
Transform theory 2025-01-08 – Solutions

1. (a) Yes. Since un(x) → 0 for |x| ≤ 1/4 and |un(x)− 0| = |x|n ≤ 4−n → 0 independent
of x ∈ [−1/4, 1/4].

(b) No, an exponentially bounded function has a convergent Laplace transform for
all Re s > a, where a is some real number. Moreover, the Laplace transform is
analytic there (so continuous). Hence the described behavior is not possible.

(c) No. For example u[k] = v[k] = 1. Then Z(u) + Z(v) = 2z/(z − 1). However, it is
clear that Z(uv) = z/(z − 1).

(d) No. Not necessarily. The Fourier transform is bounded, but does not need to belong
to L1(R). There’s no such result. A counter example is a bit tricky though.

(e) Yes. Note that cos
kπ

4
sin

kπ

4
=

1

2
sin

kπ

2
and that Z(sin

kπ

2
) =

z

z2 + 1
, |z| > 0.

Answer: Yes. No. No. No. Yes.

2. We assume that y, y′, y′′ all belong to Xa (and verify this at the end). Taking the Laplace
transform of the equation, we obtain that

s2Y (s)− sy(0)− y′(0) + 2
(
sY (s)− y(0)

)
− 8Y (s) =

−9

(s+ 1)2

⇔ Y (s)
(
s2 + 2s− 8

)
= 2s+ 3 +

−9

(s+ 1)2
, Re s > −1.

Hence, since s2 + 2s− 8 = (s+ 4)(s− 2),

Y (s) =
−9

(s+ 4)(s+ 1)2(s− 2)
+

2s+ 3

(s+ 4)(s− 2)
=

2s3 + 7s2 + 8s− 6

(s+ 4)(s+ 1)2(s− 2)

=
1

s+ 4
+

1

(s+ 1)2
+

1

s− 2
,

after decomposing into partial fractions. Note that the term A/(s+ 1) yields A = 0. Not
obvious. From a table,

L(e−4t) =
1

s+ 4
, L(e2t) = 1

s− 2
, and L(te−t) =

1

(s+ 1)2
,

for Re s > 2. Hence
y(t) = e−4t + te−t + e2t

by uniqueness and linearity. Obviously y and its derivatives are exponentially bounded.

Answer: y(t) = e−4t + te−t + e2t, t > 0.

3. Clearly u ∈ E. This is obvious since the the periodic extension function is continuous
everywhere. Furthermore, u is infinitely differentiable for x ̸= nπ/2 (actually x = 2mπ is
OK), and at x = nπ/2 the right- and lefthand derivatives exist. Hence – by Dirichlet’s
theorem – the Fourier series of u is convergent and converges to u(x) for all x ∈ R.
Moreover, since u′ is piecewise constant, it is clear that u′ ∈ E. We also have u(−π) = u(π)
so the convergence of the Fourier series is uniform by theorem (see Lecture 4). We sketch
the graph of the Fourier series (which in this case is equal to u(x)) below.

1 of 5



x

y

−9 −8 −7 −6 −5 −4 −3 −2 2 3 4 5 6 7 8 9

2

−1 1

Note that u(x) is an even function, so bk = 0 for all k. For k > 0, again using the fact
that u is even,

ak =
1

π

∫ π

−π

u(x) cos kx dx =
2

π

∫ π

π/2

(
x− π

2

)
cos kx dx

=
2

π

[(x− π
2

)
sin kx

k

]π
π/2

− 1

k

∫ π

π/2

sin kx dx


=

2

π

(
0− 0 +

1

k2
[cos kx]ππ/2

)
=

2 cos kπ − 2 cos kπ
2

πk2
=

2
(
(−1)k − cos kπ

2

)
πk2

and

a0 =
2

π

∫ π

π/2

(
x− π

2

)
dx =

π

4
.

Hence

u(x) ∼ π

8
+

2

π

∞∑
k=1

(−1)k − cos kπ
2

k2
cos kx.

Answer: u(x) ∼ π

8
+

2

π

∞∑
k=1

(−1)k − cos kπ
2

k2
cos kx; see above.

4. Assuming that y, y′, y′′ ∈ G, we take the Fourier transform to find that

(iω)2Y (ω)− Y (ω) =
3

4
F(e−2|x−1|) =

3

4
e−iω 2 · 2

22 + ω2
,

where we used the rule F(y(x− 1)) = e−iω F(y(x)) and a table. Hence

Y (ω) =
−3e−iω

(1 + ω2)(4 + ω2)
= e−iω

(
−1

ω2 + 1
+

1

4 + ω2

)
,

after decomposing into partial fractions (let ξ = ω2 to make this step easier). From a
table, we again find that

F(e−|x|) =
2

1 + ω2
and F(e−2|x|) =

4

4 + ω2
,

so by the rule F(y(x− 1)) = e−iω F(y(x)) (again), uniqueness and linearity,

y(x) = −1

2
e−|x−1| +

1

4
e−2|x−1|.

This function and its piecewise derivatives up to order 2 are absolutely integrable.

Answer: y(x) = −1

2
e−|x−1| +

1

4
e−2|x−1|.
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5. The sum in the equation is the convolution of u with the function k 7→ k (for k ≥ 0). We
take the Z transform of the equation and find that

U(z)
z

(z − 1)2
= 2 · z

z − 2
− 2 · z

z + 1
,

where we assume that (at least) |z| > 2. Reformulating this equation, we find that

U(z) =
(z − 1)2

z

(
2 · z

z − 2
− 2 · z

z + 1

)
=

6(z − 1)2

(z − 2)(z + 1)
.

Rewriting the right-hand side and decomposing into partial fractions yields

z · 6z − 12

(z − 2)(z + 1)
+

6

(z − 2)(z + 1)
= z · 6

z + 1
− 2

z + 1
+

2

z − 2

=
6z

z + 1
+

1

z

(
− 2z

z + 1
+

2z

z − 2

)
.

Using the rule Z(u[n− 1]H[n− 1]) = z−1Z(u[n]) and the identities

Z ((−1)n) =
z

z + 1
and Z (2n) =

z

z − 2
,

we obtain by linearity and uniqueness that

u[n] = 6(−1)n +H[n− 1]
(
−2(−1)n−1 + 2 · 2n−1

)
= 6(−1)n +H[n− 1] (2(−1)n + 2n) .

Answer: u[n] = 6(−1)n +H[n− 1] (2(−1)n + 2n), k = 0, 1, 2, 3, . . ..

6. We note that by dividing the equation by 2π, the lefthand side is the periodic convolution
of u and the periodic function defined by v(τ) = eτ for 0 ≤ τ < 2π. How we choose to
define this function at the endpoints does not matter since we’re under the integral sign.
So we’re solving

1

2π

∫ 2π

0

v(τ)u(t− τ) dτ =
1

2π
cos 2t =

1

4π
ei2t +

1

4π
e−i2t.

Since the left-hand side is 2π-periodic, it has Fourier coefficients and from a table we find
that

v̂[k] û[k] =


1

4π
, k = ±2,

0, k ̸= ±2.
(†)

We need to find v̂[k]:

v̂[k] =
1

2π

∫ 2π

0

eτe−ikτ dτ =
1

2π

∫ 2π

0

e(1−ik)τ dτ =
1

2π

[
e(1−ik)τ

1− ik

]2π
0

=
e2π − 1

2π(1− ik)
.

In particular we see that v̂[k] ̸= 0 for all k. By equation (†), this means that û[k] = 0
for k ̸= ±2. For k = ±2, we find that

û[k] =
1

4π

2π(1− ik)

e2π − 1
=

1

2

1− ik

e2π − 1
.
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Hence

u(t) ∼
∑
k∈Z

û[k]eikt =
1

2(e2π − 1)

(
(1 + 2i)e−i2t + (1− 2i)ei2t

)
=

1

2(e2π − 1)

(
e−i2t + ei2t + 4

e−i2t − ei2t

2

)
=

1

e2π − 1
(cos 2t+ 2 sin 2t) .

Answer: u(x) =
1

e2π − 1
(cos 2t+ 2 sin 2t).

Alternate solution: Suppose that u can be expressed as a uniformly convergent Fourier

series: u(t) =
∑
k∈Z

cke
ikt. It is not obvious that this is possible, so we need to verify when

(and if) we find a solution. Plugging this series into the equation we find∫ 2π

0

eτu(t− τ) dτ =

∫ 2π

0

eτ
∑
k∈Z

cke
ik(t−τ) dτ =

∑
k∈Z

ck

∫ 2π

0

eτ eik(t−τ) dτ

=
∑
k∈Z

cke
ikt

[
eτ(1−ik)

1− ik

]2π
0

=
∑
k∈Z

ck(e
2π − 1)

1− ik
eikt = cos 2t =

1

2
e−i2t +

1

2
ei2t,

where changing the order of summation and integration is motivated by the uniform
convergence. Thus, for k ̸= ±2, we must have

ck(e
2π − 1)

1− ik
= 0 ⇔ ck = 0.

For k = ±2,
ck(e

2π − 1)

1− ik
=

1

2
⇔ ck =

1− ik

2(e2π − 1)
.

This leads to the same function found with the previous method: u(t) =
cos 2t+ 2 sin 2t

e2π − 1
.

Obviously this function has a Fourier series that converges uniformly to u, which motivates
the assumptions above.

7. Let un(x) =
(n2 + 1) sinx+ n cosx+ 2

1 + n sinx+ n2 cosx
. We find the pointwise limit as n → ∞:

un(x) =
(1 + 1/n2) sinx+ (1/n) cosx+ 2/n2

1/n2 + (1/n) sinx+ cosx
→ sinx

cosx
.

If the convergence is uniform, we can move the limit inside the integral. We prove that
the convergence is uniform on [0, π/4]. We see that∣∣∣∣un(x)−

sinx

cosx

∣∣∣∣ =
∣∣∣∣∣
(
(n2 + 1) sinx+ n cosx+ 2

)
cosx−

(
1 + n sinx+ n2 cosx

)
sinx

(1 + n sinx+ n2 cosx) cosx

∣∣∣∣∣
=

∣∣∣∣n(cos2 x− sin2 x) + cos x sinx+ 2 cosx− sinx

(1 + n sinx+ n2 cosx) cosx

∣∣∣∣
≤ 2n+ 4

|1 + n sinx+ n2 cosx|| cosx|
=

2/n+ 4/n2

|1/n2 + (1/n) sinx+ cosx|| cosx|
.
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For 0 ≤ x ≤ π/4, we know that sinx ≥ 0 and cosx ≥
√
2

2
. Thus

∣∣∣∣ 1n2
+

1

n
sinx+ cosx

∣∣∣∣ | cosx| ≥
(√

2

2

)2

=
1

2
,

so
2/n+ 4/n2

|1/n2 + (1/n) sinx+ cosx|| cosx|
≤ 2

(
2

n
+

4

n2

)
→ 0, as n → ∞,

independently of x. Therefore the convergence is uniform on [0, π/4] and

lim
n→∞

∫ π/4

0

un(x) dx =

∫ π/4

0

sinx

cosx
dx =

[
− ln cosx

]π/4
0

= − ln cos
π

4
+ ln cos 0 =

ln 2

2
.

Answer:
ln 2

2
.

Note: The bit about careful motivation is due to the problem of moving the limit inside
the integral. We show that this is allowed by proving that the sequence is uniformly
convergent on the interval we integrate over.
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