
Exercises for the course Graph Theory TATA64

Mostly from Textbooks by Bondy-Murty (1976) and Diestel (2006)

Notation

E(G) set of edges in G.

V (G) set of vertices in G.

Kn complete graph on n vertices.

Km,n complete bipartite graph on m+ n vertices.

Gc the complement of G.

L(G) line graph of G.

c(G) number of components of G (Note: ω(G) in Bondy-Murty).

o(G) number of odd components in G (i.e. number of components with an odd number of

vertices.)

dG(v) degree of a vertex v in G.

NG(v) set of neighbors in G of a vertex v.

δ(G) minimum degree in G.

∆(G) maximum degree in G.

α(G) independence number of G, i.e., the size of the largest independent set in G.

β(G) minimum size of a vertex cover in G.

α′(G) size of a maximum matching in G.

β′(G) minimum size of an edge cover in G.

dG(u, v) distance between u and v, i.e., length of a shortest path between u and v

κ(G) connectivity of G, i.e. the greatest k such that G is k-connected.

κ′(G) edge-connectivity of G, i.e. the greatest k such that G is k-edge-connected. (Note: λ(G)
in Diestel)

χ(G) chromatic number of G, i.e. minimum k such that G has a proper k-coloring.

χ′(G) chromatic index (edge-chromatic number) of G, i.e. minimum k such that G has proper

k-edge coloring.

ω(G) clique number of G, i.e. the size of a maximum clique in G.
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1 Basics. Trees.

1.1. Show that if G is a graph with |V (G)| = n, then |E(G)| ≤
(
n
2

)
, with equality if and only if G

is complete.

1.2. Show that |E(Km,n)| = mn. Moreover, show that if G is bipartite, then |E(G)| ≤ |V (G)|2
4 .

1.3. The k-cube Qk is the graph whose vertices are the ordered k-tuples of 0's and 1's, two vertices
being joined by an edge if and only if they di�er in exactly one coordinate. Show that |V (Qk)| =
2k, |E(G)| = k2k−1, and that Qk is bipartite.

1.4. (a) The complement Gc of a graph G is the graph with vertex set V (G), two vertices being

adjacent in Gc if and only if they are not adjacent in G. Describe the graphs Kc
n and Kc

m,n.

(b)G is self-complementary ifG ∼= Gc. Show that ifG is self-complementary, then |V (G)| = 0, 1
mod 4.

1.5. Show that

(a) every induced subgraph of a complete graph is complete;

(b) every subgraph of a bipartite graph is bipartite.

1.6. Show that if a k-regular bipartite graph with k > 0 has a bipartition (X,Y ), then |X| = |Y |.

1.7. Show that, in any group of two or more people, there are always two with exactly the same

number of friends inside the group.

1.8. If a multigraph G has vertices v1, v2, . . . , vn, the sequence (d(v1), d(v2), . . . , d(vn)) is called

the degree sequence of G. Show that a sequence (d1, d2, . . . , dn) of non-negative integers is a

degree sequence of some multigraph (loops not allowed) if and only if
∑n

i=1 di is even and

d1 ≤ d2 + · · ·+ dn.

1.9. A sequence d = (d1, d2, . . . , dn) is graphic if there is a (simple) graph with degree sequence d.
Show that the sequences (7, 6, 5, 4, 3, 3, 2) and (6, 6, 5, 4, 3, 3, 1) are not graphic.

1.10. Let d = (d1, d2, . . . , dn) be a non-increasing sequence of non-negative integers.

(a) Show that d is graphic if and only if (d2− 1, d3− 1, . . . dd1+1− 1, dd1+2, . . . , dn) is graphic.

(Hint: To prove necessity, �rst show that if u1v1, u2v2 ∈ E(G) and u1v2, u2v1 /∈ E(G), then
G − {u1v1, u2v2} + {u1v2, u2v1} has the same degree sequence as G. Using this, show that

if d is graphic, then there is a graph H such that V (H) = {v1, v2, . . . vn}, d(vi) = di for

each i = 1, . . . , n, and v1 is adjacent to v2, . . . , vd1+1. The graph H − v1 has degree sequence

(d2 − 1, d3 − 1, . . . dd1+1 − 1, dd1+2, . . . , dn).)

(b) Using (a), describe an algorithm for constructing a graph with degree sequence d, if such
a graph exists.

1.11. Show that a graph G contains a spanning bipartite subgraph H such that dH(v) ≥ 1
2dG(v) for

all v ∈ V (G). (Hint: Show that a bipartite subgraph with the largest possible number of edges

has this property.)

1.12. Show that if there is a (u, v)-walk (i.e. a walk beginning at u and ending at v) in G, then there

is also a (u, v)-path in G.
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1.13. (a) Show that if G is a n-vertex graph with δ(G) > bn/2c − 1, then G is connected.

(b) Find a disconnected (bn/2c − 1)-regular graph for even n.

1.14. Show that if G is disconnected, then Gc is connected.

1.15. (a) Show that if e ∈ E(G), then c(G) ≤ c(G− e) ≤ c(G) + 1.

(b) Let v ∈ V (G). Show that G − e cannot, in general, be replaced by G − v in the above

inequality.

1.16. Show that if G is a connected graph and every degree in G is even, then, for any v ∈ V (G),
c(G− v) ≤ 1

2dG(v).

1.17. Show that any two longest paths in a connected graph have a vertex in common.

1.18. If vertices u and v are connected by a path in G, the distance between u and v in G, denoted by

dG(u, v), is the length of a shortest (u, v)-path in G; if there is no path connecting u and v we
de�ne dG(u, v) to be in�nite. Show that, for any three vertices u, v and w, d(u, v) + d(v, w) ≥
d(u,w).

1.19. The diameter of G is the maximum distance between two vertices of G. Show that if G has

diameter greater than three, then Gc has diameter less than three.

1.20. Show that ifG is a graph with diameter two, and ∆(G) = |V (G)|−2, then |E(G)| ≥ 2|V (G)|−4.

1.21. Show that if G is a connected non-complete graph, then G has three vertices u, v, w such that

uv, vw ∈ E(G) and uw /∈ E(G).

1.22. Show that if an edge e is in a closed trail of G, then e is in a cycle of G.

1.23. Show that if G is a graph with δ(G) ≥ 2, then G contains a cycle of length at least δ(G) + 1.

1.24. Show that the minor relation 4 de�nes a partial ordering on any set of graphs.

1.25. Prove that if a graph G contains a subdivision of a graph H as a subgraph, then H is a minor

of G.

1.26. Is there an eulerian graph G with |V (G)| even and |E(G)| odd? Proof or counterexample!

1.27. Show that if G has no vertices of odd degree, then there are edge-disjoint cycles C1, C2, . . . , Cm

such that E(G) = E(C1) ∪ E(C2) ∪ · · · ∪ E(Cm).

1.28. Show that if a connected graph G has 2k > 0 vertices of odd degree, then there are k edge-

disjoint trails Q1, Q2, . . . , Qk in G such that E(G) = E(Q1) ∪ E(Q2) ∪ · · · ∪ E(Qk).

1.29. Prove or disprove that every connected graph contains a walk that traverses every edge exactly

twice.

1.30. Let G be a (simple) graph.

(a) Prove that the number of edges in L(G) is
∑

v∈V (G)

(
dG(v)

2

)
.

(b) Prove that G is isomorphic to L(G) if and only if G is 2-regular.
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1.31. Let M be the incidence matrix and A the adjacency matrix of a graph G.

(a) Show that every column sum of M is 2.

(b) What are the column sums of A?

1.32. (a) Show that if any two vertices of a graph G are connected by a unique path, then G is a

tree.

(b) Prove that the endpoints of a longest path in a nontrivial (i.e. containing at least two

vertices) tree both have degree one.

1.33. (a) Show that if G is a tree with ∆(G) ≥ k, then G has at least k vertices of degree one.

(b) Deduce that every tree with exactly two vertices of degree one is a path.

1.34. Let G be graph with |V (G)|−1 edges. Show that the following tree statements are equivalent:

(a) G is connected;

(b) G is acyclic;

(c) G is a tree.

1.35. Show that a sequence (d1, d2, . . . , dn) of positive integers is a degree sequence of a tree if and

only if
∑n

i=1 di = 2(n− 1). (Hint: Use e.g. induction on n)

1.36. Let T be an arbitrary tree on k+ 1 vertices. Show that if G is a graph with δ(G) ≥ k, then G
has a subgraph isomorphic to T .

1.37. Show that if G is a multigraph and has exactly one spanning tree T , then G = T .

1.38. Lef F be a maximal forest of G (i.e. a subgraph of G such that F + e is not a forest for any

e ∈ E(G) \ E(F )). Show that

(a) for every component H of G, F ∩H is a spanning tree of H;

(b) |E(F )| = |V (G)| − c(G).

1.39. Find the number of nonisomorphic spanning tress in the following graphs.

1.40. Show that

(a) if every degree in G is even, then G has no cut edge;

(b) if G is a k-regular bipartite graph with k ≥ 2, then G has no cut edge.

1.41. Let G be a connected graph with at least 3 vertices. Show that

(a) if G has a cut edge, then G has a vertex v such that c(G− v) > c(G);

(b) the converse of (a) is not necessarily true.
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1.42. Show that a graph that has exactly two vertices which are not cut vertices is a path.

1.43. Show that if e is an edge of Kn, then the number of spanning trees of Kn − e is (n− 2)nn−3.

2 Matchings, factors, independent sets and covers

2.1. (a) Show that every k-cube has a perfect matching (k ≥ 2).

(b) Find the number of di�erent perfect matchings in K2n and Kn,n.

2.2. Show that a tree has at most one perfect matching.

2.3. LetM be a matching in a bipartite graph G. Show that ifM is not maximum, then G contains

an augmenting path with respect to M .

2.4. Prove that every maximal matching in a graph G has at least α′(G)/2 edges.

2.5. For each k > 1, �nd an example of a k-regular multigraph that has no perfect matching. Also,

�nd a cubic (simple) graph without a perfect matching.

2.6. Two people play a game on a graph G by alternately selecting distinct vertices v0, v1, v2, . . .
such that, for i > 0, vi is adjacent to vi−1. The last player able to select a vertex wins. Show

that the �rst player has a winning strategy if and only if G has no perfect matching.

2.7. (a) Show that a bipartite graph G has a perfect matching if and only if |N(S)| ≥ |S| for all
S ⊆ V (G).

(b) Give an example to show that the above statement does not remain valid if the condition

that G be bipartite is dropped.

2.8. For k > 0, show that

(a) every k-regular bipartite graph is 1-factorable.

(b) every 2k-regular graph is 2-factorable, i.e., it is the edge-disjoint union of 2-factors.

2.9. Let A1, A2, . . . , Am be subsets of a set S. A system of distinct representatives for the family

(A1, A2, . . . , Am) is a subset {a1, a2, . . . , am} of S such that ai ∈ Ai, 1 ≤ i ≤ m and ai 6= aj
for i 6= j. Show that (A1, A2, . . . Am) has a system of distinct representatives if and only if

|
⋃

i∈J Ai| ≥ |J | for all subsets J of {1, 2, . . . ,m}.

2.10. Let G be a k-regular with |V (G)| even that remains connected when any k − 2 edges are

deleted. Prove that G has a 1-factor.

2.11. A graph G is factor-critical if each subgraph G − v obtained by deleting one vertex has a

1-factor. Prove that G is factor-critical if and only if |V (G)| is odd and o(G− s) ≤ |S| for all
nonempty S ⊆ V (G).

2.12. A permutation matrix P is a 0, 1-matrix having exactly one 1 in each row and column. Prove

that a square matrix of nonnegative integers can be expressed as the sum of k permutation

matrices if and only if all row sums and column sums equal k.

2.13. (a) Show that G is bipartite if and only if α(H) ≥ 1
2 |V (H)| for every subgraph H of G.

(b) Show that G is bipartite if and only if α(H) = β′(H) for every subgraph H of G such that

δ(H) > 0.
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2.14. A graph is α-critical if α(G − e) > α(G) for all e ∈ E(G). Show that a connected α-critical
graph has no cut-vertices.

2.15. For every graph G, prove that β(G) ≤ 2α′(G). For each k ∈ N, construct a graph with

α′(G) = k and β(G) = 2k.

2.16. Let G be a bipartite graph. Prove that α(G) = |V (G)|/2 if and only G has a perfect matching.

3 Connectivity. Menger's theorem

3.1. (a) Show that if G is k-edge connected, with k > 0, and if E′ is a set of k edges of G, then
c(G− E′) ≤ 2.

(b) For k > 0, �nd a k-connected graphG and a set V ′ of k vertices ofG such that c(G−V ′) > 2.

3.2. Show that if a graph G is k-edge-connected, then |E(G)| ≥ k|V (G)|/2.

3.3. (a) Show that if G is a graph and δ(G) ≥ |V (G)| − 2, then κ(G) = δ(G).

(b) Find a simple graph G with δ(G) = |V (G)| − 3 and κ(G) < δ(G).

3.4. Show that if G is a graph and δ(G) ≥ b|V (G)|/2c, then κ′(G) = δ(G), and prove that this is

best possible by constrcuting for each n ≥ 4 an n-vertex graph with δ(G) = bn/2c − 1 and

κ′(G) < δ(G).

3.5. Show that if G is a cubic graph, then κ′(G) = κ(G).

3.6. Give an example to show that if P is a path from u to v in a 2-connected graph G, then G
does not necessarily contain a path Q from u to v that is internally disjoint from P .

3.7. Show that the block graph of any connected graph is a tree.

3.8. Show that if G has no even cycles, then each block of G is either K1 or K2 or an odd cycle.

3.9. Let G be a k-connected graph, and let S, T be disjoint subsets of V (G) with size at least k.
Prove that G has k pairwise disjoint S, T -paths (i.e. a collection of paths the origins of which

all lie in S, and whose termini all lie in T ).

3.10. Let G be a connected graph in which for every edge e, there are cycles C1 and C2 containing

e whose only common edge is e. Prove that G is 3-edge-connected. Use this to show that the

Petersen graph is 3-edge-connected.

3.11. Prove that a connected graph is k-edge-connected if and only if each of it blocks is k-edge-
connected

3.12. Let k ≥ 2. Show that a k-connected graph with at least 2k vertices has a cycle of length at

least 2k.

4 Vertex colorings. Planar graphs. Turan's theorem

4.1. Show that if G is a graph where any two odd cycles have a vertex in common, then χ(G) ≤ 5.

4.2. Prove that every graph G has a vertex ordering relative to which the greedy coloring algorithm

uses χ(G) colors.
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4.3. Prove that every k-chromatic graph has at least
(
k
2

)
edges.

4.4. For every n > 1, �nd a bipartite graph on 2n vertices, ordered in such a way that the greedy

coloring algorithm uses n rather than 2 colors.

4.5. Show that the only 1-critical graph isK1, the only 2-critical graph isK2, and the only 3-critical
graphs are the odd cycles.

4.6. Prove that every triangle-free (i.e. not containing a cycle with 3 vertices) n-vertex graph has

chromatic number at most 2
√
n. (So every k-chromatic triangle-free graph has at least k2/4

edges.)

4.7. A graph G is vertex-color-critical if χ(G− v) < χ(G) for all v ∈ V (G).

(a) Prove that every color-critical graph is vertex-color-critical.

(b) Prove that every 3-chromatic vertex-color-critical graph is color-critical.

4.8. Let G be a claw-free graph (i.e. no induced subgraph of G is isomorphic to K1,3).

(a) Prove that the subgraph induced by the union of any two color classes in a proper coloring

of G consists of paths and even cycles.

(b) Prove that if G has a proper coloring using exactly k colors, then G has a proper k-coloring
where the color classes di�er in size by at most one.

4.9. Let G3, G4, . . . , be the graphs obtained from G2 = K2 using Mycielski's construction. Show

that each Gk is k-critical.

4.10. Show that K3,3 is nonplanar.

4.11. (a) Show that K5 − e is planar for any edge e of K5.

(b) Show that K3,3 − e is planar for any edge e of K3,3.

4.12. Show that a graph is planar if and only if each of its blocks is planar.

4.13. A plane graph is self-dual if it is isomorphic to its dual.

(a) Show that if G is self-dual, then |E(G)| = 2|V (G)| − 2.

(b) For each n ≥ 4, �nd a self-dual plane graph on n vertices.

4.14. Let G be a plane graph. Show that (G∗)∗ is isomorphic to G (i.e. the dual of the dual of G is

isomorphic to G) if and only G is connected.

4.15. A plane triangulation is a plane graph in which each face has degree three. Show that every

plane graph is a spanning subgraph of some planar triangulation (if the graph has at least 3
vertices).

4.16. The girth of a graph is the length of its shortest cycle.

(a) Show that if G is a connected planar graph with girth k ≥ 3, then |E(G)| ≤ k |V (G)|−2
k−2 .

(b) Using (a), show that the Petersen graph is nonplanar.

4.17. (a) Show that if G is a planar graph with at least 11 vertices, then Gc is nonplanar.

(b) Find a planar graph G with 8 vertices, such that Gc is also planar.
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4.18. Show that if G is a plane triangulation, then |E(G)| = 3|V (G)| − 6.

4.19. Show, using Kuratowski's theorem, that the Petersen graph is non-planar.

4.20. What does the planar dual of a plane tree look like?

4.21. Wagner proved in 1937 that that the following condition is necessary and su�cient for a graph

G to be planar: neither K5 nor K3,3 can be obtained from G by performing deletions and

contractions of edges.

(a) Show that deletion and contraction of edges preserve planarity, and conclude that Wagner's

conditions is necessary.

(b) Use Kuratowski's theorem to prove that Wagner's theorem is su�cient.

4.22. Use the four color theorem to prove that every planar graph is the edge-disjoint union of two

bipartite graphs.

4.23. Derive the four color theorem from Hadwiger's conjecture for the case of graphs with chromatic

number at least 5.

4.24. Prove that a graph is a complete multipartite graph if and only if it has no 3-vertex induced

subgraph with one edge.

4.25. (a) Show that if G is a graph and |E(G)| > |V (G)|2/4, then G contains a triangle.

(b) Find a graph G with |E(G)| =
⌊
|V (G)|2/4

⌋
that contains no triangle.

(c) Show that if G is a non-bipartite graph and |E(G)| > (|V (G)|− 1)2/4 + 1, then G contains

a triangle.

Hint for (c): Assume that G contains no triangle, and consider a shortest odd cycle C in G.
Show that each vertex in V (G) \ V (C) can be joined to at most two vertices of C, and apply

(a) to G− V (C) to obtain a contradiction.

4.26. The Turan graph Tn,r is the complete r-partite with b partite sets of size a+1 and r−b partite
sets of size a, where a = bn/rc and b = n− ra.
(a) Prove that |E(Tn,r)| = (1− 1/r)n2/2− b(r − b)/(2r).
(b) Show that if G is a complete r-partite graph on n vertices, then |E(G)| ≤ |E(Tn,r)| with
equality if and only if G is isomorphic to Tn,r.

4.27. Prove that every n-vertex graph with no (r+ 1)-clique has at most (1−1/r)n2/2 edges. (Hint:

Use the fact that a sum of squares f = a21 + a22 + · · ·+ a2k, such that a1 + a2 + · · ·+ ak = a, is
minimized when ai = a/k for all i.)

4.28. Let G be an n-vertex graph with m edges.

(a) Prove that ω(G) ≥
⌈
n2/(n2 − 2m)

⌉
. (Hint: Use the previous exercise.)

(b) Prove that α(G) ≥ dn/(d+ 1)e, where d is the average degree of G. (Hint: use part (a).)
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5 Edge Colorings. Hamilton cycles.

5.1. Show, by �nding an appropriate edge coloring, that χ′(Km,n) = ∆(Km,n).

5.2. Show that the Petersen graph has chromatic index 4.

5.3. (a) Show that if G is bipartite, then G is contained in a ∆(G)-regular bipartite graph.

(b) Using (a) and the fact that every regular bipartite graph has a 1-factor, give an alternative

proof of König's edge coloring theorem.

5.4. Show that if G is bipartite with δ(G) > 0, then G has a δ(G)-edge coloring (not necessarily

proper!) such that all δ(G) colors are represented at each vertex.

5.5. Show by �nding appropriate edge colorings, that χ′(K2n−1) = χ′(K2n) = 2n− 1.

5.6. Show that if G is a non-empty regular graph with |V (G)| odd, then χ′(G) = ∆(G) + 1.

5.7. (a) Show that if G is a (loopless) multigraph, then G is contained in a ∆-regular (loopless)

multigraph.

(b) Using (a) and Petersen's result that every 2k-regular multigraph has a 2-factor, prove that
χ′(G) ≤ 3∆(G)/2 for any (loopless) multigraph G with even maximum degree.

5.8. Show that if G is a regular graph with a cut vertex, then χ′(G) > ∆(G).

5.9. Apply Brooks' theorem (not Vizing's) to an 'appropriate' graph to prove that if G is a graph

with ∆(G) = 3, then χ′(G) ≤ 4.

5.10. Show that if either

(a) G is not 2-connected, or

(b) G is bipartite with bipartition (X,Y ) where |X| 6= |Y |, then G is not hamiltonian.

5.11. Prove that if G has a Hamilton path, then o(G−S) ≤ |S|+ 1, for every proper subset S of V .

5.12. A graph G is called uniquely k-edge-colorable if any two proper k-edge colorings of G induce the

same partition of E. Show that every uniquely 3-edge-colorable 3-regular graph is hamiltonian.

5.13. Let G be a graph that is not a forest and contains no cycles of length less than 5. Prove that
the complement of G is hamiltonian. (Hint: Use Ore's condition on Gc.)

5.14. Let G be a connected graph with δ(G) = k ≥ 2 and |V (G)| > 2k.

(a) Let P be a maximal path in G (i.e. not a subgraph of any longer path). Prove that if

|V (P )| ≤ 2k, then the induced subgraph G[V (P )] has a spanning cycle.

(b) Use part (a) to prove that G has a path with at least 2k + 1 vertices.

5.15. A graph is hypohamiltonian ifG is not hamiltonian butG−v is hamiltonian for every v ∈ V (G).
Show that the Petersen graph is hypohamiltonian.
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6 Ramsey theory

6.1. Determine the Ramsey number R(3, 3).

6.2. Let Rn denote the Ramsey number R(K
(1)
3 ,K

(2)
3 , . . . ,K

(n)
3 ), where each K

(i)
3 is a triangle (i.e.

this Ramsey number is the value of r such that n-edge-coloring Kr forces a monochromatic

triangle).

(a) Show that Rn ≤ n(Rn−1 − 1) + 2.

(b) Noting that R2 = 6, use (a) to show that Rn ≤ bn!ec+ 1.

(c) Deduce that R3 ≤ 17.

6.3. Determine the Ramsey number R(K1,m,K1,n). (Hint: The answer depends on whether m and

n are even or odd.)

6.4. Let G1, G2, . . . , Gm be graphs. The generalized Ramsey number R(G1, G2, . . . , Gm) is the smal-

lest integer n such that everym-edge coloring ofKn contains, for some i, a subgraph isomorphic

to Gi in color i. Show that

(a) R(P4, P4) = 5, R(P4, C4) = 5, and R(C4, C4) = 6, where P4 is a 4-vertex path C4 is a

4-vertex cycle;

(b) if T is a tree on m vertices, and m− 1 divides n− 1, then R(T,K1,n) = m+ n− 1.

6.5. Prove that R(mK2,mK2) = 3m−1, where mK2 is the graph consisting of m pairwise disjoint

copies of K2.
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