
Transform theory 2024-08-22 – Solutions

1. (a) Yes. Since un(x) → 0 for |x| ≤ 1/2 and |un(x)− 0| = |x|n ≤ 2−n → 0 independent
of x ∈ [−1/2, 1/2].

(b) No, U(ω) is discontinuous at ω = 0.

(c) No. The function does not tend to zero as |s| → ∞ (it’s not even bounded as |s| → ∞).

(d) Yes. If Z u = Z v for |z| > R > 0 (some R), then u[n] = v[n] for all n = 0, 1, 2, . . .

(e) Yes. Note that cos x sinx =
1

2
sin 2x and that L(sin 2x) = 2

s2 + 4
, Re s > 0.

Answer: Yes. No. No. Yes. Yes.

2. (a) We find that

Z(3n)(z) =
∞∑
n=0

3n z−n =
∞∑
n=0

(z/3)−n =
1

1− 3/z
=

z

z − 3
, |z| > 3.

(b) Taking the Z transform with |z| > 3 yields

z2U(z)− (z2u[0] + zu[1])− 3(zU(z)− zu[0]) + 2U(z) =
4z

z − 3

⇔
(
z2 − 3z + 2

)
U(z) = 2z2 − z +

4z

z − 3
= z · 2z

2 − 7z + 7

z − 3
.

Thus, since z2 − 3z + 2 = (z − 1)(z − 2),

U(z) = z · 2z2 − 7z + 7

(z − 1)(z − 2)(z − 3)
= z

(
2

z − 3
+

−1

z − 2
+

1

z − 1

)
,

where we decomposed into partial fractions. We can now use a table (and uniqueness)
to find that

u[n] = 2 · 3n − 2n + 1.

Answer: u[n] = 2 · 3n − 2n + 1, n = 0, 1, 2, . . .

3. Clearly u ∈ E. This is obvious since the the periodic extension function is continuous
everywhere except for the jumps at odd multiples of π. Furthermore, u is infinitely
differentiable for x ̸= nπ, and at x = nπ the right- and lefthand derivatives exist. Hence –
by Dirichlet’s theorem – the Fourier series of u is convergent and converges to u(x) for
all x ̸= (2m+1)π. At x = (2m+1)π, the Fourier series converges to π/2. The convergence
can’t be uniform since the Fourier series converges to something that is discontinuous
at x = (2m+ 1)π. We sketch the graph of the Fourier series below.
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We find that, for k ̸= 0,

ck =
1

2π

∫ π

−π

u(x)e−ikx dx =
1

2π

∫ π

0

xe−ikx dx =
1

2π

([
xe−ikx

−ik

]π
0

+
1

ik

∫ π

0

e−ikx dx

)
=

ie−ikπ

2k
+

1

2πk2

(
e−ikπ − 1

)
= i

(−1)k

2k
+

(−1)k − 1

2πk2

and

c0 =
1

2π

∫ π

0

x dx =
π

4
.

Hence

u(x) ∼ π

4
+
∑
k ̸=0

(
i
(−1)k

2k
+

(−1)k − 1

2πk2

)
eikx.

Answer: u(x) ∼ π

4
+
∑
k ̸=0

(
i
(−1)k

2k
+

(−1)k − 1

2πk2

)
eikx; see above.

4. The integral in the left-hand side is the one-sided convolution of u with t 7→ e3t − et, so
taking the Laplace transform shows that

U(s) + U(s)L(e3t − et) =
1

s− 2
, Re s > 2.

Thus

U(s)

(
1 +

1

s− 3
− 1

s− 1

)
=

1

s− 2
⇔ U(s) · s2 − 4s+ 5

(s− 1)(s− 3)
=

1

s− 2
.

We solve for U(s) and find that

U(s) =
s2 − 4s+ 3

(s− 2)(s2 − 4s+ 5)
=

−1

s− 2
+

2s− 4

s2 − 4s+ 5
=

−1

s− 2
+ 2 · s− 2

(s− 2)2 + 1
.

Since L(e2tv(t)) = V (s− 2), we find by uniqueness that

u(t) = −e2t + 2e2t cos t, t > 0.

Answer: u(t) = −e2t + 2e2t cos t, t > 0.

5. We’re looking for a solution to y′(x) = 4y(x+π)+1−ei7x, so obviously y must be (at least)
differentiable. Hence y is continuous. This means that y′ must be continuous (since y
solves the equation). Hence y ∈ C1. Which means that y′ ∈ C1, so y ∈ C2 and so on. In
other words, the solution must be very smooth.

• y ∈ C2 implies that the Fourier series of y and y′ converges to y(x) and y′(x),

respectively (by Dirichlet’s theorem). So, let y(x) =
∞∑

k=−∞

cke
ikx.

• y being 2π-periodical and y′ ∈ E means we can form the termwise derivative of y
(with equality due to the first point):

y′(x) =
∞∑

k=−∞

ikcke
ikx.
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Therefore, we can write

y′(x)− 4y(x+ π) = 1− ei7x ⇔
∞∑

k=−∞

(ik − 4eikπ)cke
ikx = 1− ei7x

⇔
∞∑

k=−∞

(ik − 4(−1)k)cke
ikx = 1− ei7x.

For y to be a solution to the differential equation, we must therefore (by uniqueness) have:

ik = 4(−1)k or ck = 0, k ̸= 0, 7.

Obviously ck = 0 is the only possibility when k ̸= 0, 7. If k = 0 we find that −4c0 = 1,
so c0 = −1/4. If k = 7, then

(7i− 4(−1)7)c7 = −1 ⇔ c7 = − 1

4 + 7i
= −4− 7i

65
=

7i− 4

65
.

Hence our solutions must have the form

y(x) = c0 + c7e
i7x = −1

4
+

7i− 4

65
ei7x.

Answer: y(x) = −1

4
+

7i− 4

65
ei7x.

6. (a) We observe that f ∈ G(R) so the Fourier transform exists and

F (ω) =

∫ ∞

−∞
f(x)e−iωx dx

=

∫ 0

−1

(1 + x) · e−iωx dx+

∫ 1

0

(x− 1) · e−iωx dx

=

[
(1 + x)e−iωx

−iω

]0
−1

+
1

iω

∫ 0

−1

e−iωx dx+

[
(x− 1)e−iωx

−iω

]1
0

+
1

iω

∫ 1

0

e−iωx dx

= − 2

iω
+

1

iω

∫ 1

−1

e−iωx dx =
2i

ω
+

1

iω

[
e−iωx

−iω

]1
−1

=
2iω − (eiω − e−iω)

ω2
= 2i

ω − sinω

ω2
, ω ̸= 0.

At ω = 0, we calculate directly:

F (0) =

∫ ∞

−∞
f(x)e−i·0·x dx =

∫ 1

−1

f(x) dx = 0

since the integrand is odd.

(b) Drawing the graph of f(x), we find the following.
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y

1

−1

1−1

Since D±f(x) exists for every x ∈ R, Fourier inversion (Dirichlet’s theorem for the
Fourier transform) yields

lim
R→∞

1

iπ

∫ R

−R

sinω − ω

ω2
eiωx dω = − lim

R→∞

1

2π

∫ R

−R

2i(sinω − ω)

ω2
eiωx dω

= lim
R→∞

1

2π

∫ R

−R

F (ω)eiωx dω

=
f(x+) + f(x−)

2
=


1 + x, −1 ≤ x < 0,

0, x = 0,

x− 1, 0 < x ≤ 1,

0, |x| > 1.

x

y

1

−1

1−1

(c) Note that with F (ω) from (a), for ω ̸= 0,

|F (ω)|2 = 4(ω − sinω)2

ω4

and since f ∈ L1(R) ∩ L2(R), we can use Plancherel’s theorem:∫ ∞

−∞

4(ω − sinω)2

ω4
dω = 2π

∫ ∞

−∞
|f(x)|2 dx = 4π

∫ 0

−1

(1+x)2 dx =

[
(1 + x)3

3

]0
−1

=
4π

3
,

so ∫ ∞

−∞

(t− sin t)2

t4
dω =

π

3
.
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Answer:

(a) F (ω) =
2i(ω − sinω)

ω2
, ω ̸= 0, F (0) = 0

(b) f(x) when |x| < 1, 0 when x = 0 or |x| ≥ 1.
(c) se above.

7. Let uk(x) =
cos kx

x2 + k3
. Clearly

|uk(x)| ≤
1

k3
, k = 1, 2, 3, . . .

so the series defining u(x) is convergent for all x (actually uniformly convergent by the
M-test). To show that u(x) is differentiable, we prove that

∞∑
k=1

u′
k(x) =

∞∑
k=1

(
−k sin kx

x2 + k3
+

−2x cos kx

(x2 + k3)2

)
is uniformly convergent. We see that∣∣∣∣−k sin kx

x2 + k3
+

−2x cos kx

(x2 + k3)2

∣∣∣∣ ≤ k

x2 + k3
+

2|x|
(x2 + k3)2

≤ 1

k2
+

2|x|
(x2 + k3)2

.

Furthermore,

|x| ≤ k ⇒ 2|x|
(x2 + k3)2

≤ 2k

k6
=

2

k5

and

|x| > k ⇒ 2|x|
(x2 + k3)2

≤ 2|x|
|x|4

=
2

|x|3
≤ 2

k3
,

so it is clear that v(x) =
∞∑
k=1

u′
k(x) is uniformly convergent by the M-test. Since all u′

k are

continuous, it follows that v is continuous. The fact that u(x) =
∞∑
k=1

uk(x) is convergent

and that the series defining the continuous function v is uniformly convergent, we obtain
that u′(x) = v(x), which proves that u ∈ C1(R).

Answer: See above.
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