TATA66 Exercises, fifth set

Hand in solutions to six of the following ten exercises

- 1 Let $\varphi = \chi_{[0,1[}$ be the Haar scaling function and $\psi = \chi_{[0,1/2[} \chi_{[1/2,1[}$ the Haar wavelet.
 - (a) Determine the coefficients in the expansion $\varphi = \sum_{j,k \in \mathbb{Z}} c_{jk} \psi_{jk}$ in $L^2(\mathbb{R})$.
 - (b) Find the error in the following calculation:

$$1 = \int_{\mathbb{R}} \varphi(x) \, dx = \int_{\mathbb{R}} \sum_{j,k \in \mathbb{Z}} c_{jk} \psi_{jk}(x) \, dx = \sum_{j,k \in \mathbb{Z}} c_{jk} \int_{\mathbb{R}} \psi_{jk}(x) \, dx = \sum_{j,k \in \mathbb{Z}} c_{jk} \cdot 0 = 0.$$

- **2** Let W_j be the detail spaces of an MRA. Show that $f(x) \in W_j \iff f(2x) \in W_{j+1}$.
- *3 Show that if $\varphi \in L^1(\mathbb{R})$ satisfies $\varphi(x) = \varphi(2x) + \varphi(2x-1)$ almost everywhere, then there exists a constant C such that $\varphi(x) = C\chi_{[0,1]}(x)$ almost everywhere.
- 4 Let $\Phi(x) = (1 + \cos \pi x) \chi_{[-1,1]}(x)$. Determine $\sum_{k \in \mathbb{Z}} |\widehat{\Phi}(\xi + 2\pi k)|^2$ and use the result to show that $(\Phi_{0k})_{k \in \mathbb{Z}}$ is a Riesz system in $L^2(\mathbb{R})$.
- 5 Let c_k be the structure constants for φ , a scaling function for an MRA. Show that

$$\sum_{k\in\mathbb{Z}}c_k\overline{c_{2n+k}} = \begin{cases} 1, & n=0,\\ 0, & n\neq 0. \end{cases}$$

- **6** Suppose that a scaling function φ for an MRA belongs to $L^1(\mathbb{R})$ and that only finitely many of the structure constants c_k for φ are nonzero. Show that $\widehat{\varphi}(0) \neq 0$ and that $\sum_{k \in \mathbb{Z}} c_k = \sqrt{2}$.
- *7 Prove that if φ is a scaling function for an MRA and ψ is the corresponding wavelet, then, for almost every $\xi \in \mathbb{R}$, ∞

$$|\widehat{\varphi}(\xi)|^2 = \sum_{j=1}^{\infty} |\widehat{\psi}(2^j \xi)|^2.$$

- 8 Use any tools you like (computer programs, presumably) to create a reasonably accurate picture of the scaling function φ that has compact support, satisfies $\hat{\varphi}(0) = 1$, and has filter $m(\xi) = (2 + 6e^{-i\xi} + 3e^{-i2\xi} e^{-i3\xi})/10$. You don't need to document your work, just hand in the picture.
- *9 Determine one version of the filter m_1 from the last lecture explicitly, as follows:
 - (a) Let $g_1(\xi) = 1 (1/a_1) \int_0^{\xi} \sin^3 \eta \, d\eta$, where $a_1 = \int_0^{\pi} \sin^3 \eta \, d\eta$. Rewrite g_1 in the form $g_1(\xi) = \sum_{k=-3}^{3} \gamma_k e^{ik\xi}$.
 - (b) Construct $m_1(\xi) = (1/\sqrt{2}) \sum_{k=0}^{3} c_k e^{-ik\xi}$ such that $|m_1(\xi)|^2 = g_1(\xi)$ and such that $m_1(0) = 1$, by using the method in the proof of Riesz's lemma (pick roots on or inside the unit circle when constructing m_1), and then making a final adjustment.
- *10 Give an example of a scaling function φ for an MRA such that φ does not have compact support and such that only finitely many of the structure constants for φ are nonzero.