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Lemma

Let the group G act on itself by conjugation,

g .x = gxg−1

Then

1 Orb(x) =
{
gxg−1 g ∈ G

}
. We call this the conjugate class

containing x and denote it by Cl(x).

2 Stab(x) =
{
g ∈ G gxg−1 = x

}
= { g ∈ G gx = xg }. We call this

subgroup the centralizer of x and denote it by CG (x).

3 Fix(g) =
{
x ∈ G gxg−1 = x

}
= { x ∈ G gx = xg } = CG (g)

4 Fix(G ) =
{
x ∈ G gxg−1 = x for all x ∈ X

}
= ∩g∈GFix(g) =

∩g∈GCG (g) = { x ∈ G gx = xg for all g ∈ G }. We call this subgroup

the center of G and denote it Z (G ).
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Lemma

The center of G is the union of all singleton conjugacy classes.

Proof.

Cl(g) = {g } if and only if g commutes with everything.
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Theorem (Class equation)

If G is finite, then

|G | = |Z (G )|+
r∑

i=1

|Cl(xi )| = |Z (G )|+
r∑

i=1

|G |
|CG (xi )|

(1)

where the xi ’s are a choice of exactly one group element from each

conjugacy class with more than one element.

Proof.

The conjugacy classes are equivalence classes of an equivalence realtion on

G , thus they partition G . The center is, as stated before, the union of the

conjugacy classes that consist of a single element.
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Example

If G is abelian, then the class equation reads

|G | = |Z (G )|
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Example

In S3, there is one conjugacy class containing the transpositions, and one

containing the 3-cycles, and a singleton class containing the identity. The

class equation is thus

|S3| = |Z (S3)|+ |Cl((1, 2))|+ |Cl((1, 2, 3))|

= |〈()〉|+ |S3|
CS3((1, 2))

+
|S3|

CS3((1, 2, 3))

= 1 + 3 + 3

= |〈()〉|+ |S3|
CS3((1, 2))

+
|S3|

CS3((1, 2, 3))

from which we conclude that CS3((1, 2)) = 〈(1, 2)〉,
CS3((1, 2, 3)) = 〈(1, 2, 3)〉.
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For general n, the conjugacy classes of Sn are easy to describe:

Theorem

1 Two permutations in Sn are conjugate iff they have the same cycle

type.

2 The number of permutations in §n with cycle type λ is given by

c(λ, n) (hand-in exam batch 2).

3 Thus, there are exactly n!
c(λ,n) permutations in Sn commuting with a

given permutation σ with cycle type λ

4 Z (Sn) = 〈()〉
5 The class equation for Sn is

n! = 1 +
∑
λ`n

c(λ, n) (2)
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Example

For n = 4, the numerical partitions of 4, and the corresponding conjugacy

classes, are

λ σ c(λ, 4)

(4) (1, 2, 3, 4) 6

(3, 1) (1, 2, 3)(4) 8

(2, 2) (1, 2)(3, 4) 3

(2, 1, 1) (1, 2)(3)(4) 6

(1, 1, 1, 1) (1)(2)(3)(4) 1
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Theorem (Cauchy)

If G is a finite group with |G | = n, and p is a prime number dividing n,

then G contains en element of order p.

We will prove this important result twice, first using the class equation,

then using an action by a cyclic group.
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Proof (by Class Equation)

• Induction over n, assuming n ≥ p.

• If n = p then G is cyclic, done.

• So assume n > p, p|n.

• If H ≤ G proper subgroup, p||H|, then by induction H contains

element of order p.

• So suppose that p 6 ||H| for all proper subgroups H.

• Class equation is

n = Z (G ) +

r∑
j=1

|G |
|CG (xi )|

,

where CG (xi ) are proper subgroups, hence their order is not divisible

by p, hence each term in the sum is, hence so is Z (G ).
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Prrof (contd)

• So p|Z (G ).

• Z (G ) finite abelian, so Z (G ) '
∏s

j=1 Zp
rj
j

.

• Some pj = p, say p1 = p.

• The generator a of the factor Z r1
p1 has order pr1 .

• The element ap
r1−1

has order pr1/ gcd(pr1 , pr1−1) = p.

• Inject this element of Zp
r1
1

into the direct product, it will still have

order p.

• Done.
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Proof using group action

• Recall |G | = n, p|n, p prime

• Let Cp = 〈r〉, the cyclic group with p elements.

• Let X = { (g1, . . . , gp) gi ∈ G , g1 · · · gp = 1 }

• Clearly |X | = np−1

• |Orb((g1, . . . , gp))| = |Cp |
|Stab((g1,...,gp))|

• Stab((g1, . . . , gp)) =

{
Cp if g1 = g2 = · · · = gp

{1} if some gi 6= gj

• Thus |Orb((g1, . . . , gp))| =

{
1 if g1 = g2 = · · · = gp

p if some gi 6= gj
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Proof (contd

• Denote by a the number of singleton orbits, b the number of orbits of

size p

• Since (1, 1, . . . , 1) ∈ X , a > 0

• Orbits partition X , so np−1 = a + bp

• p|n, so p|a
• Thus exist other singleton orbit (g , . . . , g) ∈ X apart from (1, . . . , 1)

• This means that gp = 1, hence o(g) = p.
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Example

Take G = S3. Then |G | = 6, which is divisible by 3. Let us prove that

there is some element in S3 of order 3.

Put

X =
{
(g , h, h−1g−1) g , h ∈ S3

}
Then |X | = 62 = 36.

Study the sequence v = ((12), (13), (123)) ∈ X . All cyclic permutations

except the identity change v, so Stab(v) = {1}, and

Orb(v) = {((12), (13), (123)), ((13), (123), (12)), ((123), (12), (13))}.

Study the sequence w = ((123), (123), (123)) ∈ X . All cyclic permutations

preserve w, so Stab(w) =
{

1, r , r2
}

, and

Orb(w) = {((123), (123), (123))}.

There are 3 elements in S3 whose orders are divisible by 3, so orbit

partition of X becomes

36 = 3 + 3 ∗ 11

Can you find these eleven orbits of size 3?
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Theorem

If |G | = pn, with p prime, then Z (G ) is non-trivial.

Proof.

• z = |Z (G )|
• If a ∈ G then CG (a) ≤ G , so |CG (a)| = pk .

• If G abelian, then Z (G ) = G , done.

• If G not abelian then z < pn, and

pn = z +
∑
j

pn

pkj

• p|LHS , p| p
n

p
kj

, so p|z .

• Since z > 0, we get that z > 1, so Z (G ) non-trivial.
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Theorem

Let |G | = p2, where p is a prime. Then G is abelian.

Proof.

• |Z(G )| ∈
{
p, p2
}

since the center is a non-trivial subgroup.

• If |Z(G )| = p2 then done.

• Assume, towards a contradiction, that |Z (G )| = p.

• Then Z (G ) cyclic, and normal in G , so G/Z (G ) also cyclic.

• Let G/Z (G ) = 〈aZ (g)〉.
• Take g , h ∈ G , their images in the quotient are gZ (G ) = amZ (G )

and hZ (G ) = anZ (G ).

• So g = amx , h = any , x , y ∈ Z (G ).

• So gh = amxany = xamany = xam+ny = xyam+n = yxam+n =

yam+nx = yanamx = anyxam = hg .
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Recall:

Definition

A group is a p-group if every element has order which is a power of p.

Lemma

A finite group is a p-group iff its size is a power of p.
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Definition

Let |G | = n, and suppose that pk |n but pk+1 6 |n. A subgroup H ≤ G with

|H| = pk is called a p-Sylow subgroup.

Theorem (First Sylow thm)

If |G | = n, with p|n, then G has a p- Sylow subgroup. Furthermore, any

p-subgroup of G is contained in some p-Sylow subgroup.

Proof.

Omitted, read the textbook.

Corollary

If |G | = n, with pk |n, then G has a subgroup of size pk .

Remark

Note that this does not guarantee the existence of elements of order pk .
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Example

If |G | = 12, then there are surely subgroups of size 2, 3, 4. In the dihedral

group with 12 elements, there are no elements of order 4, however, there

are subgroups of size 4. You can take the subgroup generated by a

reflection through a line through two vertices, a reflection through a line

perpendicular to the first line, and the antipodal map.
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Theorem (Sylow’s second thm)

Any two p-Sylow subgroups H,K of G are conjugate, i.e., there exists

g ∈ G such that

K = gHg−1.

Proof.

Omitted, read the textbook.

Remark

If there is a single p-Sylow subgroup H, then Sylows’s second thm shows

that H / G .
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Theorem (Sylow’s third thm)

Let G = m, p prime, p|m. Let r denote the number of p-Sylow subgroups.

Then

r |m

and

r ≡ 1 mod p

Proof.

Omitted, read the textbook.
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Example (Svensson Ex. 12.57)

• Suppose |G | = 56 = 23 ∗ 7.

• Claim: G has (at least) one proper normal subgroup.

• n2 number 2-Sylow, n7 number 7-Sylow.

•

n2 ≡ 1 mod 2

23 ∗ 7 ≡ 0 mod n2

n7 ≡ 1 mod 7

23 ∗ 7 ≡ 0 mod n7

• Soln to above: (n2, n7) ∈ {(1, 1), (1, 8), (7, 1), (7, 8)}

• If we can exclude n2 = 7, n7 = 8 then done, since unique p-Sylow is

normal
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Example (Svensson Ex. 12.57 cont.)

• Suppose that we have 7 2-Sylow and 8 7-Sylow

• Each 7-Sylow is cyclic

• Two such intersect in the identity, only, by Lagrange.

• Picture!

• So 8 ∗ 6 = 48 elements of order 7

• Only 56 − 48 = 8 elems left, can’t make 7 groups of order 23 = 8.
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