
Transform theory 2025-08-21 – Solutions

1. (a) No. Since un(x) → 0 for |x| < 1 while un(±1) = 1 for all n, it is clear that the
limiting function is discontinuous. Therefore the convergence can not be uniform.

(b) No. The function described in the graph does not tend to zero as ω → ∞, therefore
violating the Riemann-Lebesgue lemma.

(c) Yes. The partial sums are continuous functions and absolute convergence for a
Fourier series implies uniform convergence, so this ensures that the limiting function
is continuous.

(d) No. This is clear because for instance t 7→ e−t/4 belongs to L1(0,∞) but with s = −1/2
(so Re s > −1) we find that

Lu(−1/2) =

∫ ∞

0

u(t) e−(−1/2)t dt =

∫ ∞

0

e−t/4 et/2 dt =

∫ ∞

0

et/4 dt = ∞,

so the Laplace transform does not exist for s = −1/2 (or any s such that Re s ≤ −1/4).

(e) Yes. This is clear since
1

1− 3/z
=

z

z − 3

which is the Z transform of 3k for |z| > 3 (table).

Answer: No. No. Yes. No. Yes.

2. (a) Taking the Z transform with |z| > 1 yields

z2U(z)− z2u[0]− zu[1]− (zU(z)− zu[0])− 2U(z) =
6z

z − 1

⇔
(
z2 − z − 2

)
U(z) = z2 + z +

6z

z − 1
.

Thus, since z2 − z − 2 = (z − 2)(z + 1),

U(z) =
z

z − 2
+ z · 6

(z − 1)(z − 2)(z + 1)
=

z

z − 2
+ z

(
1

z + 1
− 3

z − 1
+

2

z − 2

)
=

3z

z − 2
+

z

z + 1
− 3

z − 1
,

where we decomposed into partial fractions. We can now use a table (and uniqueness)
to find that

u[k] = (−1)k + 3
(
2k − 1

)
.

(b) Using Euler’s equations, we find that

Z
(
eikα + e−ikα

2

)
=

1

2

(
z

z − eiα
+

z

z − e−iα

)
=

1

2

(
z(z − e−iα) + z(z − eiα)

(z − eiα)(z − e−iα)

)
=

1

2

(
2z2 − z(e−iα + eiα)

z2 − z(eiα + e−iα) + 1

)
=

z2 − z cosα

z2 − 2z cosα + 1
,

since Z(ak) = z/(z − a) for a ∈ C (a ̸= 0).

Answer: u[k] = (−1)k + 3
(
2k − 1

)
, k = 0, 1, 2, 3, . . .; see above.
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3. Clearly u ∈ E. This is obvious since the the periodic extension function is continuous
for 2kπ < x < (2k + 2)π and has one-sided limits at x = 2kπ. Furthermore, u is infinitely
differentiable for x ̸= 2kπ, and at x = 2kπ the right- and lefthand derivatives exist. Hence
– by Dirichlet’s theorem – the Fourier series of u is convergent and converges to u(x) for
all x ̸= 2kπ. For x = 2kπ we get (u(x+) + u(x−))/2 = 0; see the figure below. Since
the graph (depicting the Fourier series) has discontinuities, the convergence can not be
uniform.

x

y

−9 −8 −7 −6 −5 −4 −3 −2 2 3 4 5 6 7 8 9

3

−3

−1 1

Note that u(x) is an odd function, so ak = 0 for all k. For k > 0, again using the fact
that u is odd,

bk =
1

π

∫ π

−π

u(x) sin kx dx =
2

π

∫ π

0

(π − x) sin kx dx

=
2

π

([
−(π − x) cos kx

k

]π
0

− 1

k

∫ π

0

cos kx dx

)
=

2

π
· π
k
=

2

k
.

Hence

u(x) ∼ 2
∞∑
k=1

1

k
sin kx.

Letting x = π/2, we find that (with equality due to Dirichlet’s theorem)

u(π/2) = 2
∞∑
k=1

1

k
sin

kπ

2
= 2

∞∑
m=0

1

2m+ 1
sin

(2m+ 1)π

2
= 2

∞∑
m=0

(−1)m

2m+ 1
,

so since u(π/2) = π − π

2
=

π

2
, we obtain that

∞∑
m=0

(−1)m

2m+ 1
=

π

4
.

Answer: u(x) ∼ 2
∞∑
k=1

1

k
sin kx;

π

4
.

4. We’re looking for a solution to y′′(x) = −y′(x) + 9y(x+ π)− 1 + 2 sin 3x, so obviously y
must be (at least) twice differentiable. Hence y′ is continuous. This means that y′′ must
be continuous (since y solves the equation). Hence y ∈ C2. Which means that y′′ ∈ C2,
so y ∈ C4 and so on. In other words, the solution must be very smooth.
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• y ∈ C3 implies that the Fourier series of y, y′ and y′′ converges to y(x), y′(x) and y′′(x),

respectively (by Dirichlet’s theorem). So, let y(x) =
∞∑

k=−∞

cke
ikx.

• y being 2π-periodical and y′′′ ∈ E means we can form the termwise derivatives of y
(with equality due to the first point):

y′(x) =
∞∑

k=−∞

ikcke
ikx and y′′(x) =

∞∑
k=−∞

−k2cke
ikx.

Therefore, we can write the equation

y′′(x) + y′(x)− 9y(x+ π) = −1 + 2 sin 3x

as
∞∑

k=−∞

(−k2 + ik − 9eikπ)cke
ikx = −1− iei3x + ie−i3x

⇔
∞∑

k=−∞

(−k2 + ik − 9(−1)k)cke
ikx = −1− iei3x + ie−i3x.

For y to be a solution to the differential equation, we must therefore (by uniqueness) have:

−k2 + ik − 9(−1)k = 0 or ck = 0, k ̸= 0,±3.

Obviously ck = 0 is the only possibility when k ̸= 0,±3. If k = 0 we find that −9c0 = −1,
so c0 = 1/9. If k = ±3, then

(−9± 3i+ 9)c±3 = ∓i ⇔ c±3 = −1

3
.

Hence our solutions must have the form

y(x) = c0 + c−3e
−i3x + c3e

i3x =
1

9
− 1

3

(
e−i3x + ei3x

)
=

1

9
− 2

3
cos 3x.

Answer: y(x) =
1

9
− 2

3
cos 3x.

5. The integral in the left-hand side is the one-sided convolution of u with t 7→ cos 2t, so
taking the Laplace transform shows that

sU(s)− u(0) + U(s)
s

s2 + 4
=

5

s
, Re s > 0.

Thus

U(s)

(
s+

s

s2 + 4

)
= 5 +

5

s
⇔ U(s) · s

3 + 5s

s2 + 4
=

5 + 5s

s
.

We solve for U(s) and find that

U(s) =
5(1 + s)(s2 + 4)

s2(s2 + 5)
=

5(s3 + s2 + 4s+ 4)

s2(s2 + 5)
=

4

s
+

4

s2
+

s+ 1

s2 + 5
.
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By uniqueness, we obtain

u(t) = 4 + 4t+ cos
√
5t+

1√
5
sin

√
5t.

Answer: u(t) = u(t) = 4(1 + t) + cos
√
5t+

1√
5
sin

√
5t.

6. (a) We observe that f ∈ G(R) so the Fourier transform exists.

Easiest is to write the RHS as

f(t) = (H(t+ π)−H(t− π)) sin t

and use F(u(t) sin(t)) =
1

2i
(U(ω + 1)− U(ω − 1)) with u(t) = H(t+ π)−H(t− π).

From the table, we find that U(ω) =
2 sinπω

ω
, so

F (ω) =
1

2i

(
2 sinπ(ω − 1)

ω − 1
− 2 sinπ(ω + 1)

ω + 1

)
=

1

i

(
−sin πω

ω − 1
+

sin πω

ω + 1

)
= i sin πω

(
1

ω − 1
− 1

ω + 1

)
=

2i sinπω

ω2 − 1

for Reω ̸= ±1 (extend by continuity). Alternatively, it is not an unreasonable
approach to use direct integration:

F (ω) =

∫ ∞

−∞
f(t) e−iωt dt =

∫ π

−π

sin t e−iωt dt =
1

2i

∫ π

−π

(
eit − e−it

)
e−iωt dt

=
1

2i

[
e(1−ω)it

i(1− ω)
+

e−i(1+ω)t

−i(1 + ω)

]π
−π

=
1

2i

(
e−iωπ

(
eiπ

i(1− ω)
+

e−iπ

i(1 + ω)

)
− eiωπ

(
e−iπ

i(1− ω)
+

eiπ

i(1 + ω)

))
=

1

2

(
e−iωπ

(
1

1− ω
+

1

1 + ω

)
− eiωπ

(
1

1− ω
+

1

1 + ω

))
= −i sinπω

(
1

1− ω
− 1

1− ω

)
=

2i sin πω

ω2 − 1

with ω ̸= ±1. Direct calculation shows that F (±1) = ∓iπ.

(b) Notice that
sin πω

ω2 − 1
=

1

2i

2i sin πω

ω2 − 1
=

1

2i
F (ω)

and since D±f(0) exists, Fourier inversion (Dirichlet’s theorem for the Fourier
transform) yields∫ ∞

−∞

sin πω

ω2 − 1
dω =

2π

2i
lim
R→∞

1

2π

∫ R

−R

F (ω) eiω·0 dω =
π

i

f(0+) + f(0−)

2
= 0.

Alternatively, we can use the fact that the integrand belongs to L1(R) and is an odd
function, so the principal value must be zero.
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For the second integral, observe that

sin2(πω)

(ω2 − 1)2
=

1

4

∣∣∣∣2i sinπωω2 − 1

∣∣∣∣2 = 1

4
|F (ω)|2

and since f ∈ L1(R) ∩ L2(R), we can use Plancherel’s theorem:∫ ∞

−∞

sin2 πω

(ω2 − 1)2
dω =

2π

4

∫ ∞

−∞
|f(x)|2 dx =

π

2

∫ π

−π

sin2 t dt

=
π

4

∫ π

−π

(1− cos 2t) dt =
π2

2
.

Answer: (a) F (ω) =
2i sin πω

ω2 − 1
, ω ̸= ±1, F (±1) = ∓πi (b) 0; π2/2.

7. Let un(x) =
n2 + nx3

3n2x2 + 2nx+ n2
. We find the pointwise limit as n → ∞:

un(x) =
1 + x3/n

3x2 + 2x/n+ 1
→ 1

3x2 + 1
.

If the convergence is uniform, we can move the limit inside the integral. We prove that
the convergence is uniform on [0, 1]. We see that∣∣∣∣un(x)−

1

3x2 + 1

∣∣∣∣ =
∣∣∣∣∣
(
1 + x3/n

)
(3x2 + 1)−

(
3x2 + 2x/n+ 1

)
(3x2 + 1)

(
3x2 + 2x/n+ 1

) ∣∣∣∣∣
=

∣∣∣∣∣ 3x5/n+ x3/n− 2x/n

(3x2 + 1)
(
3x2 + 2x/n+ 1

)∣∣∣∣∣ ≤ 3/n+ 1/n+ 2/n

(0 + 1)
(
0 + 1

) =
6

n
.

Clearly

sup
0≤x≤1

∣∣∣∣un(x)−
1

3x2 + 1

∣∣∣∣ ≤ 6

n
→ 0, as n → ∞.

Therefore the convergence is uniform on [0, 1] and

lim
n→∞

∫ 1

0

un(x) dx =

∫ 1

0

1

3x2 + 1
dx =

[
1√
3
arctan

(√
3x

)]1
0

=
π

3
√
3
.

Answer:
π

3
√
3
.

Note: The bit about careful motivation is due to the problem of moving the limit inside
the integral. We show that this is allowed by proving that the sequence is uniformly
convergent on the interval we integrate over.
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