

Direct products again

Torsion and *p*-groups

The classification

Finitely generated (and presented) abelian groups

Abstract Algebra, Lecture 7

The classification of finite abelian groups

Jan Snellman¹

¹Matematiska Institutionen Linköpings Universitet

Linköping, fall 2019

Lecture notes availabe at course homepage http://courses.mai.liu.se/GU/TATA55/

- **Direct products**
- **Torsion and** p-groups
- The classification

Finitely generated (and presented) abelian groups

1 Direct products again Direct sums vs direct products () Finitely generated (and

Summary

- Direct products again
- **Torsion and** *p*-groups
- The classification

Finitely generated (and presented) abelian groups

1 Direct products again Direct sums vs direct products

2 Torsion and *p*-groups

Summary

3 The classification

Finitely generated (and presented) abelian groups

- Direct products again
- **Torsion and** *p*-groups
- The classification

Finitely generated (and presented) abelian groups

Direct products again Direct sums vs direct products Torsion and *p*-groups

3 The classification

Finitely generated (and presented) abelian groups

Summary

- Direct products again
- **Torsion and** *p*-groups
- The classification

Finitely generated (and presented) abelian groups Direct products again Direct sums vs direct products
 The classification
 Finitely generated (and presented) abelian groups

Summary

Jan Snellman

Direct products again

Direct sums vs direct products

Torsion and *p*-groups

The classification

Finitely generated (and presented) abelian groups For this lecture, all groups will be assumed to be abelian, but will usually be written multiplicatively.

Definition

 G_1, \ldots, G_r groups. Their direct product is

$$G_1 \times G_2 \times \cdots \times G_r = \{(g_1, \ldots, g_r) | g_i \in G_i\}$$

with component-wise multiplication.

Lemma

Put
$$H_i = \{ (g_1, \dots, g_r) | g_j = 1 \text{ unless } j = i \}$$
. Then
1 $H_i \simeq G_i$,
2 $H_1 H_2 \cdots H_r = G$,
3 $H_i \cap H_j = \{1\}$ if $i \neq j$.

Jan Snellman

Direct products again

Direct sums vs direct products

Torsion and *p*-groups

The classification

Finitely generated (and presented) abelian groups

Definition

Let G be a group, and $H_1, \ldots, H_K \leq G$. Then G is the internal direct product of H_1, \ldots, H_k if $G \simeq H_1 \times \cdots \times H_k$.

Theorem

TFAE:

G is the internal direct product of H₁,..., H_k,
 Every g ∈ G can be uniquely written as g = h₁h₂...h_k with h_i ∈ H_i,
 H₁H₂...H_k = G and H_i ∩ H_j = {1} for i ≠ j.

Direct products again

Direct sums vs direct products

Torsion and *p*-groups

The classification

Finitely generated (and presented) abelian groups

Example

et
$$G = C_6 = \langle g \rangle$$
, $H_1 = \langle g^2 \rangle$, $H_2 = \langle g^3 \rangle$. Then
 $H_1 H_2 = \{1, g^2, g^4\} \{1, g^3\} = \{1, g^3, g^2, g^5, g^4, g^7 = g^1\}$

and

$$H_1 \cap H_2 = \{1\},$$

so G is the internal direct product of H_1 and H_2 . We have that $H_1 \simeq C_3$, $H_2 \simeq C_2$, so $C_6 \simeq C_3 \times C_2$.

Direct products again

Direct sums vs direct products

Torsion and *p*-groups

The classification

Finitely generated (and presented) abelian groups

Theorem

 $C_m \times C_n \simeq C_{mn}$ iff gcd(m, n) = 1

Direct products again

Direct sums vs direct products

Torsion and *p*-groups

The classification

Finitely generated (and presented) abelian groups

Definition

Let I be an infinite index set.

• If G_i is a group for each $i \in I$, then the direct product

$$\prod_{i\in I}G_i$$

has the cartesian product of the underlying sets of the G_i as its underlying set, and componentwise multiplication

• The direct sum

 $\oplus_{i \in I} G_i$

is the subgroup of the direct product consisting of all sequences where all but finitely many entries are the corresponding identities

Direct products again

Direct sums vs direct products

Torsion and *p*-groups

The classification

Finitely generated (and presented) abelian groups Lemma

If $H_i \leq G$, $H_i \cap H_j = \{1\}$ for $i \neq j$, and for each $g \in G$ there is a finite subset of $S \subset I$ such that

$$g = \prod_{j \in S} h_j, \qquad h_j \in H_j,$$

then

 $G\simeq \oplus_{i\in I}H_i.$

Direct products again

Torsion and *p*-groups

The classification

Finitely generated (and presented) abelian groups

Definition

- The torsion subgroup of G is the subset of all elements of G of finite order
- If p is any prime number, then the p-torsion subgroup of G is defined as

$$G[p]=\set{g\in G|o(g)=p^a}$$
 for some $a\in\mathbb{N}$ }

Of course, any finite group is equal to its torsion subgroup.

Jan Snellman

Direct products again

Torsion and *p*-groups

The classification

Finitely generated (and presented) abelian groups

Definition

G is a p-group if G = G[p].

Lemma

If G is finite, then G is a p-group iff $|G| = p^a$ for some a.

Proof.

If $|G| = p^a$, then by Lagrange $o(g)|p^a$ for all $g \in G$. But the only divisors of p^a are p^b with $b \leq a$.

Conversely, suppose that all G is finite, of size n, where p, q are two distinct prime factors of n. By Cauchy's thm, which we'll prove later, G contains elements of order p, and elements of order q. It is thus not a p-group.

Example

Direct products again

Torsion and *p*-groups

The classification

Finitely generated (and presented) abelian groups The torsion subgroup of the circle group $\mathfrak T$ consists of all complex numbers

$$z = \exp(\frac{m}{n}2\pi i), \qquad m, n \in \mathbb{Z}, n \neq 0, \gcd(m, n) = 1$$

and its *p*-torsion subgroup are those complex numbers where n = p.

Direct products again

Torsion and *p*-groups

The classification

Finitely generated (and presented) abelian groups

Lemma

- The torsion subgroup of G is a subgroup of G, which contains all p-torsion subgroups as subgroups.
- The torsion subgroup of G is the direct sum of the G[p] as p ranges over all primes.

Proof.

Direct products again

Torsion and *p*-groups

The classification

Finitely generated (and presented) abelian groups Let $o(g) = n < \infty$, with $n = p_1^{a_1} \cdots p_r^{a_r}$. Let, for $1 \le i \le r$, $m_i = n/p_i^{a_i}$, and write $1 = \sum_{i=1}^r m_i x_i$. Put $h_i = g^{m_i x_i}$. Then

$$h_i^{p_i^{a_i}} = g^{m_i x_i p_i^{a_i}} = g^{n x_i} = (g^n)^{x_i} = 1,$$

and $h_i \in G[p_i]$, since $o(h_i)|p_i^{a_i}$. Furthermore,

$$g=g^1=g^{m_1x_1+\cdots+m_rx_r}=g^{m_1x_1}\cdots g^{m_rx_r}=h_1\cdots h_r$$

If $u \in G[p] \cap G[q]$ then $o(u) = p^a = q^b$, forcing a = b = 0. Thus $G[p] \cap G[q] = \{1\}.$

The previous lemma now shows that G is the internal direct sum of the G[p]'s.

Jan Snellman

Direct products again

Torsion and *p*-groups

The classification

Finitely generated (and presented) abelian groups

Let again $C_6 = \langle g \rangle$, with o(g) = 2 * 3 = n. Put $m_1 = n/2 = 3$, $m_2 = n/3 = 2$, and write

$$1 = 1 * m_1 + (-1) * m_2 = 1 * 3 + (-1) * 2.$$

Put $h_1 = g^3$, $h_2 = g^{-2}$. Then

Example

$$h_1^{2^1} = g^{3*2} = 1, \qquad h_2^{3^1} = g^{-2*3} = 1,$$

so h_1 has 2-torsion, and h_2 has 3-torsion. (In fact, the 2-torsion subgroup is $\langle h_1 \rangle$, and the the 3-torsion subgroup is $\langle h_2 \rangle$.) We also see that

$$h_1h_2 = g^3g^{-2} = g^1 = g$$

- Direct products again
- **Torsion and** *p*-groups

The classification

Finitely generated (and presented) abelian groups

Theorem (Classification of the finite abelian groups)

Let G be an abelian group of size $n = p_1^{a_1} \cdots p_r^{a_r}$. **1** $G \simeq \prod_{j=1}^r G[p_j]$.

- 2 Each p_j-group G[p_j] is isomorphic to a direct product of cyclic p_j-groups.
- **3** A finite abelian p-group with p^a elements is isomorphic to

$$C_{p^{b_1}} imes \cdots imes C_{p^{b_s}}, \qquad b_1 \geq b_2 \geq \cdots \geq b_r, \quad a = b_1 + \cdots + b_r$$

and the b_i's are uniquely determined.

4 Alternatively,

$$G\simeq \mathit{C}_{d_1} imes\cdots \mathit{C}_{d_\ell}, \qquad d_1|d_2|d_3\cdots |d_\ell,$$

also uniquely.

Jan Snellman

TEKNISKA HÖGSKOLAN LINKÖFINGS UNIVERSITET

- Direct products again
- **Torsion and** *p*-groups

The classification

Finitely generated (and presented) abelian groups

Example

What are the isomorphism classes of abelian groups with $36=2^2\ast 3^2$ elements? We can list them as

$$C_4 \times C_9, \ C_4 \times C_3 \times \mathbb{C}_3, \ C_2 \times C_2 \times C_9, \ C_2 \times C_2 \times C_3 \times C_3,$$

or as

$$C_{36}, C_3 \times C_{12}, C_2 \times C_{18}, C_6 \times C_6$$

Recall that

 $C_m \times C_n \simeq C_{mn}$

when gcd(m, n) = 1.

Direct products again

Torsion and *p*-**groups**

The classification

Finitely generated (and presented) abelian groups The part of the classification theorem that we have not proved is

Theorem

Every finite p-group is the internal direct sum of cyclic p-groups.

The main step is to establish that

Lemma

If $|G| = p^a$ and $g \in G$ has maximal order p^b , then there is a "complement" $H \leq G$, such that

$$\langle g
angle H = G, \quad \langle G
angle \cap H = \{1\}$$

Proof.

See Judson (but note that the desired subgroup is K in his proof).

Given the lemma, $G \simeq C_{p^b} \times H$, where H is a *p*-group with p^{a-b} elements; by induction, it can be written as a direct product of cyclic *p*-groups.

Jan Snellman

Direct products again

Torsion and *p*-**groups**

The classification

Finitely generated (and presented) abelian groups For the remainder of the lecture, groups are abelian, and written additively.

Definition

 $\mathbb{Z}^r = \mathbb{Z} \times \mathbb{Z} \times \cdots \mathbb{Z}$ is a *free abelian group* of rank *r*, as is any group isomorphic to \mathbb{Z}^r .

Theorem

The rank is well-defined, i.e.,

$$\mathbb{Z}^r \simeq \mathbb{Z}^s \quad \Longleftrightarrow \quad r = s$$

- Direct products again
- **Torsion and** *p*-groups
- The classification

Finitely generated (and presented) abelian groups

Example

- Free abelian groups are akin to vector spaces.
- Consider $\mathbb{Z}^2 = \mathbb{Z} \times \mathbb{Z}$: it has an (ordered) basis

 $\underline{\mathbf{e}} = [\mathbf{e}_1, \mathbf{e}_2] = [(1, 0), (0, 1)]$

w.r.t. which all group elements can be uniquely expressed as integral linear combinations.

• We have similar results regarding subspaces and dimensions as in linear algebra.

Jan Snellman

- Direct products again
- **Torsion and** *p*-groups
- The classification

Finitely generated (and presented) abelian groups

Example (contd.)

• Take for example

$$\mathbf{u} = (1,1) = \underline{\mathbf{e}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \, \mathbf{v} = (1,2) = \underline{\mathbf{e}} \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \, \mathbf{w} = (1,3) = \underline{\mathbf{e}} \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

• Then $\langle u,v,w\rangle=\mathbb{Z}^2,$ but the vectors are not linearly independent: indeed

$$\mathbf{w} = \frac{1}{2}\mathbf{u} + \frac{1}{2}\mathbf{v},$$

SO

$$\mathbf{u}+\mathbf{v}-2\mathbf{w}=\mathbf{0.}$$

- This means that $\langle v, w \rangle = \mathbb{Z}^2$.
- Furthermore, one can check that there are no non-trivial linear relations between v and w, which hence constitute another basis for $\mathbb{Z}^2.$

Jan Snellman

Direct products again

Torsion and *p*-groups

The classification

Finitely generated (and presented) abelian groups

Theorem

If $H \leq G$ with $G \simeq \mathbb{Z}^r$ then H is free abelian of rank $\leq r$.

Proof (sketch).

Let G have basis x_1, \ldots, x_r . Put $G' = \langle x_1, \ldots, x_{r-1} \rangle \simeq \mathbb{Z}^{r-1}$ and $H' = H \cap G'$. By induction, H' is free abelian of rank $\leq r - 1$. Using the second isomorphism theorem, written additively, we have

$$rac{H}{H'} = rac{H}{H \cap G'} \simeq rac{H + G'}{G'} \subseteq rac{G}{G'} \simeq \mathbb{Z}$$

We know that any non-trivial subgroup of $\ensuremath{\mathbb{Z}}$ is isomorphic to $\ensuremath{\mathbb{Z}}$, so

$$\frac{H}{H'} = \langle v + H' \rangle \simeq \mathbb{Z}$$

for some $v \in H$. That v, together with the basis for H', makes a basis for H.

Jan Snellman

Direct products again

Torsion and *p*-groups

The classification

Finitely generated (and presented) abelian groups Recall that an (abelian or not) group G is finitely generated if there is a finite generating set such that $G = \langle g_1, \ldots, g_r \rangle$.

Theorem

A finitely generated abelian group G can be written as

$$G\simeq G_T imes \mathbb{Z}^r,$$

where G_T is the torsion subgroup, which will be a finite abelian group, and where the rank r is well defined.

Jan Snellman

- Direct products again
- **Torsion and** *p*-groups
- The classification

Finitely generated (and presented) abelian groups

Example

A Klein bottle

is a two-dimensional closed surface that can be conveniently embedded into \mathbb{R}^4 , but not (without self-intersection) into \mathbb{R}^3 . It can be constructed by gluing together a left-twisted Möbius strip with a right-twisted on along their common edge. It is an "non-orientable" surface; this induces torsion in its first "homology group", which is

 $\mathbb{Z}_2 \times \mathbb{Z}.$

Figure: Klein Bottle

Direct products again

Torsion and *p*-groups

The classification

Finitely generated (and presented) abelian groups

Stolen — from the internet!

But back to the main story. Rather than finding torsion and Betti numbers individually, for simplicial complexes especially, I find it easier to just compute the homology via $H_n = \text{ker}(d_n)/\text{im}(d_{n+1})$. Let's use the following picture:

We have a single 0-simplex, which I'll call v; three 1-simplices, of which the horizontal one will be a, the vertical one b, and the diagonal one c; and two 2-simplices, of which the upper is U and the lower L. I'm orienting the edges in the direction of their arrows; the faces are oriented so that their boundaries are in the direction of two edges, rather than one.

For H_1 , you want the 1-cycles mod those that bound a 2-cell. Since each edge is a cycle, the group of 1-cycles is the free abelian group on a, b, c. The boundary of U is a + b - c and that of L is c + a - b. So we're looking at $\langle a, b, c \rangle / \langle a + b - c, a - b + c \rangle$. Let's simplify this to $\langle a + b - c, b, c \rangle / \langle a + b - c, 2b - 2c \rangle = \langle b, c \rangle / \langle 2b - 2c \rangle$... and again to $\langle b - c, c \rangle / \langle 2b - 2c \rangle$. Setting d = b - c, this is just $\langle d \rangle / \langle 2d \rangle \oplus \langle c \rangle$, which is $\mathbb{Z} \oplus \mathbb{Z}_2$.

- Direct products again
- **Torsion and** *p*-groups
- The classification

Finitely generated (and presented) abelian groups

Definition

A finitely presented abelian group G is given by a finite list of generators g_1, \ldots, g_n , and a finite list of relations among the generators, from which all other relations can be derived.

Example

In the Klein bottle example, G is generated by a, b, c, and all relations among the generators are integral linear combinations of

$$a+b-c=0$$
$$a-b+c=0$$

For instance, by adding the relations, we conclude that 2a = 0, so there is 2-torsion in *G*.

Direct products again

Torsion and *p*-groups

The classification

Finitely generated (and presented) abelian groups A finitely presented abelian group can be analyzed using the so-called *Smith normal form* of integer matrices:

Example

The relations from the previous example can be summarized as

$${f A}=egin{pmatrix} 1&1&-1\ 1&-1&1 \end{pmatrix}$$

By simultaneous (independent) change of bases in the source and in the target, we get

$$D = LAR$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

- Direct products again
- **Torsion and** *p*-groups
- The classification

Finitely generated (and presented) abelian groups

Example (contd.)

The normal form

$$\mathcal{D}=\left(egin{array}{ccc} 1 & 0 & 0 \ 0 & 2 & 0 \end{array}
ight)$$

shows that, in the (first) homology group G of the Klein bottle,

- there is one factor isomorphic to \mathbb{Z} ,
- there is one factor isomorphic to \mathbb{Z}_2 ,
- the last generator is not needed.