Transform theory 2024-06-01 - Solutions

1. (a) No. Since $u_{n}(x) \rightarrow u(x)$, where $u(x)=0$ for $|x|<1$ and $u(\pm 1)=1$, so u is discontinuous, the convergence can't be uniform since each u_{n} is continuous.
(b) No, $U(\omega)$ is discontinuous at $\omega=0$.
(c) Yes. Fourier series of functions in E always converge in $L^{2}(-\pi, \pi)$.
(d) Yes, $U(z)=\frac{1}{z^{2}} \frac{z}{z+1}=\mathcal{Z}\left((-1)^{k-2} H[k-2]\right)$.
(e) Yes, $F(s)=\mathcal{L}\left(\frac{1}{2} \sinh (2(t-1)) H(t-1)\right)$, $\operatorname{Re} s>2$.

Answer: No. No. Yes. Yes. Yes.
2. (a) We find that

$$
\mathcal{L} u(s)=\int_{0}^{\infty} e^{-3 t} e^{-s t} d t=\int_{0}^{\infty} e^{-(s+3) t} d t=\left[\frac{e^{-(s+3) t}}{-(s+3)}\right]_{0}^{\infty}=\frac{1}{s+3}, \quad \operatorname{Re}(s+3)>0 .
$$

Note that $\operatorname{Re}(s+3)>0 \Leftrightarrow \operatorname{Re} s>-3$.
(b) We assume that $y, y^{\prime}, y^{\prime \prime}$ all belong to X_{a} (and verify this at the end). Taking the Laplace transform, we obtain that

$$
\begin{aligned}
& s^{2} Y(s)-s y(0)-y^{\prime}(0)-2(s Y(s)-y(0))+2 Y(s)=\frac{16}{s+3} \\
& \quad \Leftrightarrow \quad Y(s)\left(s^{2}+2 s-3\right)=\frac{16}{s+3}+s-1, \quad \operatorname{Re} s>-3
\end{aligned}
$$

Hence, since $s^{2}+2 s-3=(s+3)(s-1)$,

$$
\begin{aligned}
Y(s) & =\frac{16}{(s+3)^{2}(s-1)}+\frac{s-1}{(s+3)(s-1)}=\left(\frac{1}{s-1}-\frac{4}{(s+3)^{2}}-\frac{1}{s+3}\right)+\frac{1}{s+3} \\
& =\frac{1}{s-1}-\frac{4}{(s+3)^{2}} .
\end{aligned}
$$

From a table,

$$
\mathcal{L}\left(e^{t}\right)=\frac{1}{s-1} \quad \text { and } \quad \mathcal{L}\left(t e^{-3 t}\right)=\frac{1}{(s+3)^{2}}
$$

so

$$
y(t)=e^{t}-4 t e^{-3 t}
$$

by uniqueness and linearity. Obviously y and its derivatives are exponentially bounded.

Answer: $y(t)=e^{t}-4 t e^{-3 t}, \quad t>0$.
3. Clearly $u \in E$. This is obvious since the the periodic extension function is continuous everywhere ($e^{|-\pi|}=e^{\pi}$ at the end points). There are no jumps. Furthermore, u is infinitely differentiable for $x \neq n \pi$, and at $x=n \pi$ the right- and lefthand derivatives exist. Hence by Dirichlet's theorem - the Fourier series of u is convergent and converges to $u(x)$ for all $x \in \mathbf{R}$. The convergence is uniform since $u(-\pi)=u(\pi)$ and $u^{\prime} \in E$. We sketch the graph of the Fourier series below.

We need the Fourier coefficients, so we observe that u is an even function so a pure cosine-series is sufficient. The integrand is even so for $k \geq 0$,

$$
\begin{aligned}
a_{k} & =\frac{1}{\pi} \int_{-\pi}^{\pi} e^{|x|} \cos k x d x=\frac{2}{\pi} \int_{0}^{\pi} e^{x} \cos k x d x=\frac{1}{\pi} \int_{0}^{\pi} e^{x}\left(e^{i k x}+e^{-i k x}\right) d x \\
& =\frac{1}{\pi} \int_{0}^{\pi}\left(e^{x(i k+1)}+e^{x(1-i k)}\right) d x=\frac{1}{\pi}\left[\frac{e^{x(1+i k)}}{1+i k}+\frac{e^{x(1-i k)}}{1-i k}\right]_{0}^{\pi} \\
& =\frac{1}{\pi}\left(\frac{e^{i k \pi} e^{\pi}}{1+i k}+\frac{e^{-i k \pi} e^{\pi}}{1-i k}-\frac{1}{1+i k}-\frac{1}{1-i k}\right) \\
& =\frac{1}{\pi}\left(\frac{(-1)^{k} e^{\pi}-1}{1+i k}+\frac{(-1)^{k} e^{\pi}-1}{1-i k}\right)=\frac{2(-1)^{k} e^{\pi}-2}{\pi\left(1+k^{2}\right)} .
\end{aligned}
$$

Thus $u(x)=\frac{e^{\pi}-1}{\pi}+\sum_{k=1}^{\infty} \frac{2(-1)^{k} e^{\pi}-2}{\pi\left(1+k^{2}\right)} \cos k x$ with equality due to the argument above.
Answer: $u(x)=\frac{e^{\pi}-1}{\pi}+\frac{2}{\pi} \sum_{k=1}^{\infty} \frac{(-1)^{k} e^{\pi}-1}{1+k^{2}} \cos k x$; see above.
4. The left-hand side is a convolution of y with $t \mapsto e^{-2|t|}$ (which is a bounded function in $G(\mathbf{R})$), so taking the Fourier transform (assuming that $y \in G(\mathbf{R})$) shows that

$$
Y(\omega) \frac{2 \cdot 2}{2^{2}+\omega^{2}}=\sqrt{\pi} e^{-\omega^{2} / 4} \quad \Leftrightarrow \quad Y(\omega)=\frac{1}{4}\left(4+\omega^{2}\right) \sqrt{\pi} e^{-\omega^{2} / 4}
$$

Note that

$$
\omega^{2} \sqrt{\pi} e^{-\omega^{2} / 4}=-(i \omega)^{2} \sqrt{\pi} e^{-\omega^{2} / 4}
$$

So

$$
\begin{aligned}
y(t) & =e^{-x^{2}}-\frac{1}{4}\left(\frac{d}{d t}\right)^{2} e^{-x^{2}}=e^{-x^{2}}-\frac{1}{4} \frac{d}{d t}\left(-2 x e^{-x^{2}}\right)=e^{-x^{2}}-\frac{1}{4}\left(-2 e^{-x^{2}}+4 x^{2} e^{-x^{2}}\right) \\
& =\left(\frac{3}{2}-x^{2}\right) e^{-x^{2}}
\end{aligned}
$$

by linearity and uniqueness (obviously y is differentiable and absolutely integrable).
Answer: $y(t)=\left(\frac{3}{2}-x^{2}\right) e^{-x^{2}}, t \in \mathbf{R}$.
5. Taking the Z transform with $|z|>2$ yields

$$
\begin{aligned}
& z^{2} U(z)-\left(z^{2} u[0]+z u[1]\right)-(z U(z)-z u[0])-2 U(z)=\frac{6 z}{(z-2)^{2}}-\frac{z}{z-2}+1 \\
& \quad \Leftrightarrow \quad\left(z^{2}-z-2\right) U(z)=3 z^{2}+\frac{6 z-z^{2}+2 z+z^{2}-4 z+4}{(z-2)^{2}} .
\end{aligned}
$$

We note that

$$
\frac{6 z-z^{2}+2 z+z^{2}-4 z+4}{(z-2)^{2}}=\frac{4(z+1)}{(z-2)^{2}}
$$

and since $z^{2}-z-2=(z-2)(z+1)$, so

$$
U(z)=\frac{3 z^{2}}{(z-2)(z+1)}+\frac{4}{(z-2)^{3}}, \quad|z|>2 .
$$

We decompose the first term into partial fractions,

$$
z \cdot \frac{3 z}{(z-2)(z+1)}=z\left(\frac{1}{z+1}+\frac{2}{z-2}\right)=\frac{z}{z+1}+2 \cdot \frac{z}{z-2}
$$

and rewrite the second term as

$$
\frac{4}{(z-2)^{3}}=\frac{1}{z} \cdot \frac{4 z}{(z-2)^{3}}
$$

so we can use a table (and uniqueness) to find that

$$
\begin{aligned}
u[n] & =(-1)^{n}+2 \cdot 2^{n}+\binom{n-1}{2} 2^{n-1} H[n-1] \\
& =(-1)^{n}+2^{n+1}+\frac{(n-1)(n-2)}{2} 2^{n-1} H[n-1] \\
& =(-1)^{n}+2^{n+1}+\left(n^{2}-3 n+2\right) 2^{n-2} H[n-1] .
\end{aligned}
$$

We see that $u[0]=u[1]=3$ and we can directly verify that this solves the equation.
Answer: $u[n]=(-1)^{n}+2^{n+1}+\left(n^{2}-3 n+2\right) 2^{n-2} H[n-1], n=0,1,2, \ldots$
6. (a) We observe that $f \in G(\mathbf{R})$ so the Fourier transform exists and

$$
\begin{aligned}
F(\omega) & =\int_{-\infty}^{\infty} f(x) e^{-i \omega x} d x=\int_{-1}^{1} \operatorname{sgn}(x) e^{-i \omega x} d x \\
& =\int_{-1}^{0}-1 \cdot e^{-i \omega x} d x+\int_{0}^{1} 1 \cdot e^{-i \omega x} d x \\
& =\left[-\frac{e^{-i \omega x}}{-i \omega}\right]_{-1}^{0}+\left[\frac{e^{-i \omega x}}{-i \omega}\right]_{0}^{1}=\frac{1-e^{i \omega}}{i \omega}+\frac{1-e^{-i \omega}}{i \omega}=\frac{2-\left(e^{i \omega}+e^{-i \omega}\right)}{i \omega} \\
& =\frac{2-2 \cos \omega}{i \omega}=2 i \cdot \frac{\cos \omega-1}{\omega}, \quad \omega \neq 0 .
\end{aligned}
$$

At $\omega=0$, we calculate directly:

$$
F(0)=\int_{-\infty}^{\infty} f(x) e^{-i \cdot 0 \cdot x} d x=\int_{-1}^{1} \operatorname{sgn}(x) d x=0
$$

(b) Drawing the graph of $f(x)$, we find the following.

Since $D^{ \pm} f(x)$ exists for every $x \in \mathbf{R}$, Fourier inversion (Dirichlet's theorem for the Fourier transform) yields

$$
\begin{aligned}
\lim _{R \rightarrow \infty} \frac{1}{i \pi} \int_{-R}^{R} \frac{\cos \omega-1}{\omega} e^{i \omega x} d \omega & =-\lim _{R \rightarrow \infty} \frac{1}{2 \pi} \int_{-R}^{R} \frac{2 i(\cos \omega-1)}{\omega} e^{i \omega x} d \omega \\
& =-\lim _{R \rightarrow \infty} \frac{1}{2 \pi} \int_{-R}^{R} F(\omega) e^{i \omega x} d \omega \\
& =-\frac{u\left(x^{+}\right)+u\left(x^{-}\right)}{2}= \begin{cases}-\operatorname{sgn}(x), & |x|<1 \\
\pm \frac{1}{2}, & x=\mp 1 \\
0, & |x|>1\end{cases}
\end{aligned}
$$

(c) Note that with $F(\omega)$ from (a), for $\omega \neq 0$,

$$
|F(\omega)|^{2}=\frac{4(\cos \omega-1)^{2}}{\omega^{2}}
$$

and since $f \in L^{1}(\mathbf{R}) \cap L^{2}(\mathbf{R})$, we can use Plancherel's theorem:

$$
\int_{-\infty}^{\infty} \frac{4(\cos \omega-1)^{2}}{\omega^{2}} d \omega=2 \pi \int_{-\infty}^{\infty}|f(x)|^{2} d x=2 \pi \int_{-1}^{1} 1 d x=4 \pi
$$

so

$$
\int_{-\infty}^{\infty} \frac{(\cos \omega-1)^{2}}{\omega^{2}} d \omega=\pi
$$

Answer:

(a) $F(\omega)=\frac{2 i(\cos \omega-1)}{\omega}, \omega \neq 0, F(0)=0$
(b) $\operatorname{sgn}(x)$ when $|\stackrel{\omega}{x}|<1, \pm 1 / 2$ when $x= \pm 1,0$ when $|x|>1$.
(c) se above.
7. Let $u_{n}(t)=\frac{n^{2} \cos (t / n)}{n^{2}+1+n^{2} t^{2}}$ for $n=1,2,3, \ldots$ We find the pointwise limit as $n \rightarrow \infty$:

$$
u(t)=\lim _{n \rightarrow \infty} u_{n}(t)=\lim _{n \rightarrow \infty} \frac{\cos (t / n)}{1+1 / n^{2}+t^{2}}=\frac{1}{1+t^{2}} .
$$

Since

$$
\begin{aligned}
\left|u_{n}(t)-u(t)\right| & =\left|\frac{n^{2} \cos (t / n)}{n^{2}+1+n^{2} t^{2}}-\frac{1}{1+t^{2}}\right|=\left|\frac{n^{2} \cos (t / n)\left(1+t^{2}\right)-\left(n^{2}+1+n^{2} t^{2}\right)}{\left(n^{2}+1+n^{2} t^{2}\right)\left(1+t^{2}\right)}\right| \\
& =\left|\frac{\cos (t / n)\left(1+t^{2}\right)-\left(1+t^{2}\right)-1 / n^{2}}{\left(1+1 / n^{2}+t^{2}\right)\left(1+t^{2}\right)}\right|=\left|\frac{\left(1+t^{2}\right)(\cos (t / n)-1)-1 / n^{2}}{\left(1+1 / n^{2}+t^{2}\right)\left(1+t^{2}\right)}\right| \\
& \leq \overbrace{\geq 1}^{\frac{(\underbrace{\left(1+t^{2}\right)} \mid \overbrace{|\cos (t / n)-1|}^{\leq 2}+1 / n^{2}}{\left.\leq 1+1 / n^{2}+t^{2}\right)} \underbrace{\left(1+t^{2}\right)}_{\geq 1}} \leq \frac{2}{n}+\frac{1}{n^{2}}
\end{aligned}
$$

it is clear that

$$
\sup _{0 \leq t \leq 1}\left|u_{n}(t)-u(t)\right| \leq \frac{2}{n}+\frac{1}{n^{2}} \rightarrow 0, \quad \text { as } n \rightarrow \infty
$$

so the convergence is uniform. Thus

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} u_{n}(t) d t=\int_{0}^{1} u(t) d t=\int_{0}^{1} \frac{1}{1+t^{2}} d t=[\arctan t]_{0}^{1}=\frac{\pi}{4}
$$

Answer: $\frac{\pi}{4}$.

