},
$$

and

$$
\frac{\mathbb{Z} /(12 \mathbb{Z})}{(6 \mathbb{Z}) /(12 \mathbb{Z})} \simeq \frac{\mathbb{Z}}{6 \mathbb{Z}}
$$

Jan Snellman

TEKNISKA HÖGSKOLAN
LINKÖPINGS UNIVERSITET

Congruences on

 semigroupsHomomorphisms
Quotient
structures
Quotient groups
The isomorphism

theorems

The correspondence theorem

Theorem (Correspondence thm)

G group, N normal subgroup, $\pi: G \rightarrow G / N$ canonical quotient epimorphism, \mathcal{A} set of all subgroups of G which contain N, \mathcal{B} set of all subgroups of G / N. Then

$$
\begin{aligned}
\sigma: \mathcal{A} & \rightarrow \mathcal{B} \\
\sigma(H) & =\pi(H)=H / N \\
\tau: \mathcal{B} & \rightarrow \mathcal{A} \\
\tau(K) & =\pi^{-1}(K)=\{g \in G \mid g N \in K\}
\end{aligned}
$$

are inclusion-preserving and each others inverses, thus establishing an inclusion-preserving bijection between \mathcal{A} and \mathcal{B}. Furthermore, in this bijection, normal subgroups correspond to normal subgroups.

Jan Snellman

Example

Since $\mathbb{Z} \triangleleft \mathbb{R}$ and $\mathbb{R} / \mathbb{Z} \simeq \mathfrak{T}$, subgroups of \mathfrak{T} correspond to those subgroups of \mathbb{R} that contain \mathbb{Z}.

Example

The set of subgroups of GL_{n} which contain all matrices of determinant one is in bijective correspondence with subgroups of \mathbb{R}^{*}.

Example

Subgroups of \mathbb{Z} which contains $4 \mathbb{Z}$ correspond to subgroups of $\mathbb{Z} /(4 \mathbb{Z}) \simeq \mathbb{Z}_{4}$, which has one proper, nontrivial subgroup, namely $\left\{[0]_{4},[2]_{4}\right\}$. The relevent subgroup of \mathbb{Z} is $2 \mathbb{Z}$.

Example

We show $C_{60}=\langle g\rangle$ and its subgroups, and then the quotient by the subgroup $\left\langle g^{30}\right\rangle$ and its subgroups; the subgroups in the quotient correspond to subgroup in the large group containing thab by which we mod out.

- G group
- Equivalence relation: $h_{1} \sim_{c} h_{2}$ iff exists $g \in G$ s.t. $h_{2}=g h_{1} g^{-1}$.
- Eg invertible matrices are conjugate if they correspon to the same linear transformation, after change of basis
- Conjugacy classes: equivalence classes under \sim_{c}.
- In S_{n}, correspond to cycle type
- In $G \leq S_{n}$, necessary but not sufficient, must have $g \in G$, not $g \in S_{n}$.

Jan Snellman

- G still group, $H \leq G$ subgroup
- The following are equivalent:
(1) For all $g \in g, h \in h$ it holds that $g h g^{-1} \in H$.
(2) For all $g \in G$ it holds that $g H g^{-1}=\left\{g h g^{-1} \mid h \in H\right\} \subseteq H$
(3) H is the union of conjugacy classes
(4) H is the kernel of some group homomorphism $\phi: G \rightarrow K, K$ some group
(5) H is the kernel of some group epimorphism $\phi: G \rightarrow K, K$ some group
(6) There is some congruence τ on G such that $H=[1]_{\tau}$.
(7) The left congruence $x \sim_{L} y$ iff $y^{-1} x \in H$ is a congruence
(8) The right congruence $x \sim_{R} y$ iff $x y^{-1} \in H$ is a congruence
(9) For all $g \in G$, the left coset $g H$ is equal to the right coset Hg
(10) The multiplication $\left(g_{1} H\right)\left(g_{2} H\right)=\left(g_{1} g_{2}\right) H$ is well defined
(1I) The multiplication $\left(H g_{1}\right)\left(H g_{2}\right)=H\left(g_{1} g_{2}\right)$ is well defined

Jan Snellman

TEKNISKA HÖGSKOLAN LINKÖPINGS UNIVERSITET

Congruences on

semigroups
Homomorphisms

Quotient

structures
Repetition:
Conjugacy, Normal subgroups

Example

Let $G=S_{4}, H=\{(),(12)(34),(13)(24),(14)(23)\}$. We check that $H \leq G$. Is H normal in G ? If so, what is G / H ?

Jan Snellman

TEKNISKA HÖGSKOLAN LINKÖPINGS UNIVERSITET

Congruences on

semigroups
Homomorphisms

Quotient

structures
Repetition:
Conjugacy, Normal subgroups

Example

Let H, K be groups, and let $G=H \times K$. Put $\tilde{H}=\{(h, k) \in G \mid k=1\}$ and $\tilde{K}=\{(h, k) \in G \mid h=1\}$. Is \tilde{H} normal in G ? If so, what is G / H ?

