TATA66 Exercises, fifth set

Hand in solutions to six of the following ten exercises

1 Let $\varphi=\chi_{[0,1[}$ be the Haar scaling function and $\psi=\chi_{[0,1 / 2[}-\chi_{[1 / 2,1[}$ the Haar wavelet.
(a) Determine the coefficients in the expansion $\varphi=\sum_{j, k \in \mathbb{Z}} c_{j k} \psi_{j k}$ in $L^{2}(\mathbb{R})$.
(b) Find the error in the following calculation:

$$
1=\int_{\mathbb{R}} \varphi(x) d x=\int_{\mathbb{R}} \sum_{j, k \in \mathbb{Z}} c_{j k} \psi_{j k}(x) d x=\sum_{j, k \in \mathbb{Z}} c_{j k} \int_{\mathbb{R}} \psi_{j k}(x) d x=\sum_{j, k \in \mathbb{Z}} c_{j k} \cdot 0=0 .
$$

2 Let W_{j} be the detail spaces of an MRA. Show that $f(x) \in W_{j} \Longleftrightarrow f(2 x) \in W_{j+1}$.
*3 Show that if $\varphi \in L^{1}(\mathbb{R})$ satisfies $\varphi(x)=\varphi(2 x)+\varphi(2 x-1)$ almost everywhere, then there exists a constant C such that $\varphi(x)=C \chi_{[0,1[}(x)$ almost everywhere.
4 Let $\Phi(x)=(1+\cos \pi x) \chi_{[-1,1]}(x)$. Determine $\sum_{k \in \mathbb{Z}}|\widehat{\Phi}(\xi+2 \pi k)|^{2}$ and use the result to show that $\left(\Phi_{0 k}\right)_{k \in \mathbb{Z}}$ is a Riesz system in $L^{2}(\mathbb{R})$.

5 Let c_{k} be the structure constants for φ, a scaling function for an MRA. Show that

$$
\sum_{k \in \mathbb{Z}} c_{k} \overline{c_{2 n+k}}= \begin{cases}1, & n=0, \\ 0, & n \neq 0 .\end{cases}
$$

6 Suppose that a scaling function φ for an MRA belongs to $L^{1}(\mathbb{R})$ and that only finitely many of the structure constants c_{k} for φ are nonzero. Show that $\widehat{\varphi}(0) \neq 0$ and that $\sum_{k \in \mathbb{Z}} c_{k}=\sqrt{2}$.
*7 Prove that if φ is a scaling function for an MRA and ψ is the corresponding wavelet, then, for almost every $\xi \in \mathbb{R}$,

$$
|\widehat{\varphi}(\xi)|^{2}=\sum_{j=1}^{\infty}\left|\widehat{\psi}\left(2^{j} \xi\right)\right|^{2} .
$$

8 Use any tools you like (computer programs, presumably) to create a reasonably accurate picture of the scaling function φ that has compact support, satisfies $\widehat{\varphi}(0)=1$, and has filter $m(\xi)=\left(2+6 e^{-i \xi}+3 e^{-i 2 \xi}-e^{-i 3 \xi}\right) / 10$. You don't need to document your work, just hand in the picture.
*9 Determine one version of the filter m_{1} from the last lecture explicitly, as follows:
(a) Let $g_{1}(\xi)=1-\left(1 / a_{1}\right) \int_{0}^{\xi} \sin ^{3} \eta d \eta$, where $a_{1}=\int_{0}^{\pi} \sin ^{3} \eta d \eta$. Rewrite g_{1} in the form $g_{1}(\xi)=\sum_{k=-3}^{3} \gamma_{k} e^{i k \xi}$.
(b) Construct $m_{1}(\xi)=(1 / \sqrt{2}) \sum_{k=0}^{3} c_{k} e^{-i k \xi}$ such that $\left|m_{1}(\xi)\right|^{2}=g_{1}(\xi)$ and such that $m_{1}(0)=1$, by using the method in the proof of Riesz's lemma (pick roots on or inside the unit circle when constructing m_{1}), and then making a final adjustment.
*10 Give an example of a scaling function φ for an MRA such that φ does not have compact support and such that only finitely many of the structure constants for φ are nonzero.

