
Transform theory 2025-06-05 – Solutions

1. (a) Yes. Since un(x)→ 0 for |x| ≤ 1/2 and |un(x)− 0| = |x|3n ≤ 2−3n → 0 independent
of x ∈ [−1/2, 1/2].

(b) Yes. The function is continuous (so piecewise continuous) and the area beneath the

graph is equal to one:
∞∑
k=0

2−k−1 = 1, so the functions belongs to G(R).

(c) Yes. The partial sums are continuous functions so uniform convergence ensures that
the limiting function is continuous.

(d) Yes. This is clear because

| Lu(s)| =
∣∣∣∣∫ ∞

0

u(t) e−st dt

∣∣∣∣ ≤ ∫ ∞
0

|u(t)| e−tRe s dt ≤
∫ ∞
0

|u(t)| dt <∞

since tRe s ≥ 0. Note that this is possible even if u does not belong to Xa for
any a > 0.

(e) Yes. This is clear since

∞∑
k=0

∣∣u[k]z−k
∣∣ ≤ C

∞∑
k=0

|z|−k =
C

1− |z|−1
<∞

if |z| > 1, so the series is absolutely convergent.

Answer: Yes. Yes. Yes. Yes. Yes. (yes..)

2. Assuming that y, y′, y′′ ∈ G, we take the Fourier transform to find that

(iω)2Y (ω)− 4Y (ω) = 36F(xexH(−x)) = 36i
d

dω
F(exH(−x)) =

−36

(1− iω)2
.

Hence, by decomposing into partial fractions,

Y (ω) =
−36

((iω)2 − 4)(iω − 1)2
=

1

iω + 2
+

8

iω − 1
− 9

iω − 2
+

12

(iω − 1)2

From a table, we find that

F(e−2xH(x)) =
1

2 + iω
, F(e2xH(−x)) =

1

2− iω
, F(exH(−x)) =

1

1− iω
,

and F(xexH(−x)) = i
d

dω
F(exH(−x)) =

−1

(1− iω)2
,

so by uniqueness and linearity,

y(x) = e−2xH(x)− (8 + 12x)exH(−x) + 9e2xH(−x).

This function and its piecewise derivatives up to order 2 are absolutely integrable.

Answer: y(x) =

{
9e2x − (8 + 12x)ex, x < 0,

e−2x, x > 0.
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3. Clearly u ∈ E. This is obvious since the the periodic extension function is continuous
for kπ < x < (k + 1)π and has one-sided limits at x = kπ. Furthermore, u is infinitely
differentiable for x 6= nπ, and at x = nπ the right- and lefthand derivatives exist. Hence –
by Dirichlet’s theorem – the Fourier series of u is convergent and converges to u(x) for
all x 6= kπ. For x = (2k + 1)π we get (u(x+) + u(x−))/2 = (e−π + 0)/2 = e−π/2 and
for x = 2kπ we get (u(x+) + u(x−))/2 = (e0 + 0)/2 = 1/2; see the figure below. Since
the graph (depicting the Fourier series) has discontinuities, the convergence can not be
uniform.

x

y

−9 −8 −7 −6 −5 −4 −3 −2 2 3 4 5 6 7 8 9

1

e−π

−1 1

We find that, for all k ∈ Z,

ck =
1

2π

∫ π

−π
u(x)e−ikx dx =

1

2π

∫ π

0

e−xe−ikx dx =
1

2π

∫ π

0

e−(1+ik)x dx =
1

2

[
e−ikx

−(1 + ik)

]π
0

=
1

2(1 + ik)

(
1− e−(1+ik)π

)
=

1− (−1)ke−π

2π(1 + ik)
.

Hence

u(x) ∼ 1

2π

∞∑
k=−∞

1− (−1)ke−π

1 + ik
eikx.

Notice that

|ck|2 =

∣∣∣∣1− (−1)ke−π

2π(1 + ik)

∣∣∣∣2 =
(1− (−1)ke−π)2

(2π)2|1 + ik|2
=

(1− (−1)ke−π)2

4π2(1 + k2)

so by Parsevals’s formula we obtain that

∞∑
k=−∞

|ck|2 =
1

2π

∫ π

−π
|u(x)|2 dx =

1

2π

∫ π

0

e−2x dx =
1

2π

[
e−2x

−2

]π
0

=
1

4π

(
1− e−2π

)
which we can reformulate as

∞∑
k=−∞

(1− (−1)ke−π)2

4π2(1 + k2)
=

1

4π

(
1− e−2π

)
⇔

∞∑
k=−∞

(1− (−1)ke−π)2

1 + k2
= π

(
1− e−2π

)
.

Answer: u(x) ∼ 1

2π

∞∑
k=−∞

1− (−1)ke−π

1 + ik
eikx; π

(
1− e−2π

)
.
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4. We take the Z transform of the equation and find that

z2U(z)− z2u[0]− zu[1]−
(
zU(z)− zu[0]

)
− 6U(z) = 4 · z

z − 2
+ 5 · z

z + 2
,

where we assume that (at least) |z| > 2. Reformulating this equation, we find that

(z2 − z − 6)U(z) = 5z2 +
4z

z − 2
+

5z

z + 2
=
z(5z3 − 11z − 2)

z2 − 4

⇔ U(z)

z
=

5z3 − 11z − 2

(z + 2)2(z − 2)(z − 3)
.

Rewriting the right-hand side and decomposing into partial fractions yields

U(z)

z
=

4

z − 3
+

2

z + 2
− 1

(z + 2)2
− 1

z − 2
.

Using the identities

Z
(
2k
)

=
z

z − 2
, Z

(
3k
)

=
z

z − 3
, Z

(
(−2)k

)
=

z

z + 2

and Z
(
k(−2)k

)
=
−2z

(z + 2)2
,

we obtain by linearity and uniqueness that

u[k] = 4 · 3k + 2 · (−2)k +
k

2
· (−2)k − 2n = 4 · 3k − 2k +

(
2 +

k

2

)
(−2)k.

Answer: u[k] = 4 · 3k − 2k +

(
2 +

k

2

)
(−2)k, k = 0, 1, 2, 3, . . ..

5. (a) We observe that f ∈ G(R) so the Fourier transform exists and

F (ω) =

∫ ∞
−∞

f(x)e−iωx dx =

∫ −1
−2
−2 e−iωx dx+

∫ 2

1

2 e−iωx dx

=

[
−2 e−iωx

−iω

]−1
−2

+

[
2 e−iωx

−iω

]2
1

=
4

−iω

(
ei2ω − eiω

2
+
e−i2ω − e−iω

2

)
=

4i

ω
(cos 2ω − cosω) , ω 6= 0.

At ω = 0, we calculate directly:

F (0) =

∫ ∞
−∞

f(x)e−i·0·x dx = 0

since f ∈ L1(R) is odd. Drawing the graph of f(x), we find the following.
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x

y

1

−1

1−1 2−2

(b) Notice that

cosω − cos 2ω

ω
=

1

4i
· 4i

ω
(cosω − cos 2ω) =

i

4
F (ω).

Since D±f(x) exists for every x ∈ R, Fourier inversion (Dirichlet’s theorem for the
Fourier transform) yields

lim
R→∞

∫ R

−R

cosω − cos 2ω

ω
eiωx dω =

2πi

4
lim
R→∞

1

2π

∫ R

−R
F (ω) eiωx dω

=
iπ

2
· f(x+) + f(x−)

2
=


−iπ, −2 < x < −1,

iπ, 1 < x < 2,

±iπ/2, x = ±2,±1,

0, |x| > 2 or |x| < 1.

We can draw the graph for the function defined by F−1(F (ω))(x).

x

y

1

−1

1−1 2−2

Rewriting the integrand, we find that

(cosω − cos 2ω) sinω

ω
=

(cosω − cos 2ω) Im eiω

ω
= Im

(cosω − cos 2ω)eiω

ω

so by the previous result (with x = 1),

lim
R→∞

∫ R

−R

(cosω − cos 2ω) sinω

ω
dω = Im

(
iπ

2

)
=
π

2
.
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Answer: (a) F (ω) =
4i(cos 2ω − cosω)

ω
, ω 6= 0, F (0) = 0 (b) see above.

6. (a) Easiest is to write the RHS as

f(t) = sin t− sin tH(t− π) = sin t+ sin(t− π)H(t− π)

and use L(u(t− a)H(t− a)) = e−as L(u) with u(t) = sin t to obtain

F (s) =
1

s2 + 1
+

e−πs

s2 + 1
=

1 + e−πs

s2 + 1

for Re s > 0. Alternatively, it is not an unreasonable approach to use direct integra-
tion:

F (s) =

∫ ∞
0

f(t) e−st dt =

∫ π

0

sin t e−st dt =
1

2i

∫ π

0

(
eit − e−it

)
e−st dt

=
1

2i

[
e(i−s)t

i− s
+
e−(i+s)t

i+ s

]π
0

=
1

2i

(
e−sπ

(
eiπ

i− s
+
e−iπ

i+ s

)
−
(

1

i− s
+

1

i+ s

))
=
−1

2i

(
e−sπ

(
1

i− s
+

1

i+ s

)
+

(
1

i− s
+

1

i+ s

))
=
−(1 + e−πs)

2i

(
1

i− s
+

1

i+ s

)
=

1 + e−πs

2i

(
1

s− i
− 1

s+ i

)
=

1 + e−πs

2i
· 2i

s2 + 1
=

1 + e−πs

s2 + 1
,

with Re s > 0 to avoid s = ±i.
(b) The integral in the left-hand side is the one-sided convolution of u with t 7→ e2t, so

taking the Laplace transform yields

sU(s)− u(0) + U(s)L(e2t) =
1 + e−πs

s2 + 1
, Re s > 0.

Thus

U(s)

(
s+

1

s+ 2

)
=

1 + e−πs

s2 + 1
⇔ U(s) =

(
1 + e−πs

) s− 2

(s− 1)2(s2 + 1)
,

for Re s > 1. Decomposing into partial fractions we find that

s− 2

(s− 1)2(s2 + 1)
=
−s

s2 + 1
− 1/2

s2 + 1
+

1

s− 1
− 1/2

(s− 1)2

= L
(
− cos t− 1

2
sin t+

1

2
(2− t) et

)
.

Since L(v(t− π)H(t− π)) = e−πs(L v)(s), we find by uniqueness that

u(t) = − cos t− 1

2
sin t+

1

2
(2− t) et

+

(
− cos(t− π)− 1

2
sin(t− π) +

1

2
(2− (t− π)) et−π

)
H(t− π)

= − cos t− 1

2
sin t+

1

2
(2− t) et

+

(
cos t+

1

2
sin t+

1

2
(2− (t− π)) et−π

)
H(t− π)

=

{
− cos t− 1

2
sin t+ 1

2
(2− t) et, 0 < t < π,

1
2

(2− t) et + 1
2

(2− (t− π)) et−π, t > π.
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Answer: (a) F (s) =
1 + e−πs

s2 + 1
, Re s > 0 (b)


− cos t− 1

2
sin t+

1

2
(2− t) et, 0 < t < π,

et

2
(2− t+ (2− (t− π)) e−π) , t > π.

7. Since

0 ≤ 1

(x+ k)3/2
≤ 1

k3/2
, x ≥ 0, k = 1, 2, 3, . . . ,

and
∞∑
k=1

1

k3/2
is convergent, it follows from Weierstrass M-test that

∞∑
k=1

1

(x+ k)3/2
is

uniformly convergent on [0, 1]. Thus we can change the order of integration and summation,
yielding that∫ 1

0

(
∞∑
k=1

1

(x+ k)3/2

)
dx =

∞∑
k=1

∫ 1

0

1

(x+ k)3/2
dx =

∞∑
k=1

[
− 2

(x+ k)1/2

]1
0

= 2
∞∑
k=1

(
1√
k
− 1√

k + 1

)
= lim

n→∞
2

n∑
k=1

(
1√
k
− 1√

k + 1

)
= lim

n→∞
2

(
1− 1√

n+ 1

)
= 2

since the integrated series is a telescoping sum (write out a couple of terms to ensure
this!).

Answer: 2.

Note: The bit about careful motivation is due to the problem of moving the limit inside
the integral. We show that this is allowed by proving that the sequence is uniformly
convergent on the interval we integrate over.
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