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General information

Ordinary Differential Equations and Dynamical Systems (TATA71) is an optional course for MAT2, Y4, M4,
EMM4. It is given in the second half of the fall semester (period ht2). All information is publicly available
on the course webpage courses.mai.liu.se/GU/TATA71/. Lisam is currently not used in this course.

Literature

D. K. Arrowsmith & C. M. Place, Dynamical Systems: Differential Equations, Maps, and Chaotic Behaviour,
Chapman and Hall/CRC (1992), ISBN 9780412390807. Available as an e-book via LiU’s library.

Prerequisites

The prerequisites are basic courses in single-variable and multi-variable calculus, plus linear algebra.
An honours course in real analysis may be helpful for understanding certain subtle details, but that’s
optional.

Here “single-variable calculus” means that you are supposed to already have seen the basic techniques
for solving simple ODEs (as taught, for example, in the course TATA42 here at LiU): separation of variables,
integrating factors, the characteristic polynomial, the method of undetermined coefficients, and so on.
However, we will spend some time brushing up on this at the beginning of the course.

Teaching

As you can see in the table of contents on the first page, the material is organized into 10 lectures. The
first classroom session, “Lecture 1” at the very beginning of the study period, is an ordinary lecture. The
rest of the course follows a “flipped classroom” format, where Lectures 2–10 are pre-recorded video
lectures that you are supposed to watch in advance, before the corresponding classroom session, which
is marked “Seminar” in the online schedule, TimeEdit. In class, there will then be a short summary
instead of a regular lecture, and the rest of the time will be available for discussing the theory, looking at
additional examples, working on the exercises, and so on. There are also four “Lessons”, which provide
some extra time for catching up, plus an optional video lecture with some “outlook” material for those
who are interested. Attendance is not mandatory (although it is recommended, of course).

Course evaluations and changes

Previous course evaluations can be found by searching Evaliuate for “TATA71”. Compared to last year, the
contents of the course are unchanged, but there have been some updates to the course programme and
to the selection of exercises, including the homework problems. The most noticable change is perhaps
that there are now full solutions available for some of the exercises, which is something that previous
students have asked for.
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Examination

The examination consists of two parts:

• UPG1. Homework assignments, worth 2 hp (= 2 ECTS credits).

Some of the exercises are assigned as homework problems ( marked with yellow in this course
programme), to be handed in continually during the course. These problems are only graded
pass/fail, and if you fail a problem, you simply hand in a corrected version later. Discussing the
problems with the teacher and with your fellow students is allowed, but please write the solution
in your own words; it’s not allowed to just copy someone else’s solution!

The solutions should be handed in on paper, either directly to me in class or at my office at
the math department in building B (room 3A:666), or else in my pigeon-hole messagebox at the
northern end of the same corridor. Handwritten solutions are fine, and you can write them in
English or in Swedish. But please do not write in red, since I’ll be using a red pen when marking.
And only write on one side of the paper.

The deadline for completing the homework assignments is Jan 15, 2025, which is the day before the
first written exam. I strongly recommend that you hand in the last problems before the Christmas
break, to make sure that there is enough time for getting feedback (and making corrections, if
necessary) before the deadline.

• TEN1. A written test (5 hours), worth 4 hp.

The test contains 6 problems, each of which is graded as pass (3 or 2 points) or fail (1 or 0 points).
The total grade for the course is determined by the grade for the written test, which in turn is
determined as follows: for grade 3/4/5 (respectively), you need 3/4/5 passed problems and in
addition at least 8/11/14 points in total.

The written examination takes place on LiU’s Campus Valla in Linköping, three times per year
(January, March, August). Under normal circumstances, exams at other locations will not be
arranged.
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What’s this course about?

As the name of the course suggests, we will study ODEs and dynamical systems.

• ODE is a standard abbreviation for ordinary differential equation, where the function that we
seek depends on one variable. So an ODE is just a good old differential equation like those which
you have already seen in your single-variable calculus course. We will also encounter systems of
ODEs, involving several unknown functions at once, but each function will still only depend on
one variable.

In contrast, a partial differential equation (PDE) is a differential equation where one seeks a
function depending on several variables, so that partial derivatives come into play. But that’s a
different subject; see the course TATA27.

• The idea of a dynamical system is rather broad, and it is hard to give a precise mathematical
definition which would cover every possible use of the phrase. But it refers to a “system” (whatever
that is) which changes in a deterministic way as time passes, and which is “memoryless” in the
sense that the future of the system, at any given instant, is uniquely determined by the present
state alone; the past is irrelevant.

We will usually assume when talking about dynamical systems that the laws governing the evolution
don’t change with time. That is, if we start the system in a given state T units of time from now,
we will get the same evolution as if we start it in that state right now (except that everything will
be delayed by T time units of course). If this needs to be emphasized, one uses the phrase auto-
nomous dynamical system – a system which “runs on its own”, in contrast to non-autonomous
dynamical systems where there may be some external time-dependent factors which influence the
evolution of the system.

The state of the system is represented mathematically by an element of a set called the state space
or the phase space, typically Rn , or maybe some subset of Rn like a cylinder, a sphere, or a torus.
So one pictures the evolution of the system as the motion of a point in the state space.

• A discrete-time dynamical system is one where things happen at distinct time steps. We can use
integers to label the time steps, so that the system is in the state xn ∈ S at time n ∈ Z, where S is the
state space. Then the evolution of the system is simply specified by some function f : S → S, like
this:

xn+1 = f (xn), n ∈ Z.

(The system is autonomous since the function f is the same for all n.)

Discrete-time dynamical systems are a very important part of the general theory of dynamical
systems, but will not be encountered very much in this course.

• In a continuous-time dynamical system, time passes smoothly, so we use real numbers to describe
time, and talk about the system being in the state x(t ) at time t ∈ R. In this case, if the state space
is Rn for simplicity, the evolution is determined by a system of first-order ODEs for the state
x(t ) = (

x1(t ), . . . , xn(t )
)
:

dx1/dt = f1(x1, . . . , xn),

dx2/dt = f2(x1, . . . , xn),

...

dxn/dt = fn(x1, . . . , xn),

or simply dx/dt = f(x) for short, with x ∈ Rn and f : Rn → Rn . (The system is autonomous since the
function f doesn’t depend on t .)

In order for this to really define a dynamical system, we must impose suitable conditions on f
which will guarantee existence and uniqueness of the solution to the ODEs for a given initial
condition, so that the future is uniquely determined by the present state.
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Lecture 1. Basics of first-order ODEs

(Arrowsmith & Place, sections 1.1, 1.2. And your old calculus textbook, if needed.)

Since this first meeting takes place at the very beginning of the study period, I will not expect to you have
watched the video lecture in advance. So it will be more like a regular lecture, in the classroom. Some
basic ideas are introduced:

• Existence and uniqueness theorems for first-order ODEs dx
dt = X (t , x).

Proposition 1.1.1 is usually called Peano’s existence theorem.

Proposition 1.1.2 is a slightly simplified version of the Picard–Lindelöf theorem. (The assumption
“∂X /∂x exists and is continuous” is stronger than necessary; we’ll study this more thoroughly in
Lecture 9.)

• How to find explicit solutions in simple cases.

(Hopefully, this will mostly be a question of remembering methods that you have learned in
previous courses. See the summary below.)

• How to sketch the solution’s graph x = x(t) in the xt-plane directly from a first-order ODE ẋ =
X (x, t ).

• How to draw the phase portrait on the x-axis for a one-dimensional (continuous-time & au-
tonomous) dynamical system ẋ = X (x).

A comment about notation

You might be used to ODEs looking something like this:

y ′′(x)+5y ′(x)+4y(x) = cos x (or simply y ′′+5y ′+4y = cos x),

where the independent variable is called x, and y = y(x) is the function that we seek. But since this
is a course about ODEs with a “dynamical systems perspective”, we will instead call the independent
variable t , for “time”, and use names like x(t) or y(t) for the sought functions. So the same ODE now
instead looks as follows:

x ′′(t )+5x ′(t )+4x(t ) = cos t or ẍ(t )+5ẋ(t )+4x(t ) = cos t .

(It is common to use dots instead of primes to denote derivatives with respect to time.)

Two very fundamental examples

• Exponential growth/decay:
x ′(t ) = r x(t ).

This is a linear equation, and we can solve it in several ways: integrating factor, characteristic
polynomial, separation of variables. Either way, the solution with initial condition x(0) = x0 is

x(t ) = x0 er t .

This will be encountered again and again in this course, and you will be expected to instantly
recognize this equation and know its solution. Phase portrait (if r > 0): “←− 0 −→”.

• The logistic equation with growth rate r and carrying capacity K :

x ′(t ) = r x(t )

(
1− x(t )

K

)
.
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This nonlinear equation is often solved via separation of variables (followed by integration using
partial fractions), but an easier way is to use the substitution x(t ) = 1/y(t ), since this is a Bernoulli
equation (see below). Solution, with x(0) = x0:

x(t ) = K x0

x0 + (K −x0)e−r t = K x0 er t

K + (er t −1)x0
.

Here you don’t need to memorize the solution formula, but you should be able to derive it, and you
should also know roughly what the graph of the solution x(t ) looks like for different values of x0.
(In particular, x(t) = 0 and x(t) = K are constant solutions.) Phase portrait (if r > 0 and K > 0):
“←− 0 −→ K ←−”.

Summary of some exact solution methods

• Linear first order equations x ′+ax = b, where the coefficients a and b may be functions of the
time variable t :

x ′(t )+a(t ) x(t ) = b(t ).

How to solve: Find an antiderivative of a(t); call it A(t). Then multiply both sides of the ODE by
the integrating factor e A(t ), and use the product rule for derivatives (backwards). This gives(

e A(t ) x(t )
)′ = e A(t ) b(t ),

which can now be integrated.

• Separable equations f (x) x ′ = g (t ).

What this means is that we seek x(t ) such that

f (x(t )) x ′(t ) = g (t ).

Integrating this with respect to t , using the chain rule (backwards), we immediately obtain the
solution in the implicit form

F (x(t )) =G(t )+C ,

where F (x) is some antiderivative of f (x) and G(t) is some antiderivative of g (t). Usually this
is remembered via the trick of writing x ′ = dx/dt and “separating the variables” by “multiplying
by dt”, and then attaching integral signs:

f (x)
dx

dt
= g (t ) ⇐⇒

∫
f (x)dx =

∫
g (t )dt .

It’s sometimes convenient to use definite integrals instead, particularly if we want to find a solution
satisfying a given initial condition x(t0) = x0:∫ x(t )

x0

f (ξ)dξ=
∫ t

t0

g (τ)dτ,

or in other words
F (x(t ))−F (x0) =G(t )−G(t0).

As an important special case of separable equations we have one-dimensional dynamical systems
x ′ = X (x), which can always be solved (in principle) by separation of variables:

x ′ = X (x) ⇐⇒ x(t ) = x∗ where X (x∗) = 0

or
∫

dx

X (x)
=

∫
dt = t +C .

Warning! This method is full of pitfalls! When dividing by X (x), don’t forget to consider the case
X (x) = 0 separately; there is a constant solution x(t) = x∗ for each zero x∗ of the function X (x).
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And one also needs to be very careful with handling logarithms and absolute values correctly when
integrating, and when simplifying the solution. So if the ODE can be solved by some other method,
it may be wise to try that method first.

(In addition to this, there may also be subtle problems having to do with non-uniqueness of
solutions, if X (x) isn’t nice enough. One typical such example, which is mentioned in the lecture,
is ẋ = 2

p|x| with x(0) = 0.)

• Linear equations of arbitrary order.

A linear ODE of order n has the form

x(n)(t )+an−1(t ) x(n−1)(t )+·· ·+a2(t ) x ′′(t )+a1(t ) x ′(t )+a0(t ) x(t ) = b(t ).

The general solution of such an equation has the structure

x(t ) = xhom(t )+xpart(t )

where xpart(t) is a particular solution and xhom(t) (called the homogeneous solution or the
complementary solution) is the general solution of the corresponding homogeneous equation
which has 0 instead of b(t ) on the right-hand side.

Solving higher-order equations with time-dependent coefficients is usually a rather hopeless task,
except that one may try to find solutions in the form of a power series in t .

• Linear equations of arbitrary order with constant coefficients.

The problem becomes tractable when the coefficients ak (t ) = ck are time-independent:

x(n)(t )+ cn−1x(n−1)(t )+·· ·+c2x ′′(t )+ c1x ′(t )+ c0x(t ) = b(t ).

Then xhom(t ) can be found by looking at the roots of the characteristic polynomial

p(r ) = r n + cn−1 r n−1 +·· ·+c2r 2 + c1r + c0.

If the roots are real and simple, it’s straightforward to write down xhom(t). For repeated and/or
complex roots, the rules for constructing xhom(t ) are a bit more complicated.

To find xpart(t ) one usually employs “the method of undetermined coefficients”, which consists in
making a suitable ansatz, i.e., predicting what form the solution will take, based on what the right-
hand side looks like, and then adjusting the values of the free parameters in the ansatz in order to
actually satisfy the ODE. For not-too-complicated right-hand sides (polynomials, exponentials,
sine/cosine functions) there are rules for how to make an ansatz which is guaranteed to work. For
other right-hand sides, one would have to make a guess and hope for the best.1

See your calculus textbook (or some other source) for details about all this.

• A Bernoulli equation is an ODE of the form

x ′(t )+p(t ) x(t ) = q(t ) x(t )k

where k is a constant (not necessarily an integer). Note that this is a nonlinear ODE (unless k = 0
or k = 1) because of the expression x(t )k on the right-hand side. The nonzero solutions to such an
equation can be found by dividing both sides by that factor x(t )k , to get

x ′(t )+p(t ) x(t )

x(t )k
= q(t ),

or in other words
x ′(t ) x(t )−k +p(t ) x(t )1−k = q(t ).

1In Lecture 10 we will learn a more powerful tool, “the method of variation of constants”, which in principle can handle any
right-hand side, without any guessing.
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Indeed, just let
y(t ) = x(t )1−k ,

which according to the chain rule has the derivative

y ′(t ) = (1−k)x(t )−k x ′(t ),

and compare this to what we had in our equation:

x ′(t ) x(t )−k︸ ︷︷ ︸
=y ′(t )/(1−k)

+p(t ) x(t )1−k︸ ︷︷ ︸
=y(t )

= q(t ).

That is, in terms of the new unknown function y(t ) we get a first-order linear ODE, the type that
can be solved using an integrating factor:

1

1−k
y ′(t )+p(t ) y(t ) = q(t ).

• Later in this course we will thoroughly study linear first order systems

x′(t ) = A(t )x(t ),

where x(t ) = (
x1(t ), . . . , xn(t )

)T is a column vector of functions and A(t ) is matrix of size n ×n. But
you may already have seen in your linear algebra course how to solve such a system in the case
where A is a constant matrix which happens to be diagonalizable. In this case, the change of
variables x = My, where the columns of M are n linearly independent eigenvectors of A, leads to a
decoupled system y′(t ) = D y(t ), where D is a diagonal matrix with the eigenvalues of A along the
diagonal (in the same order as the corresponding eigenvectors were listed in the matrix M).

• Computer algebra systems can sometimes be of use for finding exact solutions to ODEs. Here are
some examples of the syntax used in Mathematica (see DSolve documentation):

DSolve[x''[t] + x[t] == Sin[t], x[t], t]

ẍ +x = sin t , general solution.

DSolve[{x''[t] + x[t] == Sin[t], x[0] == 5, x'[0] == 3}, x[t], t]

ẍ +x = sin t , with initial conditions x(0) = 5 and ẋ(0) = 3.

DSolve[{x'[t] == x[t] + 2 y[t], y'[t] == 3 x[t] + 4 y[t]}, {x[t], y[t]}, t]

Linear system ẋ = x +2y , ẏ = 3x +4y , general solution.

The same syntax works in Wolfram Alpha; for instance, you can try out the last example.

Exercises

The problems labelled A1, A2, etc., can be found in the section Additional problems just below. The
remaining problems (1.1, 1.2, etc.) are from the course textbook (Arrowsmith & Place), where they are
located at the end of each chapter. Problems which may be more challenging have been marked with an
asterisk as a warning sign.

• Rehearsal of how to solve ODEs using calculus techniques: A1, A2, 1.4, A3, A4, A5.

(Those of you who have taken TATA42 might recognize a few of these problems from that course!)

• Sketching solution curves directly from the ODE: 1.11.

• Drawing phase portraits: 1.12, 1.13, A6.

• Phase portraits for parameter-dependent ODEs: 1.14, 1.17*.

(When the phase portrait changes qualitatively at some particular value of the parameter(s), the
system is said to undergo a bifurcation.)

• Recovering the ODE from its general solution: A7.
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Additional problems

A1 Solve using an integrating factor:

(a) ẋ = 2x.

(b) ẋ = 2x +7.

(c) ẋ = 2x +e5t .

(d) ẋ = 2x + t 2e5t .

(e) ẋ = 2x + t 2e2t .

(f) ẋ = t x.

(g) ẋ +2t x = t .

(h) t ẋ +2x = sin t , for t > 0.

(i) (1+ t 2)ẋ +2t x = 2t . Solutions.

A2 Solve using separation of variables:

(a) ẋ = 2x.

(b) ẋ = t x.

(c) ẋ = x2 −1.

(d) t 2ẋ = x2 +2x +1 with x(−1) = 1.

(e) t 2ẋ = x2 +2x +1 with x(−1) =−1. Solutions.

A3 Find the general solution x(t ) = xhom(t )+xpart(t ) of the following linear constant-coefficient ODEs.
(Use the characteristic polynomial to find xhom(t ) and the method of undetermined coefficients to
find xpart(t ).)

(a) ẋ −2x = 0.

(b) ẋ −2x = 7.

(c) ẋ −2x = e5t .

(d) ẋ −2x = t 2e5t .

(e) ẋ −2x = t 2e2t .

(f) ẍ +6ẋ +8x = t +2e−2t .

(g) ẍ +6ẋ +9x = 0.

(h) ẍ +6ẋ +10x = 2e−3t cos t .

(i)
...
x −x = ex + sin x. Answers.

A4 In the text above, the formula

x(t ) = K x0

x0 + (K −x0)e−r t = K x0 er t

K + (er t −1)x0

was given for the solution to the logistic initial value problem,

ẋ = r x
(
1− x

K

)
, x(0) = x0.

(a) Derive this solution formula using separation of variables.

(b) The same, but by solving the ODE as a Bernoulli equation instead. Solutions.

A5 The Airy equation ẍ(t) = t x(t) is a second-order ODE with non-constant coefficients. Find the
solution which satisfies x(0) = 1 and ẋ(0) = 0, in the form of a power series x(t ) =∑∞

k=0 ak t k .

Answer.
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A6 Draw the phase portrait for the logistic equation ẋ = r x
(
1− x/K

)
with r > 0 and K > 0. Where

should the solution end up if the initial value x(0) = x0 is negative, according to that picture? Now
take the explicit solution formula (see problem A4 above) and compute lim

x→∞x(t). You should

encounter an apparent paradox. Resolve it! Hint.

A7 Find an ODE ẋ = X (t , x) whose general solution is given by the one-parameter family of curves
t 2 +x2 = 2C t . (Hint: Differentiate t 2 +x(t )2 = 2C t with respect to t , and eliminate the parameter C
from the two equations.) Answer.

Lesson 1

The lessons provide some extra time for working on the exercises. This first lesson is also a good
opportunity for getting to know each other a little.

Lecture 2. Phase portraits for two-dimensional systems

(Arrowsmith & Place, sections 1.3, 1.4, 1.5.)

Starting from now, you will be expected to watch the video lectures in advance. At the seminar, I will
briefly summarize the material, after which there will be time for discussions and for working on the
exercises.

We now turn to two-dimensional dynamical systems

ẋ1 = X1(x1, x2), ẋ2 = X2(x1, x2),

where we assume that the functions X1 and X2 are nice enough to guarantee uniqueness and (local)
existence of solutions. In vector notation: ẋ(t) = X(x(t)), or simply ẋ = X(x). The function X should be
thought of as a vector field in phase space: a vector X(x) is prescribed at each point x. The solution
curves for the system are curves x = x(t ) whose tangent vector ẋ agrees with the prescribed vector X(x) at
each point on the curve. The solution curves are sometimes called flow lines of the vector field, and the
collection of these curves forms the phase portrait of the system. Of course, we cannot draw all these
infinitely many curves, so the aim when sketching the phase portrait is to draw a representative selection
of solution curves – sufficiently many and sufficiently well chosen – so that we get a good geometrical
idea of how the system behaves.

• In very simple cases, we can solve the system explicitly. Sometimes we can obtain partial informa-
tion by methods of calculus.

• But we can also get at least a rough idea of what the phase portrait looks like by direct inspection
of the signs of the functions X1(x1, x2) and X2(x1, x2).

• Syntax for drawing phase portraits in Mathematica or Wolfram Alpha:

StreamPlot[{X1(x, y), X2(x, y)}, {x, xmin, xmax}, {y, ymin, ymax }]

For example, if the system is ẋ =−1−x2 + y , ẏ = 1+x − y2 :

StreamPlot[{-1-x^2+y, 1+x-y^2}, {x, -3, 3}, {y, -3, 3}]

(But don’t expect an automatic command like this to produce anything nearly as good as the
hand-tuned graphics in the textbook.)
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• Arrowsmith & Place use the phrase fixed point for a point x∗ such that X(x∗) = 0, but I will usually
say equilibrium point or just equilibrium, and you may come across many other synonyms too:
rest point, critical point, steady state, etc.

The reason for the terminology is of course that x(t) = x∗ is a constant solution of the system
ẋ = X(x) in this situation. That is, a system starting in the state x∗ must remain in the state x∗
forever. (Provided, of course, that X(x) is nice enough, so that the solutions are unique!)

• The evolution operator or flow ϕ is the function which maps each point x in phase space to the
place where it will be t units of time later if moving as prescribed by the dynamical system. It is
denoted by ϕt (x) in the book, but it’s also common to write ϕ(t ,x), since it is simply a function of t
and x.

A fact which isn’t mentioned in the textbook is that the flowϕ is as “nice” as the vector field X. More
precisely, there’s a theorem which says that if the system is

ẋ = X(x,λ),

whereλ= (λ1, . . . ,λN ) is some vector of parameters, and if X is of class C k (1 ≤ k ≤∞) as a function
of the variables (x,λ), then the flow ϕ is of class C k as a function of the variables (t ,x,λ).

Exercises

As mentioned already on p. 3, problems marked with yellow are homework problem to be handed in.
(Preferably a few at a time, as soon as you have done them, not all problems at once in a big pile at the
end!)

• Finding the nullclines for a system (the curves where ẋ = 0 or ẏ = 0), and determining the signs of
ẋ and ẏ in between: A8, A9, A10 .

• “Connecting the dots”: A11.

• Drawing families of parametrized curves and finding the corresponding ODEs: 1.20.

• Exact solution and phase portrait of a linear system: 1.23.

Clarification: In this problem, you’re supposed to express the ODEs in terms the new variables
(y1, y2), solve them, and draw the phase portrait in the y1 y2-plane first. Then you map this picture
back into the x1x2-plane using the change of variables (which is a linear transformation), to obtain
the phase portrait for the given system.

• A nonlinear system which can be solved using polar coordinates: 1.25.

(Can you draw the phase portrait too?)

• Flows: 1.32, 1.36.

(Hint for 1.32, if you want to solve it from scratch: It’s a Bernoulli equation, so divide by x3 and then
let y = 1/x2. Or just use separation of variables and partial fractions directly. But instead of solving,
it might be easier to just verify that the given flow is correct, by computing ϕ0(x0) and d

dt ϕt (x0).)

Additional problems

A8 For each of the functions f (x, y) below, draw the zero level set {(x, y) ∈ R2 : f (x, y) = 0}, and indicate
the regions in the x y-plane where f is positive and where it is negative.

(a) f (x, y) = (x +1)(y −2).

(b) f (x, y) = y −x2.

(c) f (x, y) = y x2.

11
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(d) f (x, y) = x y −1.

(e) f (x, y) = x2 − y2.

(f) f (x, y) = x3 − y2.

(g) f (x, y) = 16−x2 −4y2.

A9 For each of the systems ẋ = X (x, y), ẏ = Y (x, y) below, do the following:

• First draw a picture with the zero level set for X (the “x-nullcline”), indicating the regions
where X is positive/negative with R/L (for “right” and “left”, respectively).

• Then draw another picture with the zero level set for Y (the “y-nullcline”), indicating the
regions where Y is positive/negative with U/D (for “up” and “down”).

• Finally collect all this information in a single picture, i.e., draw the zero level sets for X and Y
in the same picture, and mark every region that is formed with RU/RD/LU/LD (for “right and
up”, etc.). Or, if you prefer, draw arrows: “↗” instead of RU, “↘” instead of RD, etc.

• In this picture, also indicate the system’s equilibrium points, i.e., the points where the
x-nullcline and the y-nullcline intersect (so that ẋ and ẏ are both zero there).

(a) ẋ = 2+x − y , ẏ = x2 + y −4. Answer.

(b) ẋ = x(4−4x − y), ẏ = y(6−2x −3y).

(c) ẋ = y , ẏ = y(1−x2)−x.

A10 Do the same as in problem A9, but for the system

ẋ = (x −2)2 + y −1, ẏ = (x −1)2(y +3).

A11 Find at least four different solutions to the following task!

Draw a curve (directed, smooth, without self-intersections) which goes from the point P to the
point Q in a way that’s consistent with the directions given (RU, etc.), Such a curve must have a
vertical tangent at the point where it crosses the purple line, and a horizontal tangent at every
point where it crosses the orange curve (if it does that), so please be careful to draw it in that way!

LD

LU

LD

RD

RU

P

Q
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Lecture 3. Two-dimensional linear systems

(Arrowsmith & Place, sections 2.1, 2.2, 2.3.)

We will spend some time on understanding linear dynamical systems in two dimensions:

ẋ1 = ax1 +bx2

ẋ2 = cx1 +d x2
⇐⇒

(
ẋ1

ẋ2

)
=

(
a b
c d

)
︸ ︷︷ ︸

=A

(
x1

x2

)
.

• Definition of a simple linear system: det(A) = ∣∣a b
c d

∣∣ = ad − bc is nonzero. (Equivalently: the
eigenvalues of A are nonzero.) This implies that the origin (x1, x2) = (0,0) is the only equilibrium
point. We’ll assume simplicity for now, and save non-simple systems for later.

• A linear change of variables x = My turns the system ẋ = Ax into ẏ = M−1 AMy.

• “Recipe” for how to choose the columns m1 and m2 in the matrix M in order to make J = M−1 AM
simplify to the Jordan normal form of A:

(a) Suppose A has two distinct real eigenvalues λ1 >λ2. Taking m1 and m2 to be the correspond-

ing eigenvectors gives J =
(
λ1 0
0 λ2

)
.

(b) Suppose A has a double real eigenvalue λ0. Then either A =
(
λ0 0
0 λ0

)
is already in normal

form, or else there is just a one-dimensional eigenspace; in this case let m1 be an eigenvector
and take any vector not parallel to m1 as our preliminary m2. This will give a preliminary

J =
(
λ0 C
0 λ0

)
with some nonzero constant C . Adjust m2 by dividing it by this constant C ; this

will give the Jordan form J =
(
λ0 1
0 λ0

)
.

(c) Suppose A has a complex-conjugated pair of eigenvalues λ1,2 =α± iβ with β> 0.

This case is done in a very complicated way in the textbook (p. 39). A much simpler way is
to let a+ i b (with a and b real) be a complex eigenvector corresponding to the eigenvalue

λ1 =α+ iβ. Then m1 = b and m2 = a will work, and directly give the Jordan form J =
(
α −β
β α

)
.

(These vectors are automatically linearly independent – otherwise they would both be real
eigenvectors of the real matrix A, with a non-real eigenvalue λ1, which is impossible.)

• How to solve the system ẏ = Jy with a matrix in Jordan form, and how to draw its phase portrait.

In case (a) the phase portrait is a node or a saddle depending on the signs of the eigenvalues. In
case (b) it is a star node or an improper node. And in case (c) it is a spiral (also called focus) if
α ̸= 0, or a centre if α= 0.

The phase portrait for x = My will be of the same type, only distorted by the linear transformation M .
The columns m1 and m2 give the principal directions of the phase portrait.

• A solution method which isn’t mentioned in the book, but is sometimes convenient, is to rewrite
the system as a single second-order ODE with constant coefficients, as follows. The derivative of
ẋ1 = ax1 +bx2 is

ẍ1 = aẋ1 +bẋ2.

The second term here, bẋ2, can be rewritten using the equations from the system:

bẋ2 = b(cx1 +d x2) = bcx1 +d(bx2) = bcx1 +d(ẋ1 −ax1) = d ẋ1 − (ad −bc)x1.

So we find that ẍ1 = aẋ1 +
(
d ẋ1 − (ad −bc)x1

)
, or in other words

ẍ1 − (a +d)ẋ1 + (ad −bc)x1 = 0.

This second-order ODE for x1(t ) can now be solved as in calculus, with the help of its characteristic
polynomial

p(λ) =λ2 − (a +d)λ+ (ad −bc),
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which (perhaps not surprisingly) coincides with the characteristic polynomial of the system’s
matrix A, as we can easily check:

p(λ) = det(A−λI ) =
∣∣∣∣a −λ b

c d −λ
∣∣∣∣= (a −λ)(d −λ)−bc =λ2 − (a +d)λ+ (ad −bc).

And once x1(t) is known, we also get x2(t) from x2 = (ẋ1 −ax1)/b, assuming that b ̸= 0. (If b = 0,
the system is easy to solve right away: the first equation ẋ1 = ax1 +0x2 gives x1(t ) = x1(0)eat ; plug
this into the second equation and solve the resulting ODE for x2(t ) as in calculus, either using an
integrating factor or “homogeneous + particular solution”.)

Exercises

• A little reminder of how linear transformations work: 2.1abd.

• Transformation to canonical form: 2.3a, 2.4.

• Solving canonical linear systems: 2.8.

• Drawing phase portraits for canonical linear systems: 2.9.

There’s no answer in the textbook, but remember that you can check your phase portraits using a
computer! One case which is particularly easy to get wrong is 2.9d; please verify carefully that your
answer agrees with Fig. 2.4 on p. 45 (except that the slope of the dashed nullcline is different).

Lecture 4. More about linear systems

(Arrowsmith & Place, sections 2.4, 2.5, 2.6, 2.7.)

• How to tell directly from the coefficients of the matrix A = (
a b
c d

)
what the type of the phase portrait

for ẋ = Ax is, without computing the eigenvalues: compute the trace and the determinant,

β= tr(A) = a +d , γ= det(A) = ad −bc,

and locate the point (β,γ) in the following diagram (cf. Figure 2.7 in the book, p. 47):

β= tr(A)

γ= det(A)

non-simple system

centre
stable star or improper node unstable star or improper node

γ= (β/2)2

saddle saddle saddle

stable node unstable node

stable spiral unstable spiral

For systems on the parabola γ= (β/2)2, the type is a star node if the matrix A equals a constant
times the identity matrix, otherwise it’s an improper node.

Centres are always stable, and saddles are always unstable (according to the general definitions of
“stable equilibrium” and “unstable equilibrium” that will be given later in the course).

14
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• In particular, the zeros of the polynomial p(z) = z2 −βz +γ both have negative real part if and
only if the coefficients satisfy β< 0 and γ> 0, i.e., if the point (β,γ) lies in the second quadrant in
the diagram above. (This is a special case of the Routh–Hurwitz criterion, which determines for
a polynomial of arbitrary degree whether all its zeros have negative real part. The name Routh
rhymes with “south”.)

• The word “type” above refers to a kind of “algebraic type”, with two linear systems being of the
same type if and only if they are related via a linear change of variables. Such changes preserve
the eigenvalues, so (for example) an unstable node with λ1 = 5 and λ2 = 3 cannot be linearly
transformed into an unstable node with λ1 = 43 and λ2 = 17.

We might want to introduce some looser type of equivalence instead, which will allow (for example)
any two unstable nodes to be considered equivalent.

• Classification of qualitatively equivalent types of phase portraits for two-dimensional simple
linear systems. Under this equivalence relation (Definition 2.4.1) there are only four different
types:

(a) Stable node, stable star node, stable improper node, or stable spiral. (“Stable but not centre.”)

(b) Centre.

(c) Saddle.

(d) Unstable node, unstable star node, unstable improper node, or unstable spiral. (“Unstable
but not saddle.”)

[One subtle detail regarding Definition 2.4.1: They say that two systems are qualitatively equivalent if there is
a continuous bijection f which maps the phase portrait of one system onto the phase portrait of the other
and preserves the orientation of the trajectories. But how do we know that this relation is symmetric? (If
system A is equivalent to system B , then we want system B to be equivalent to system A as well.) For this to
hold, the inverse f −1 must also be a continuous bijection. This isn’t necessarily true for continuous bijections
in general; consider for example the function from the interval (−π,π] in R to the unit circle in R2 given by
f (t) = (cos t , sin t). But there is a famous and rather difficult theorem by Brouwer (“invariance of domain”)
which implies that for a continuous bijection between two open sets in Rn the inverse is automatically
continuous, so the definition is actually correct as it stands.]

• Qualitative equivalence is also called topological equivalence.

(A stronger condition is C k -equivalence, where one requires the map f and its inverse f −1 to be of
class C k instead of just continuous.)

• As an aside, we may also mention the slightly different notion of conjugacy, where one also requires
the time parametrization of the trajectories to be respected. More precisely, two systems with flows
ϕ and ψ are said to be topologically conjugate if there’s a continuous map f with continuous
inverse f −1 such that

f ◦ϕt =ψt ◦ f

for all t . That is, following the flow ϕ of one system for t units of time and then mapping over to
the other phase portrait is always the same as first mapping to the other phase portrait and then
following that flow ψ for t units of time.

(And the systems are C k -conjugate if f and f −1 are of class C k .)

For example, a system whose phase portrait consists of concentric circles all traversed with the
same period T is topologically equivalent to a system whose phase portrait consists of concentric
circles traversed with different periods, but the systems are not topologically conjugate.

A conjugacy can also be viewed as a change of variables; if the system with flow ϕ is described in
terms of the variables x, and we make the change of variables y = f (x), then ψ can be considered
as the flow of the same system, just expressed in terms of the new variables y instead.
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• The exponential function for square matrices P :

eP = exp(P ) = I +P + 1

2!
P 2 + 1

3!
P 3 + . . .

• The solution to ẋ = A x is
x(t ) = e At x(0).

(Here it’s important that A is a constant matrix, not time-dependent.)

• Affine systems ẋ = A x+h(t ), also called non-homogeneous linear systems.

It’s easy if h is time-independent and Ax0 = h for some x0: just set y(t ) = x(t )+x0 to get ẏ = Ay. But
even if this doesn’t hold, an affine system can be solved using e−At as an integrating factor.

• Linear systems and Jordan form in n dimensions.

Exercises

• Using the trace–determinant criterion: 2.13.

• More phase portraits: A12 .

• Computing matrix exponentials: 2.22, 2.23.

• Affine systems: 2.29abcd, 2.30.

• A three-dimensional linear system: 2.33.

• Solutions corresponding to a 4×4 Jordan block, or two 2×2 Jordan blocks: 2.35.

Additional problems

A12 In each subproblem, draw the phase portrait for the system ẋ = Ax as carefully as you can, but
without computing the solution x(t ) explicitly. (Use the trace–determinant criterion or the eigen-
values to determine the type, and compute the the principal directions if there are any. Please
indicate the nullclines and the principal directions clearly in your figures.)

(a) A =
(
0 2
1 −1

)
.

(b) A =
(
2 −6
2 −1

)
.

(c) A =
(
0 −1
4 −4

)
. (Pay particular attention to this one – it’s easy to get it wrong!)

Lesson 2

Lecture 5. Nonlinear systems, linearization at an equilibrium point

(Arrowsmith & Place, sections 3.1, 3.2, 3.3, 3.4.)

Now back to nonlinear systems ẋ = X(x), in the plane R2 for simplicity, but the results are valid in Rn too.
We assume that the vector field X(x) is of class C 1, so that we have existence and uniqueness of solutions;
this assumption is also needed for the linearization theorem below to be valid.

• Suppose that x∗ = (a1, a2) is an equilibrium point: X1(a1, a2) = X2(a1, a2) = 0. Since the functions
X1 and X2 are assumed to be of class C 1, they are also differentiable, which by definition means
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that

X1(a1 +h1, a2 +h2) = X1(a1, a2)︸ ︷︷ ︸
=0

+∂X1

∂x1
(a1, a2)h1 + ∂X1

∂x2
(a1, a2)h2 + remainder,

X2(a1 +h1, a2 +h2) = X2(a1, a2)︸ ︷︷ ︸
=0

+∂X2

∂x1
(a1, a2)h1 + ∂X2

∂x2
(a1, a2)h2 + remainder,

where the remainders tend to zero faster1 than
√

h2
1 +h2

2 as (h1,h2) → (0,0).

• If we discard the remainders, we get a linear system for h(t ) = x(t )−x∗:

ḣ1 = ∂X1

∂x1
(a1, a2)h1 + ∂X1

∂x2
(a1, a2)h2,

ḣ2 = ∂X2

∂x1
(a1, a2)h1 + ∂X2

∂x2
(a1, a2)h2,

or in matrix notation,

(
ḣ1

ḣ2

)
=


∂X1

∂x1
(a1, a2)

∂X1

∂x2
(a1, a2)

∂X2

∂x1
(a1, a2)

∂X2

∂x2
(a1, a2)


(
h1

h2

)
, ḣ = ∂X

∂x
(x∗)︸ ︷︷ ︸

=A

h.

This system is called the linearization of the original system at the equilibrium point x∗. Its
matrix A is the Jacobian matrix of X(x), evaluated at the equilibrium point x∗ (so it’s really just a
constant matrix).

• Our hope is that the linear system ḣ = Ah (which we know how to analyze completely) will tell us
something about the behaviour of the original nonlinear system ẋ = X(x) near the point x∗.

And this is indeed the case, provided that x∗ is a hyperbolic2 equilibrium point, meaning that the
Jacobian matrix A = ∂X

∂x (x∗) has no eigenvalues on the imaginary axis in the complex plane.

Under that condition, Theorem 3.3.1 (the linearization theorem) says that the nonlinear system
ẋ = X(x) is indeed topologically equivalent3 to its linearization ḣ = Ah in a neighbourhood of x∗.

In terms of the trace-determinant diagram of A = ∂X
∂x (x∗):

β= tr(A)

γ= det(A)

no conclusion!

no conclusion!

saddle saddle saddle

stable unstable but not saddle

1What this means is that the quotient R(h1,h2)/
√

h2
1 +h2

2 tends to zero as (h1,h2) → (0,0), where R(h1,h2) is the remainder.
2The word “hyperbolic” is very over-used in mathematics, and it is perhaps not a very good choice in this context, but

unfortunately it has become standard terminology. Arrowsmith & Place avoid this word initially, and express the condition by
saying that the linearized system should be simple (λ= 0 is not an eigenvalue) and not a centre (we don’t have λ= 0± i k either).
But they introduce it a little later, on p. 80.

3Actually, it’s even topologically conjugate, but the book doesn’t introduce that concept.
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The linearization theorem is also called the Hartman–Grobman theorem, proved independently
by Philip Hartman in the U.S.A. and D. M. Grobman in the Soviet Union around 1960. The proof is
rather difficult, and way beyond the scope of this course.4

(However, a simpler theorem, not dealing with topological equivalence but only with determining
stability based on linearization, can be proved using Liapunov’s theorems that we will learn about
next time.)

Exercises

• Linearization: 3.5, 3.6, 3.7, A13 .

• An isolated, but non-simple, fixed point: 3.8.

• Non-isolated fixed points: 3.11.

(To avoid confusion: here “a line of fixed points” rather means a curve.)

• An explicit example of a topological conjugacy: A14*.

• An example regarding smoothness in the Hartman–Grobman theorem: A15**.

Additional problems

A13 Consider the system

ẋ = 2(x − y)(x +1), ẏ = x − y2.

(a) Linearize the system at the equilibrium point (0,0) and draw the phase portrait of the lin-
earized system in the hk-plane as carefully as you can. (Determine the type of the equilibrium,
indicate the principal directions if there are any, take the nullclines into account, etc.)

(b) Do the same for the other equilibrium point (1,1).

(c) Analyze the signs of ẋ and ẏ like we done before, for instance in problem A9:

• Draw the x-nullclines y = x and x =−1 for the original nonlinear system, and mark the
resulting regions in the x y-plane with R/L (right/left).

• Draw the y-nullcline x = y2 in a separate picture, and mark the resulting regions with
U/D (up/down).

• Overlay the two pictures in a single picture, and mark the regions with RU/RD/LU/LD.

(d) Use the information from the previous parts to draw the system’s phase portrait as carefully
as you can. Include sufficiently many solution curves to give a reasonably complete picture
of the system’s global behaviour. In particular, your phase portrait should make it clear what
happens inside the unit square [0,1]× [0,1] and in the vicinity thereof, so don’t make your

4For two-dimensional systems, a stronger result holds (also proved by Hartman): if the vector field X(x) is of class C 2, then the
nonlinear system is actually C 1-conjugate (not just topologically conjugate) to its linearization, and moreover the derivative of the
conjugating map at the origin is the identity. This means, for example, that if the linearization is a saddle, the eigenvectors will tell
us the correct incoming and outgoing directions of the trajectories of the nonlinear system.

It is not true in three or more dimensions that we can always get C 1-conjugacy. However, it is true (as was proved as recently as
2003) that the continuous conjugation map is differentiable at the origin, with the derivative there equal to the identity. (The proof
assumes that X(x) is of class C∞, but the claim is conjectured to be true already for class C 2.)

It’s also not true (even in two dimensions) that one can get C k -conjugacy with k ≥ 2 by assuming the vector field to be nicer; see
problem A15 for a counterexample with a vector field of class C∞ where one doesn’t get more than C 1-conjugacy.
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picture too small! Also be careful to make the local phase portraits from parts (a) and (b) fit
correctly into the global phase portrait, as indicated in the figure below:

x

y

This region of the phase portrait
should look similar to your answer
from part (b)!

And this region should look similar
to your answer from part (a)!

A14 Find a change of variables (u, v, w) = h(x, y, z) which transforms the nonlinear system

ẋ =−x, ẏ =−y +xz, ż = z

into the corresponding linearized system at the origin,

u̇ =−u, v̇ =−v, ẇ = w.

Answer.

A15 (a) Show that the change of variables

u = x, v = y + g (x), where g (x) =
{

x2 ln |x| , x ̸= 0,

0, x = 0,

converts the nonlinear system ẋ =−x, ẏ =−2y +x2 to its linearization at the origin, u̇ =−u,
v̇ =−2v .

(b) Show that the function g belongs to the class C 1(R) but not to C 2(R).

Conclude that the above mapping (u, v) = (x, y+g (x)) from the x y-plane to the uv-plane is of
class C 1(R2), but not of class C 2(R2), and likewise for the inverse mapping (x, y) = (u, v−g (u)).

(Hence the nonlinear system is C 1-conjugate to its linearization. But not C 2-conjugate; see
part (d).)

(c) Write down the explicit solutions for both systems in terms of initial data (x0, y0) and (u0, v0),
respectively, and sketch the phase portraits.

(The solution of the nonlinear system can be obtained either by solving the system directly,
or by transforming the solution of the linear system using the change of variables above.)
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(d) Finally, prove that there is no C 2-conjugacy between the systems (despite the vector field in
the nonlinear system being of class C∞), by filling in the details in the following outline:

• In order to derive a contradiction, assume that there is such a conjugacy u = A(x, y),
v = B(x, y), defined (at least) in some neighbourhoodΩ of the origin.
(That is, assume that the mapping f = (A,B) is of class C 2, with inverse f −1 of class C 2,
and that it relates the flows of the two systems as in the definition of conjugacy on p. 15).

• Explain why such a mapping must have nonzero Jacobian determinant everywhere.
(Hence, in particular, at the origin.)

• Explain why the functions A and B must satisfy the following functional equations for all
(x, y) ∈Ω and all t sufficiently close to 0 (so that both sides are defined):

A(x, y)e−t = A
(
x e−t , (y + t x2)e−2t ),

B(x, y)e−2t = B
(
x e−t , (y + t x2)e−2t ).

• Using the assumption that A and B are of class C 2, apply the operator (∂/∂x)2 to these
identities, and insert (x, y) = (0,0) afterwards, to get

e−t Axx (0,0) = 2te−t Ay (0,0)+e−2t Axx (0,0),

e−2t Bxx (0,0) = 2te−t By (0,0)+e−2t Bxx (0,0).

Conclude, since these identities have to hold for all t in some interval, that Ay (0,0) = 0
and By (0,0) = 0 (and Axx (0,0) = 0, but that’s not so relevant here).

• This means that the Jacobian determinant is zero at the origin, which is the desired
contradiction.

Lecture 6. Stability theorems

(Arrowsmith & Place, sections 3.5, 3.6, 3.7.)

• Definitions 3.5.1–4: The definition of what it means for an equilibrium point x∗ to be (Liapunov)
stable: for every neighbourhood U of x∗ there is a neighbourhood U ′ ⊆U of x∗ such that trajecto-
ries starting in U ′ cannot leave U .

Some stable equilibria are asymptotically stable, meaning that (in addition to the above require-
ment for stability) there is a neighbourhood N of x∗ such that every trajectory starting in N
converges to x∗ as t →∞.

And those which are stable but not asymptotically stable are called neutrally stable. So there are
exactly those two types of stable equilibria: asymptotically stable and neutrally stable.

Unstable equilibrium simply means an equilibrium which is not stable.

• Russian names can be transliterated into the Latin alphabet in many ways. Here I’m writing
Liapunov like in the textbook, but a very common alternative in English is Lyapunov, and one may
also come across Ljapunow, Liapounoff, and so on. Anyway, it’s pronounced with the stress on
the last syllable: “-OFF”.

• Theorem 3.5.1 is Liapunov’s stability theorem (1892).

This theorem is useful for showing stability in situations where linearization is inconclusive. Even
more importantly, it also provides a domain of stability, which is the textbook’s terminology
(although they don’t really define it precisely) for a neighbourhood N of an asymptotically stable
equilibrium x∗ such that any solution which starts in N stays in N and converges to x∗ as t →∞.
(From linearization we can only say that if all eigenvalues have negative real part, then there is
some domain of stability, but we don’t get any clue about the size of that domain.)
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However, Arrowsmith & Place don’t state exactly how to find a domain of stability, and their proof
of the theorem is also rather unclear. I will try to give more precise statements here.

First let us fix some terminology.

Definition. Let I be a proper1 interval in R, and let f be a real-valued function whose domain of
definition contains I . The function f is said to be strictly decreasing on I if

f (t1) > f (t2)

whenever t1 ∈ I , t2 ∈ I and t1 < t2. It is weakly decreasing on I if

f (t1) ≥ f (t2)

whenever t1 ∈ I , t2 ∈ I and t1 < t2.

Remark. Any function which is strictly decreasing is weakly decreasing as well.

Remark. In English it is more common to say decreasing and non-increasing instead of strictly
decreasing and weakly decreasing, but I have chosen the latter option here to reduce the risk of
confusion with the usual terminology in Swedish, which is strängt/strikt avtagande and avtagande,
respectively. (And similarly in German and French.)

From now on we consider some fixed dynamical system ẋ = X(x) in Rn , where the vector field X is
defined in some open set S ⊆ Rn , and we assume that V : Ω→ R is a differentiable function defined
on some open setΩ⊆ S. (And of course we assume thatΩ and S are not the empty set, since that
wouldn’t be very interesting.)

Definition. The function V̇ : Ω→ R is the dot product of the gradient ∇V and the vector field X:

V̇ (x) =∇V (x) ·X(x), x ∈Ω.

Theorem. Suppose V̇ (x) < 0 for all x ∈Ω. Then, for any solution x(t ) of the system which stays in
the setΩ during some nonempty open time interval I , the function

f (t ) =V (x(t )), t ∈ I

is strictly decreasing on I . If instead V̇ (x) ≤ 0 for all x ∈Ω, then f is weakly decreasing on I . And if
V̇ (x) = 0 for all x ∈Ω, then f is constant on I .

Proof. The chain rule gives

f ′(t ) =∇V (x(t )) · ẋ(t )

=∇V (x(t )) ·X(x(t )) = V̇ (x(t )), t ∈ I .

So if we know that V̇ < 0 everywhere inΩ, and that x(t ) stays inΩ for t ∈ I , then we have f ′(t ) < 0
for t ∈ I , which implies that f is strictly decreasing on I (by a very basic calculus theorem). Similarly
if V̇ ≤ 0 or V̇ = 0.

Theorem (Liapunov’s stability theorem, weak version). Let x∗ be an equilibrium point of the
dynamical system ẋ = X(x), x ∈ S ⊆ Rn . Suppose that there is a weak Liapunov function, i.e., a
differentiable function V : Ω→ R defined on some open setΩ⊆ S containing x∗ and satisfying the
conditions

1. V (x∗) = 0, and V (x) > 0 for all x ∈Ω\ {x∗},

2. V̇ (x) ≤ 0 for all x ∈Ω.

1A proper interval is an interval (in R) which contains infinitely many points, as opposed to the degenerate intervals [a, a] = {a}
and ;= { }.
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Then the equilibrium x∗ is stable.

Remark. As the theorem is formulated, the function V : Ω→ R has exactly the setΩ as its domain
of definition. Usually we have some nice function V (typically a polynomial) which is defined
everywhere to begin with. What we actually do then is that we compute V̇ , use that to locate some
open setΩwhere the assumptions of the theorem are fulfilled, and then apply the theorem with V
equal to the restriction of the original function V to the setΩ.

Outline of proof. If U is any neighbourhood of x∗, let B ⊂U ∩Ω be a closed ball centered at x∗ and
set

U ′ = {
x ∈ B : V (x) <α}

,

where α > 0 is the minimum of V on the boundary sphere ∂B . Then U ′ ⊂ B ⊂ U , and U ′ is a
neighbourhood of x∗ such that trajectories starting in U ′ can’t leave U (in fact, they can’t even
leave U ′).

Detailed proof. Let U be an arbitrary neighbourhood of x∗. To prove stability, we need to find
another neighbourhood U ′ such that solutions starting in U ′ will never leave U . To find U ′ we
begin by taking a closed ball

B = B(x∗,ε) = {
x ∈ Rn :

∣∣x−x∗
∣∣≤ ε}

centered at x∗, with radius ε> 0 small enough for B to be contained inside both U andΩ. (This is
possible since U andΩ are neighbourhoods of x∗.) The boundary

∂B = {
x ∈ Rn :

∣∣x−x∗
∣∣= ε}

is a sphere of radius ε centered at x∗. This sphere is a compact set (closed and bounded), and V
is continuous by assumption, so according to the extreme value theorem V has a smallest value
on ∂B :

α= min
x∈∂B

V (x).

In other words, there is a point x0 ∈ ∂B such that

α=V (x0) ≤V (x) for all x ∈ ∂B .

Since V is positive definite onΩ (i.e., satisfies condition 1 in the statement of the theorem) and we
have chosen B small enough to be a subset ofΩ, we have V (x) > 0 for all x ∈ ∂B , in particular

α=V (x0) > 0.

Now set
U ′ = {

x ∈ B : V (x) <α}
.

Then U ′ contains x∗, since V (x∗) = 0 <α. And U ′ is an open set, since V is continuous.2 In other
words, U ′ is an open neighbourhood of x∗. Moreover, a trajectory x(t ) starting in U ′ (at t = 0, say)
can’t leave U . Here’s why: to leave U , the trajectory would have to leave B to begin with (since
U ′ ⊂ B ⊂U ), and it’s a continuous curve so it would have to intersect the boundary sphere ∂B in
order to get out. But f (t) =V (x(t)) is a weakly decreasing function of t as long as x(t) stays in B
(since B ⊂Ω, and V̇ ≤ 0 in Ω by assumption). Since we start in U ′, we have f (0) <α, and hence
f (t ) <α for t ≥ 0. So it’s impossible for the trajectory to reach ∂B , since that would mean f (t ) ≥α
for some t > 0. (In fact, the trajectory can’t even leave U ′ – as soon as it did, it would mean that
f (t ) ≥α.)

(One more technical detail: since the trajectory stays inside the compact set B , it must exist for all
t ≥ 0; there can’t be any “blowup in finite time”. We haven’t proved that theorem in this course, so
we’ll just accept this fact on faith here.)

2Take any x ∈U ′, or in other words any x ∈ B with V (x) <α. Then actually x is in the interior of B , since V ≥α on the boundary ∂B .
Continuity of V at x means that there is an open ball B2 = B(x,δ) where V <α, and this ball must also be contained in the interior
of B , for the same reason. So B2 ⊆U ′. Thus any x ∈U ′ has an open neighbourhood contained in U ′, and this is exactly what it
means for U ′ to be open.
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Theorem (Liapunov’s stability theorem, strong version). Let x∗ be an equilibrium point of the
dynamical system ẋ = X(x), x ∈ S ⊆ Rn . Suppose that there is a strong Liapunov function, i.e., a
differentiable function V : Ω→ R defined on some open setΩ⊆ S containing x∗ and satisfying the
conditions

1. V (x∗) = 0 and V (x) > 0 for all x ∈Ω\ {x∗},

2. V̇ (x) < 0 for all x ∈Ω\ {x∗}.

Then the equilibrium x∗ is asymptotically stable. In fact, for any closed ball B = B(x∗,r ) contained
inΩ, the set

N = {
x ∈ B : V (x) <α}

, where α= min
x∈∂B

V (x),

is a domain of stability: solutions starting in N stay in N , and converge to x∗ as t →∞.

Remark. IfΩ= Rn and if the additional condition

V (x) →∞ as |x|→∞

holds, then for any given point x0 ∈ Rn it is true that

min
x∈∂B

V (x) >V (x0)

if we take B large enough. This means that x0 ∈ N for that choice of B , causing the trajectory
starting at x0 to converge to x∗. So in this case x∗ is stable and every trajectory of the system
converges to x∗, which is expressed by saying that x∗ is globally asymptotically stable.

Remark. If one studies the proof, it should be clear that the set B in the definition of N doesn’t really
have to be precisely a closed ball, just something which is topologically equivalent to a ball. For
example, if our Liapunov function is V (x, y) = x6+y4, then for k > 0 the sublevel set B = {x6+y4 ≤ k}
is sufficiently “ball-like” for the proof to work: no continuous curve can pass from the interior to
the exterior without crossing the closed level curve ∂B = {x6 + y4 = k}. The same arguments as in
the proof then show that trajectories can’t leave the set N = {x ∈ B : V (x, y) < k} = {x6 + y4 < k}, so
provided that B is contained in the regionΩ, N is a domain of stability for the equilibrium (0,0).

Outline of proof. Stability follows from the weak version of Liapunov’s theorem. Any trajectory
starting in N must stay in N , and along such a trajectory the function V decreases strictly towards
some limit L ≥ 0. But L > 0 would contradict the continuity of the flow ϕt , so L = 0, which in turn
implies that the trajectory converges to x∗ (the only point where V = 0).

Detailed proof. Stability follows from the weak version of Liapunov’s theorem. As in the proof of
that theorem, we see that N (as defined above) is an open neighbourhood of x∗, and that any
trajectory x(t ) starting in N stays in N and is defined for all t ≥ 0. For the constant solution x(t ) = x∗
there is nothing to prove – of course it converges to x∗! So suppose x(t) is some other solution
starting in N . Then, by the assumption V̇ < 0, V (x(t )) is a strictly decreasing function of t on the
interval t ≥ 0, and it’s bounded below (since V ≥ 0), so it has a limit L ≥ 0 as t →∞.

We want to show that L = 0, so assume L > 0 in order to get a contradiction. Take any sequence of
positive numbers tn ↗∞; then xn = x(tn) is a sequence of points in the compact set B . According
to the Bolzano–Weierstrass theorem (a standard theorem about compact sets in Rn), this sequence
of points must have a convergent subsequence, i.e., there is a point y ∈ B and an integer sequence
nk ↗∞ such that xnk → y as k →∞. Since V is continuous, we can move the limit outside V and
obtain

V (y) =V

(
lim

k→∞
xnk

)
= lim

k→∞
V (xnk ) = L.

We are assuming L > 0, which means that y ̸= x∗ (since V is positive definite), and V will thus
continue to decrease strictly along the trajectory starting at y. So the flow ϕ1, for example (or ϕt
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for any fixed t > 0), will map y to a point where V < L. But ϕ1 is a continuous function, so it will
also map all sufficiently nearby points xnk to points where V < L:

V (ϕ1(xnk )) =V (x(1+ tnk )) < L, for all sufficiently large k.

But we know that V (x(t)) > L for all t ≥ 0, since V (x(t)) is decreasing towards the limit L. This
contradiction shows that the assumption L > 0 must have been incorrect. Hence L = 0.

Now we know that V (x(t)) ↘ L = 0 as t →∞. It remains to show that this implies x(t) → x∗, i.e.,
that for any ε> 0 there is a time τ such that x(t) ∈ Bε for all t > τ, where Bε = B(x∗,ε) is the open
ball of radius ε centered at x∗. We may assume that 0 < ε< r , where r is the radius of the closed
ball B . Then

B \ Bε = B(x∗,r ) \ B(x∗,ε)

is a compact nonempty set, so the continuous function V has a smallest value β on this set (and
β> 0 since V is positive definite). What this means is that if x ∈ B and V (x) <β, then x ∈ Bε. But we
have x(t ) ∈ B for all t ≥ 0, and since V (x(t )) ↘ 0 as t →∞ there is a τ such that V (x(t )) <β for t > τ.
Consequently x(t ) ∈ Bε for t > τ, as desired.

• The very useful Theorem 3.5.2 is an improvement of Liapunov’s theorem which is due to LaSalle
(1960). It allows us to conclude asymptotic stability using only a weak Liapunov function, provided
an additional condition is satisfied. The proof is not given in the book, but it is a consequence of
something called LaSalle’s invariance principle (see the next lecture).

Theorem (LaSalle’s stability theorem). Let x∗ be an equilibrium point of the dynamical system
ẋ = X(x), x ∈ S ⊆ Rn . Suppose that there is a weak Liapunov function V : Ω→ R on some open set
Ω⊆ S containing x∗, and in addition suppose that the set{

x ∈Ω : V̇ (x) = 0}

contains no complete trajectory except the constant solution x∗.

Then the equilibrium x∗ is asymptotically stable, and N (defined as in the strong version of
Liapunov’s theorem) is a domain of stability.

(And ifΩ= Rn and V (x) →∞ as |x|→∞, then x∗ is globally asymptotically stable.)

Proof. See the next lecture.

• Here is a somewhat subtle point concerning the above theorems and weak Liapunov functions. If
we have a function V which is everywhere defined and nice (continuously differentiable), then the
setΩ1 =

{
x ∈ Rn : V̇ (x) ≤ 0

}
will be closed. But the theorems, as they are formulated above, require

us to restrict V to an open set Ω. So we have to shrink Ω1 “by hand” to get an open set Ω where
V̇ ≤ 0 holds. The purpose of this, as well as all the business with closed balls contained insideΩ, is
to avoid accidentally making plausible-sounding claims which are actually false. We know that V
is weakly decreasing along trajectories, but only as long as they stay inΩ, so we need to take some
precautions to prevent the trajectories from sneaking out ofΩ!

Example. If the system is ẋ = y , ẏ =−x − y(1−x2), and if V (x, y) = x2 + y2, then V̇ =−2y2(1−x2).
Thus, the set Ω1 = {V̇ ≤ 0} is the union of the closed strip −1 ≤ x ≤ 1 and the line y = 0. So any
trajectory will be moving closer to the origin (or at least not further away from it) as long as it is
inside the strip, but trajectories for y > 3 (or so) will enter the strip from the left, leave it again
on the right (a little further down), and then go off steeply upwards towards infinity instead of
converging towards the equilibrium (0,0). So for example, a set like {(x, y) ∈Ω1 : V (x, y) ≤ 100} is
not forward invariant despite V being weakly decreasing on trajectories in Ω1! But we can take
Ω to be the open strip −1 < x < 1, let B be any closed ball x2 + y2 ≤ k with 0 < k < 1 so that it
fits inside Ω, and then the set N given by x2 + y2 < k will be a domain of attraction by LaSalle’s
theorem, since there are no trajectories contained in the line y = 0 except the equilibrium solution
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(x(t ), y(t )) = (0,0). And since this is true for any 0 < k < 1, in fact the open unit disk x2 + y2 < 1 is a
domain of attraction.3

• Theorem 3.5.3 can be formulated as follows:

Theorem (Liapunov’s instability theorem). Let x∗ be an equilibrium point of the dynamical system
ẋ = X(x), x ∈ S ⊆ Rn . Suppose there is a differentiable function V : Ω→ R defined on some open set
Ω⊆ S containing x∗ and satisfying the conditions

1. V (x∗) is not a local maximum,

2. V̇ (x) > 0 for all x ∈Ω\ {x∗}.

Then the equilibrium x∗ is unstable.

Idea of proof. For any closed ball N = B(x∗,r ) ⊂Ω, there is a point x0 in the interior of N such that
V (x0) >V (x∗), and it is shown that the trajectory starting at such a point x0 must leave N .

• We have relied upon the rather deep Hartman–Grobman theorem to show that an equilibrium is
asymptotically stable if the linearization there is asymptotically stable. This fact can be proved
more directly using Liapunov’s stability theorem. The simplest case is when the Jacobian ma-
trix A = ∂X

∂x (x∗) has distinct real eigenvalues (assumed negative, in order for dh/dt = A h to be
asymptotically stable):

0 >λ1 > ·· · >λn .

Make the usual linear change of coordinates x = My, where the columns of M form a basis of
eigenvectors of A. In terms of these coordinates, we have a system ẏ = Y(y) with an equilibrium y∗
where the Jacobian is diagonal:

J = ∂Y

∂y
(y∗) = diag(λ1, . . . ,λn).

So k = y−y∗ satisfies
k̇ = J k+ remainder,

where the remainder tends to zero faster than |k|. It’s not too difficult to check that V (k) =∑
k2

i is
a strict Liapunov function for this system in a neighbourhood of k = 0, which proves asymptotic
stability. With repeated and/or non-real eigenvalues things are a bit more complicated, but if all
eigenvalues have negative real part, one can find a strong Liapunov function in the form of a sum
of squares in those cases too.

Similarly, one can use Liapunov’s instability theorem to prove that if some eigenvalue has positive
real part, then the equilibrium is unstable.

• The flow box theorem. Global phase portraits.

• First integrals, also known as constants of motion, integrals of motion, conserved quantities,
invariants, etc.

(Can sometimes be found by writing d y/dx = ẏ/ẋ = Y (x, y)/X (x, y) and solving the resulting ODE
for y = y(x).)

• If H(q, p) is any C 1 function, then the Hamiltonian system(
q̇
ṗ

)
=

(
∂H/∂p

−∂H/∂q

)
=

(
0 1
−1 0

) (
∂H/∂q
∂H/∂p

)
=

(
0 1
−1 0

)
∇H(q, p)

automatically has H as a first integral. A fundamental fact in mechanics is that the Hamiltonian
system generated by H(q, p) = 1

2 p2 +V (q) is equivalent to the Newton-type equation q̈ =−V ′(q).
(This works also in higher dimensions, with vectors p and q instead.)

3We can actually do yet a little better: the closed unit disk x2 + y2 ≤ 1 is forward invariant since the open unit disk is; this follows
from the continuity of the flow, since if ϕt (for some t > 0) would map some point on the unit circle to a point outside the circle,
then by continuity it would also have to map some nearby point inside the circle out of the circle, which we know it doesn’t. So the
closed unit disk is compact and forward invariant, and then we can try applying LaSalle’s invariance principle (see next lecture) to
it. This turns out to be successful (exercise), so actually the closed unit disk is a domain of attraction.
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Exercises

• V (x, y) = x2 + y2 as a strong Liapunov function: 3.13abe, 3.14abe.

• V (x, y) = x2 + y2 as a weak Liapunov function: 3.15, A16.

• Less obvious strong Liapunov functions: A17, A18*.

• Less obvious weak Liapunov functions: A19, 3.19b, A20 .

• Using positive definite quadratic forms as Liapunov functions: 3.18*.

Please note that there is a sign error in the given ODE for x2; the system is supposed to be

ẋ1 = x2, ẋ2 =−x1 −x2 + (x1 +2x2)(x2
2 −1).

Also note that the answer given in the book is not the only possible one.4

• More about quadratic forms, for linear systems: A21*.

• An example showing that the assumption V (x) →∞ is important in order to get global asymptotic
stability: A22.

• An example5 illustrating why the requirement about stability in the definition of asymptotic
stability is necessary: A23.

• Showing instability: 3.22.

(First do it as the book suggests, using Liapunov’s instability theorem. Then find a much simpler
way of showing that the origin is unstable, by thinking about what the phase portrait looks like!)

• And one more about Liapunov’s instability theorem: A24*.

• Illustration of an explicit transformation which straightens out a nonlinear vector field: 3.24.

• Constants of motion (first integrals): 3.28ab, 3.29*, A25*.

In 3.28b, you can do better than the answer in the book, and find a constant of motion which is
actually defined for all x1 and x2!

In 3.29, you should do much better than the answer in the book, which is actually wrong. A correct
constant of motion is F (x1, x2) = x1(x2

1 − x2)/(x2
1 + x2)2. The level curves of this function are not

easy to plot by hand, but you can of course do it on the computer if you want to see what the phase
portrait looks like.

Additional problems

A16 Draw the phase portrait (first by hand, and then on the computer for verification) for the system

ẋ = y, ẏ =−x − y(1−x2)

from the example above (on p. 24). In the same picture, draw some level sets of the weak Liapunov
function V (x, y) = x2 + y2 and indicate the sets where V̇ < 0 and V̇ = 0. Make sure that you
understand why the strip |x| < 1 is not a domain of stability!

4Since
− 1

2 V̇ = x2
1 +x2

2 + (3−a)x1x2 + (1−x2
2 )(bx1 + cx2)(x1 +2x2),

it’s quite natural to pick b = 1 and c = 2 to get a term (1−x2
2 )(x1 +2x2)2 whose sign we have control over, but then we can take any

a ∈ [1,5] to make V̇ negative definite in the strip |x2| < 1 (and note also that all these values of a satisfy the conditions a > 0 and
2a = ac > b2 = 1 for making V positive definite). You might want to draw the phase portrait and your domain of stability on the
computer! And why not try this for different values of a? If you take the union of the different domains of stability for 1 ≤ a ≤ 5 you
get a bigger (=better) domain of stability!]

5The system (3.33) in the book is another such example, but that one is much more difficult to analyze rigorously (Exercise 3.12);
for details about this, see Section 40 of the book Stability of Motion by W. Hahn (Springer, 1967).
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A17 Show that the origin is a globally asymptotically stable equilibrium point of the system

ẋ =−x +6y3 −3y4, ẏ =−x − y + 1
2 x y.

(Hint: Look for a strong Liapunov function of the form x2 + c yk .) Solution.

A18 Show that the origin is an asymptotically stable equilibrium for the system

ẋ = 2y + (x2 + y2 −1)x, ẏ =−4(x −x3)+ (x2 + y2 −1)y,

and find a domain of stability. (Hint: V (x, y) = 2x2 + y2 −x4.) Solution.

A19 Show that the origin is a stable equilibrium of the system

ẋ =−2y, ẏ = 2x +x2 − y3.

(Hint: V (x, y) = x2 + y2 + 1
3 x3.) Is it asymptotically stable? If so, is it globally asymptotically stable?

Solution.

A20 Show that V (x, y) = x2 + y2 −x2 y2 is a weak Liapunov function for the system

ẋ =−y(1−x2), ẏ = (x − y3)(1− y2).

Use LaSalle’s theorem to show that the origin is asymptotically stable, and that the open unit square

D = {
(x, y) : |x| < 1,

∣∣y
∣∣< 1

}
is a domain of stability.

A21 Here is an algorithm for finding Liapunov functions for linear n ×n systems dx/dt = Ax such that
all eigenvalues of A have negative real part (so that the origin is asymptotically stable):

Take an arbitrary positive definite n ×n matrix Q (symmetric), and solve for the sym-
metric n ×n matrix P in the Liapunov equation

AT P +PA =−Q.

Then the matrix P will be positive definite,6 and

V (x) = xT P x

will be a strong Liapunov function with V̇ (x) =−xT Q x.

Try this out on the system
ẋ = x + y, ẏ =−5x −2y,

with the positive definite matrix Q = diag(2,4). (If you’re lazy, you can get some help from Wolfram
Alpha.) Verify that the function V that you obtain really is a strong Liapunov function for this
system! Answer.

A22 Show that

V (x, y) = x2

1+x2 + y2

is a global strong Liapunov function for the system

ẋ =−x (1−3x2 y2), ẏ =−y (1+x2 y2),

but that the origin is not globally asymptotically stable (although it is locally asymptotically stable).

(Note that V (x, y) does not satisfy the condition that V (x, y) →∞ as
√

x2 + y2 →∞. What do the
level sets of V look like, in particular the level set V = 1?) Hints.

6If you do this for a system where the origin is not asymptotically stable, then the matrix P that you get will not be positive
definite.
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A23 Consider the system

ẋ = x
(
1−x2 − y2)− y

(
x2 + y2 −x

√
x2 + y2

)
,

ẏ = y
(
1−x2 − y2)+x

(
x2 + y2 −x

√
x2 + y2

)
.

Rewrite this system in polar coordinates.

Use this to draw the phase portrait. Deduce that, with the exception of the equilibrium solution
(x, y) = (0,0), all solutions (x(t ), y(t )) approach the point (x, y) = (1,0) as t →∞, but (1,0) is still an
unstable equilibrium. Answer.

A24 Let V (x, y) =−(y −x3)(y −x5), and consider the system

ẋ = ∂V

∂x
=−8x7 +3x2 y +5x4 y, ẏ = ∂V

∂y
= x3 +x5 −2y.

(a) Have a look at the phase portrait on the computer (Wolfram Alpha link). Can you tell from
the graphics whether the origin is stable or unstable?

(b) Prove that the origin is in fact unstable, using Liapunov’s instability theorem with the given
function V .

A25 Find a constant of motion for the system in problem 3.22, and use this to draw the phase portrait
accurately. Solution.

Lecture 7. Limit sets

(Arrowsmith & Place, sections 3.8, 3.9.)

• Definition 3.8.1 and the paragraph just below it:

The point y is an α-limit point of a point x if there is a sequence tn →−∞ such that ϕtn (x) → y.

The α-limit set Lα(x) is the set of α-limit points of x.

With tn →+∞ instead, we obtain ω-limit points, and the ω-limit set Lω(x).

(As you might know, α and ω are the first and last letters of the Greek alphabet; cf. the following
well-known passage from the Bible (Rev. 22:13): “I am the Alpha and the Omega, the first and
the last, the beginning and the end.” The terminology for limit sets is meant to convey the idea
that Lα(x) and Lω(x) give information about how the orbit of x behaves at the “beginning” of time
(t →−∞) and at the “end” of time (t →+∞). )

• In three or more dimensions, limit sets can be extremely complicated, since trajectories have room
to wind around in space in very strange ways. But in the plane, the possibilities are much more
restricted, as shown by Theorem 3.9.1, the Poincaré–Bendixson theorem (given without proof in
the textbook1):

If a compact nonempty limit set in the plane contains no equilibrium points, then it
must be a periodic orbit.

(There is also a more general version of the theorem, which says what can happen if the limit
set contains finitely many equilibrium points; see Wikipedia: Poincaré–Bendixson theorem, for
example.)

• Some properties of ω-limit sets:

– Lω(x) is always a closed and invariant set. (See Definition 3.9.2.)

1For proofs, see for example H. Amann, Ordinary Differential Equations, de Gruyter (1990), p. 333, or C. Chicone, Ordinary
Differential Equations with Applications, Second Edition, Springer (2006), p. 101.
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– Limit sets may be empty, unbounded, disconnected (see problem A27). But if the forward
orbit of x is bounded, then Lω(x) is connected, compact and non-empty, and2

ϕt (x) → Lω(x) as t →∞.

The corresponding properties hold of course for α-limit sets as t →−∞.

Proof of the invariance property. Suppose y ∈ Lω(x). By definition, this means that ϕtn (x) → y for
some sequence tn →∞. Fix an arbitrary t ∈ R. Applying the continuous function ϕt to both sides
gives ϕt+tn (x) →ϕt (y), so ϕt (y) ∈ Lω(x).

(I omit the proofs of the other properties, although they are not very difficult.)

• A limit cycle (Definition 3.8.2) is a periodic orbit which lies in the α- or ω-limit set of some point
not on the orbit.

To show the existence of a limit cycle for a planar system using the Poincaré–Bendixson theorem,
one tries to find a trapping region containing no equilibria. A trapping region for a system with
flow ϕt is a compact, connected set D ⊂ R2 such that ϕt (D) ⊂ D for t > 0. When reading this
definition, it’s important to note that Arrowsmith & Place use the symbol “⊂” for strict set inclusion.
The point is that if we only require D to be forward invariant (that is, ϕt (D) ⊆ D for t > 0, with
non-strict set inclusion “⊆”), then it may be the case that D is a union of periodic orbits3, in which
case there are no limit cycles in D. But with strict set inclusion, the points in the nonempty set
D \ϕt (D) (for any fixed t > 0) can’t lie on a periodic orbit4, and the ω-limit set of such a point x0 is
a nonempty compact subset of D . If we have chosen the trapping region D such that it contains no
equilibria, the Poincaré–Bendixson theorem says that Lω(x0) must be a periodic orbit. Since x0 was
not on any periodic orbit, Lω(x0) doesn’t contain x0, so it is a periodic orbit which is the ω-limit set
of a point not on the orbit – in other words, it’s an ω-limit cycle. Conclusion: the trapping region D
contains at least one limit cycle.

(But there may be many limit cycles in D ! To prove that there is at most one limit cycle is usually
much more difficult.)

• Now that we know what an ω-limit set Lω(x) is, we can state LaSalle’s invariance principle that
was mentioned in the previous lecture. We consider a system ẋ = X(x) with flow ϕt .

Theorem. Suppose V : Ω→ R is differentiable on the open setΩ⊆ Rn , and satisfies V̇ (y) ≤ 0 for
each y in some closed set M ⊆Ω.

1. If x is a point in M whose forward orbit O+(x) never leaves M , then there is an α ∈ R such that

Lω(x) ⊆ {
y ∈ M : V (y) =α}

.

This implies that Lω(x) is an invariant set contained in the set

C = {
y ∈ M : V̇ (y) = 0

}
,

and hence Lω(x) ⊆ E , where E is the largest invariant subset of C (i.e., E is the union of all
trajectories which stay in C for all t ∈ R).

Proof. This is trivially true if Lω(x) =;, since the empty set is a subset of every set. So assume
Lω(x) ̸= ;. (In particular, this assumption entails that the solution ϕt (x) exists for all t ≥ 0.)

2The notation ϕt (x) → Lω(x) means that for any open set U ⊃ Lω(x) there is a time T such that ϕt (x) ∈U for all t > T .
3For example (in polar coordinates), if the system is ṙ = 0, θ̇ = 1, and D is the annulus 1 ≤ r ≤ 2.
4Suppose that x0 ∈ D \ϕt (D) for some t > 0 and that x0 lies on a periodic orbit with period T > 0. Let n be a positive integer

such that nT > t . Then
y =ϕnT−t (x0) ∈ϕnT−t (D) ⊂ D

so that
x0 =ϕnT (x0) =ϕt (y) ∈ϕt (D),

which is a contradiction.
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To begin with,
Lω(x) ⊆O+(x) (follows from def. of Lω(x))

⊆ M (since O+(x) ⊆ M by assumption)

= M (since M is closed).

Next, the assumptions that V̇ ≤ 0 on M and that ϕt (x) stays in M for t ≥ 0 imply that V (ϕt (x))
is a weakly decreasing function of t for t ≥ 0, so the limit

α= lim
t→∞V (ϕt (x))

exists, either as a real number α ∈ R or in the improper sense α=−∞. But if y is any element
in the nonempty set Lω(x), meaning that ϕtn (x) → y for some sequence tn ↗∞, then

V (y) =V
(

lim
n→∞ϕtn (x)

)
= lim

n→∞V
(
ϕtn (x)

)=α,

since V is continuous. This shows that α equals the real number V (y), not −∞.

The above calculation holds for an arbitrary y ∈ Lω(x), so V =α on all of Lω(x). And Lω(x) is
an invariant set (general property of limit sets), so ϕt (y) ∈ Lω(x) for all t if y ∈ Lω(x). Thus
V (ϕt (y)) =α for all t , and hence

V̇ (y) = 0 if y ∈ Lω(x).

What we have shown now is that Lω(x) is an invariant set which is contained in the set C ⊆ M
where V̇ = 0. Therefore, it must trivially be contained in E , the largest invariant set contained
in C .

2. If moreover the forward orbit O+(x) is bounded, then Lω(x) is nonempty and ϕt (x) → Lω(x)
as t →∞. So ϕt (x) → E as t →∞.

Proof. The first sentence was one of the general properties of limit sets stated at the beginning
of the lecture. The second sentence follows at once from the property Lω(x) ⊆ E that we
proved in item 1. (The conclusion that ϕt (x) → E is of course a bit weaker than ϕt (x) → Lω(x),
but the point is that the set E does not depend on x.)

3. If M is compact and forward invariant, then items 1 and 2 apply to every point x ∈ M . So in
this case, ϕt (x) → E as t →∞, for every x ∈ M .

Proof. Trivial.

The point of this theorem is that the set E is often quite easy to determine. We find the set C simply
by computing V̇ and checking where it’s zero. This is typically some curve, if we are in R2. Then we
study what the vector field X is doing at each point of the set C – if the vector field is pointing out
from C at some point, then that point can’t be part of a trajectory completely contained in C , so it
can’t belong to E .

A typical application is the situation described in Theorem 3.5.2 (see the previous lecture), where
we have only managed to find a weak Liapunov function V , but the “bad” set C where we have
V̇ = 0 instead of V̇ < 0 doesn’t contain any trajectories except the equilibrium point x∗.

Proof of Theorem 3.5.2. As usual, let B = B(x∗,r ) be a closed ball (or some other neighbourhood
of x∗ topologically equivalent to a closed ball) contained inΩ, and define

N = {
x ∈ B : V (x) <α}

, where α= min
x∈∂B

V (x) > 0.

Stability of x∗ follows from the weak version of Liapunov’s theorem, so we just need to show that N
is a domain of stability. To apply LaSalle’s invariance principle, we need a compact and forward
invariant set M , so N (which is open) won’t do. Instead, take β with 0 ≤β<α, and let

M = {
x ∈ B : V (x) ≤β}

.
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Then M is closed (and hence compact) since V is continuous.5 And it’s forward invariant; indeed,
a trajectory starting in M can’t leave M , since then it would enter the part of B where V >β, so V
wouldn’t be weakly decreasing along that trajectory, and that would contradict the assumption that
V̇ ≤ 0 inΩ. Now the invariance principle says that every trajectory starting in M converges to E ,
the largest invariant subset of C = {x ∈ M : V̇ (x) = 0}. But by assumption, there are no trajectories
even in the larger set C2 = {x ∈Ω : V̇ (x) = 0} except for the equilibrium x∗. Hence E = {x∗}, and
every trajectory starting in M converges to x∗. So every such set M is a domain of stability.

To show that N is a domain of stability, just note that any x0 ∈ N belongs to the set M ⊆ N defined
using β=V (x0) <α. Therefore the trajectory starting at x0 stays in N and converges to x∗.

• The Poincaré map (or first-return map) associated with a periodic orbit is defined on p. 104.

• Theorem 3.9.2 is called the Bendixson criterion.

A simple generalization (with virtually the same proof) is the Bendixson–Dulac criterion, which
gives the same conclusion provided that that there is a function f (x1, x2) of class C 1 such that the
divergence of the rescaled vector field f X,

∇· ( f X) = ∂

∂x1

(
f X1

)+ ∂

∂x2

(
f X2

)
,

is of constant sign (positive or negative) in D .

(One can in fact weaken the hypotheses, by allowing ∇· ( f X) to be zero on a set of measure zero;
this does not alter the fact that the double integral in the proof must be nonzero.)

Exercises

• α- and ω-limit sets: 3.35, A26, A27*.

(There’s an error in the answer to 3.35b; it should say Lα(x) = {0} for 0 < r < 1.)

• Poincaré map: 3.36. (In this problem, it’s understood that a > 0.)

• Invariant sets, trapping regions: 3.42, 3.43, A28.

– Don’t miss the follow-up question that’s formulated at the end of problem 3.42, after part (e).

– Problem 3.42a is incorrect; the upper half-plane x2 ≥ 0 is actually not a positively invariant
set for that system! The reason is rather subtle; can you see what it is that goes wrong
compared to Definition 3.9.2?

– In problem 3.42d, it’s fine to “cheat” a little by using the computer to draw the level curves of
3(x2

1 +x2
2)−2x3

1 .

– In the last part of problem 3.43 (“Show that the system has a limit cycle when F = 0”) it is
assumed that w ̸= 0.

• The Bendixson criterion: A29.

5If xn is a sequence of points in M converging to x, then x ∈ B = B , and by continuity

V (xn )︸ ︷︷ ︸
≤β

→V (x),

so V (x) ≤β. Hence x ∈ M , which means that M is closed.
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Additional problems

A26 Show that for the equation ẋ = 1, the ω-limit set of each point is the empty set.

A27 Sketch the phase portrait for the system

ẋ =−y + x

1+x2 , ẏ = x (1− y2).

Show that the ω-limit set of any point (x, y) ̸= (0,0) in the strip
∣∣y

∣∣ < 1 is the union of the lines
y =±1, and hence is unbounded and disconnected. (Note also that for these points it’s not true
that ϕt (x, y) → Lω(x, y) as t →∞.) Hint.

A28 Show that the parabola y = x2 is an invariant set for the system

ẋ = x2 −x − y, ẏ = x2 −3y.

(Don’t forget to show that the solutions starting on the parabola exist for all t ∈ R, since this is part
of the definition of “invariant set”.) Sketch the phase portrait. Hints.

A29 Show that the following systems have no closed orbits:

(a) ẋ = y +x3, ẏ = x + y + y3. (Use Bendixson.)

(b) ẋ = y , ẏ =−x − y +x2 + y2. (Use Bendixson–Dulac with f (x, y) = e−2x .)

Lecture 8. Some applications

(Arrowsmith & Place, sections 5.1, 5.2, 5.3, 5.4.)

• In class we will look at a selection of the applications from Chapter 5, but there will not be time to
cover everything, so you’ll have to read the rest for yourself.

• The analysis in Section 5.3.3 of the Holling–Tanner predator–prey model

dx

dt
= r x

(
1− x

K

)
− w x y

D +x
,

dy

dt
= s y

(
1− y

x/J

)
can be made simpler by writing the system in dimensionless variables (τ,u, v) instead of (t , x, y).
This nondimensionalization is a very useful technique for reducing the number of parameters in
a system, and since it’s not described in the textbook, I’ll explain it here instead. Let

t = c0τ, x = c1u, y = c2v,

where c0, c1 and c2 are constants that we will specify soon. Inserting this into the differential
equations, we get

c1

c0

du

dτ
= r c1u

(
1− c1u

K

)
− wc1uc2v

D + c1u
,

c2

c0

d v

dτ
= sc2v

(
1− c2v

c1u/J

)
,

which we can simplify to

du

dτ
= (r c0)u

(
1− c1

K
u

)
−

wc0c2
c1

uv

D
c1
+u

,
d v

dτ
= (sc0)v

(
1− c2 J

c1

v

u

)
.

↑ ↑ ↑
At this stage, we have some freedom of choice, but for example we can get rid of the coefficients
indicated by the arrows, if we choose c0, c1 and c2 such that

r c0 = 1,
c1

K
= 1,

c2 J

c1
= 1.
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In other words, we take

c0 = 1

r
, c1 = K , c2 = K

J
. (1)

Then the equations become

du

dτ
= u (1−u)−

w
r J uv
D
K +u

,
d v

dτ
= s

r v
(
1− v

u

)
,

and if we now give names to the remaining coefficients appearing in the formulas, for example

α= w

r J
, β= s

r
, δ= D

K
, (2)

then the system in its final form is

du

dτ
= u (1−u)− αuv

δ+u
,

d v

dτ
=βv

(
1− v

u

)
. (3)

Note that this system contains only three parameters (α,β,δ), instead of the original six parameters
(r,K , w,D, s, J). By using the possibility of rescaling the three variables, we have reduced the
number of parameters by three.

Our choice (1) of the constants ck means that the new variables the we have introduced are actually

τ= t

c0
= r t , u = x

c1
= x

K
, v = y

c2
= J y

K
.

Considering that the parameter r in the original ODEs must have the dimension [time]−1 (it’s
a per capita growth rate), and that t of course has dimension [time], we see that the rescaled
time variable τ= r t is actually dimensionless. Similarly, the carrying capacity K for the prey has
the same dimension as the prey population size x (whatever unit we happen to use for this, like
number of millions of individuals, or biomass in kilograms, or something else), so the variable
u = x/K is dimensionless. And so is v , as you can check.

Moreover, the new parameters given by (2) are also dimensionless. For example, r and s are both
per capita growth rates and have the same units, so β = s/r is a dimensionless quantity which
measures the ratio between the intrinsic growth rates of the two species. It is rather meaningless to
say something like “r is small”, since this depends on what time unit we are using – if we switched
from measuring time in nanoseconds to measuring it in centuries, we would get a very different
numerical value for r . But the statement “β is small” (say much less than 1) expresses a fact which
is meaningful regardless of scale, namely that the predators reproduce much slower than the prey.

With the system in the simpler form (3), we can now carry out the same analysis as in Section 5.3.3,
but it will be cleaner, since there is less to write, and we also don’t get all the original parameters
scattered among our formulas, but we always keep them gathered in the meaningful combinations
α, β and δ. In the textbook, they do a bit of rescaling at the end, namely taking x/x∗ and y/y∗ as
new variables, where (x∗, y∗) is the nontrivial equilibrium point, but they don’t use the possibility
of rescaling time to get rid of one more parameter.

• The very last sentence in Section 5.3 (on p. 188) is (with my emphasis) “Thus the phase portrait
corresponding to Fig. 5.22(a) has no limit cycle; (y∗

1 , y∗
2 ) is simply a stable focus.” However, the

claim that there cannot exist any limit cycles in this case is false; there are actually parameter
values such that the stable focus is surrounded by two limit cycles, the inner one unstable and the
outer one stable.1

1A. Gasull, R. E. Kooij & J. Torregrosa, Limit cycles in the Holling–Tanner model, Publicacions Matemàtiques, Vol. 41 (1997),
149–167.
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Exercises

• Damped harmonic oscillator: 5.2, 5.3, 5.10.

• Population models: 5.15.

Since populations can’t be negative, it’s enough here to draw the phase portrait in the closed
positive quadrant (x1 ≥ 0 and x2 ≥ 0).

Please note that the book’s answer is not completely correct; the origin is an unstable star node,
where every direction is principal, not just the directions (1,0) and (0,1)! Also, when sketching the
phase portrait, take particular care to draw the improper nodes at (2,0) and (0,2) correctly – it’s
easy to get them wrong!

A bonus question: What would change if the coefficents were less “symmetric”? For example,
consider instead ẋ1 = x1(2−x1−2x2), ẋ2 = x2(3−3x1−x2). For your convenience, here are Wolfram
Alpha links if you want to check your answers: symmmetric case, non-symmetric case.

• Epidemics: A30, A31 .

• The chemostat: A32, A33 , A34, A35 , A36 , A37, A38 , A39.

Additional problems

A30 In the basic SIR model for the spread of an infectious disease in a population, the symbols S, I
and R denote the fractions of the total population that are susceptible to infection, infected, and
recovered (permanently immune to the infection). This means that S, I ,R ∈ [0,1], and S + I +R = 1.
Births and deaths are ignored, so that the population is assumed to be constant during the time
interval considered.

The ODEs describing the time evolution of S(t ), I (t ) and R(t ) in this model are

dS/dt =−αI S, dI /dt =αI S −βI , dR/dt =βI ,

where the parameters α and β are positive. The first idea here is that people get infected at a
rate proportional to the product SI , which is a measure of how often a susceptible individual
encounters an infected one. The rate of decrease of S must be the same as the rate of increase
of I , since individuals just “move from the S group to the I group”; hence the terms ±αI S is the
ODES. And the second idea is that people recover, i.e., “move from the I group to the R group”, at a
constant rate, so that the number of recoveries during a short time interval is simply proportional
to the number of infected individuals at that instant of time; hence the terms ±βI in the ODEs.

(a) Check that the quantity d
dt (S + I +R) = dS

dt + dI
dt + dR

dt is equal to zero.

(This means that solutions to the ODEs have the property that S(t )+ I (t )+R(t ) is constant in
time, which is good since S + I +R = 1 is supposed to hold always. To be explicit: if we solve
the ODEs with initial values satisfying S(0)+ I (0)+R(0) = 1, then we know that the solution
also satisfies S(t )+ I (t )+R(t ) = 1 for all t , as it should.)

(b) The relation R = 1− I −S implies that the quantity R is redundant, so that it’s enough to study
the two-dimensional dynamical system

dS/dt =−αI S, dI /dt =αI S −βI

for S(t ) and I (t ). Our goal here is to construct the phase portrait for this system. Clearly, since
S, I ∈ [0,1], it’s enough to consider the unit square in the SI -plane. But actually it’s enough to
consider just half that square, namely the triangular region

D = {
(S, I ) ∈ R2 : S ≥ 0, I ≥ 0, S + I ≤ 1

}
.

Explain why!
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(c) Draw the nullclines Ṡ = 0 and İ = 0 in the SI -plane, and mark the regions that are formed
with RU/RD/LU/LD, as usual. (We will restrict our attention to the triangle D later, but for
now you might as well draw the picture in the whole SI -plane.)

What are the equilibrium points?

(d) Express the flow lines on the form I = I (S) by eliminating t in the usual way, and solving the
resulting ODE:

dI

dS
= dI /dt

dS/dt
= ·· ·

Draw the family of curves I = I (S) as precisely as you can!

(e) Add directions to your curves, in accordance with the directions (UR, etc.) that you deter-
mined above. And look at the part of your picture which lies in the triangle D , to get an idea
of how the epidemic evolves.

There will be two cases, 0 <β/α< 1 and 1 <β/α, which will look different since in the first
case the nullcline S =β/α passed through the region D, while in the second case it doesn’t.
So make two separate drawings of the phase portrait in the region D , one for each case.

(As is commonly done, we ignore the borderline case β/α= 1 here, since “the probability that
it will occur in reality is zero”, and the model is just an approximation anyway.)

(f) How does the epidemic evolve? In particular, what happens as t →∞? Can you interpret the
two cases, considering the meaning of the parameters α and β? Solutions.

A31 Let S, I and R be as in problem A30 above. If we assume that immunity is only temporary, so that
recovered individuals may go back to the susceptible class after a while, we get an SIRS model:

dS/dt =−αI S +γR, d I /dt =αI S −βI , dR/dt =βI −γR,

where α, β and γ are all positive. (The parameters α and β are as before, while γ measures the rate
at which immunity is lost.)

Again, d
dt (S + I +R) = 0, so that the ODEs are consistent with the requirement that S + I +R = 1.

And therefore, we can again use R = 1−S − I to eliminate R and get the following two-dimensional
dynamical system for S(t ) and I (t ) :

dS/dt =−αI S +γ(1−S − I ), dI /dt =αI S −βI .

And again, our goal is to construct the phase portrait for this system in the triangular region

D = {
(S, I ) ∈ R2 : S ≥ 0, I ≥ 0, S + I ≤ 1

}
.

(a) Show that the S-nullcline for the two-dimensional system can be rewritten as follows:

−αI S +γ(1−S − I ) = 0 ⇐⇒
(
S + γ

α

)(
I + γ

α

)
= γ

α

(
1+ γ

α

)
.

Use this to draw the curve in the SI -plane! Draw the whole curve just for practice – we
will restrict our attention to the triangle D later. Part of the curve will in fact go inside the
triangle D , but you will need to give an argument to motivate why that’s the case!

(Hint: You should know very well already what a curve of the form “SI = constant” looks like.
From this you should be able to figure out what a curve of the form “(S−a)(I −b) = constant”
looks like!)

Remark: It’s also possible to draw the curve by rewriting it as

−αI S +γ(1−S − I ) = 0 ⇐⇒ I = I (S) = 1−S

1+ α
γ S

,

and then using calculus to investigate the function I (S). But this would involve a bit more work, such as
computing limits to determine asymptotes, and investigating the signs of the first derivative I ′(S) and
the second derivative I ′′(S). (You really need to consider convexity to make sure that the curve goes
inside D .)
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(b) Use the Bendixson–Dulac criterion, with the scaling factor 1/I , to show that there cannot be
any limit cycles in the interior of the triangular region D . That is, compute the divergence of
the vector field

1

I

(
dS

dt
,

dI

dt

)
=

(
dS/dt

I
,

dI /dt

I

)
=

(−αI S +γ(1−S − I )

I
,
αI S −βI

I

)
and study its sign. (This will be useful when drawing the phase portrait below, for arguing
that all solutions must converge to an equilibrium, since they can’t go into a cycle.)

(c) Consider the case 0 <α<β. Draw the nullclines (for both S and I together) in the SI -plane.
Are there any equilibrium points in the triangle D? If so, analyze them using linearization.
Sketch the phase portrait in the region D , and give a biological interpretation of the results.

(d) Do the same for the case 0 <β<α.

A32 A chemostat is a bioreactor for growing microorganisms in the laboratory. The liquid in the
reactor tank is kept well stirred at all times, and contains the microbial culture as well as nutrients
needed for the microorganisms to grow. All nutrients are supplied in excess, except for one, called
the limiting nutrient (since it’s the available amount of this nutrient that will limit how fast the
microorganism population can grow). Let C = C (t) denote the concentration of the limiting
nutrient in the tank, as a function of time t , and let X = X (t) be the concentration of micro-
organisms; both are measured in units of mass per volume. The volume V of liquid in the tank is
kept constant by continuously harvesting microorganism–nutrient solution at a constant rate F
(units: volume per time), and resupplying fresh nutrient solution at the same rate F ; the ratio
D = F /V is called the dilution rate (unit: 1/time). The growth rate of the microorganisms can be
controlled by adjusting the concentration Cin of the limiting nutrient in the solution which is being
pumped into the reactor. See for example the Wikipedia article about the chemostat for schematic
diagrams and more information.

We are going to investigate the following mathematical model of a chemostat:

dX

dt︸︷︷︸
organism

rate of
change

= f (C )X︸ ︷︷ ︸
organism

growth
rate

− D X︸︷︷︸
organism

outflux
rate

,
dC

dt︸︷︷︸
nutrient
rate of
change

= DCin︸ ︷︷ ︸
nutrient

influx
rate

− DC︸︷︷︸
nutrient
outflux

rate

− f (C )X /γ︸ ︷︷ ︸
nutrient

consumption
rate

,

where the per-capita growth rate of the microorganisms is described by the function

f (C ) = KmaxC

Km +C
.

The dimensionless constant γ is called the yield, since it determines how many mass units of
microorganisms that are obtained per mass unit of nutrient consumed. The formula for the
function f (C ) is an empirical expression suggested by the famous French biochemist Jacques
Monod. One of the parameters in this expression, Kmax, is the greatest possible growth rate of the
microorganisms, obtained when there is an infinite supply of the limiting nutrient:

lim
C→∞

f (C ) = lim
C→∞

KmaxC

Km +C
= lim

C→∞
Kmax

Km · 1
C +1

= Kmax

Km ·0+1
= Kmax.

The other parameter, Km , is the value of C for which the growth rate is half the maximal rate:

f (Km) = KmaxC

Km +C

∣∣∣∣
C=Km

= KmaxKm

Km +Km
= Kmax

2
.

So in total there are five parameters in the model:

• The constants Kmax, Km and γ, which describe properties of the microorganism in question.
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• The values Cin and D , which you can adjust in the settings of the apparatus. (The parameters
F and V don’t appear individually in the model, only in the combination D = F /V .)

(a) Before we start analyzing the ODEs mathematically, let’s do some thought experiments!

Suppose that you are working in a lab where you are growing microorganisms in a chemostat.
Everything is functioning as it should: the microorganism–nutrient solution in the reactor
tank is at an equilibrium state, meaning that the concentrations X (t ) and C (t ) stay constant
at some levels X ∗ and C∗, so that you are harvesting microorganisms at a constant rate.

One day your boss tells you that you will need to increase the production. You get the obvious
idea that the microorganisms will grow faster if they get more food, so in the evening you
turn the appropriate knob on the apparatus to increase the concentration Cin of the limiting
nutrient which is fed into the chemostat. When you return the next morning, the machine
has settled down into an equilibrium state again. The new equilibrium value X ∗ of the
microorganism concentration is indeed higher than before, as you planned, but you are
slightly surprised to find that the equilibrium value C∗ of the limiting nutrient in the tank is
exactly the same as before, even though you’re feeding more nutrient into the tank. Can you
think of an explanation for this fact?

(b) A while later, your boss says that the lab needs to save some money, so you will have to cut
down on the amount of nutrient that you’re giving the microorganisms. So you turn the same
knob, but this time to decrease the value of Cin. When equilibrium is reached again, C∗ is
unchanged, which now doesn’t surprise you anymore, since you have done part (a) of this
problem! You decrease Cin even further, and C∗ still doesn’t change. You decrease Cin again,
this time to a value that’s lower than C∗. Then, when you return the next morning, you are
shocked to find that there are no microorganisms left in the tank (i.e., X ∗ = 0) and that C∗
has decreased to Cin. What happened?

A33 (a) Now let’s start analyzing the chemostat model!

Your first task is to write down the ODEs

dx

dτ
= ·· · ,

dc

dτ
= ·· ·

which are obtained when making the change of variables

t = a0τ, X = a1x, C = a2c

in the ODEs for the chemostat.

(b) Next, choose the constants a0, a1 and a2 in such a way that the system you obtained in
part (a) takes the form

dx

dτ
=

(
β1c

β2 + c
−1

)
x,

dc

dτ
= 1− c − β1cx

β2 + c
.

Please state clearly in your answer how the scaling factors a0, a1, a2 and the new parameters
β1, β2 are defined in terms of the parameters in the original equations (Kmax, Km , γ, Cin

and D).

(c) The ODEs obtained in part (b) are supposed to be a nondimensionalized version of the
chemostat model, so please perform the following checks:

• Verify that the new parameters β1 and β2, as you definied them in your answer to part (b),
are really dimensionless.

• Similarly, verify that your a0, a1 and a2 have the dimensions that they should have.
(Namely, the same as t , X and C , respectively, so that the new variables τ= t/a0, x = X /a1

and c =C /a2 become dimensionless too.)
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A34 Our goal is now to construct the phase portrait for the nondimensionalized system from prob-
lem A33, in the nonnegative quadrant of the xc-plane. Let’s start with the equilibrium points.

(a) Find all equilibrium points for the nondimensionalized system.

(Spoilers: There is one rather trivial equilibrium point, the “washout” equilibrium, which is
independent of the values of β1 and β2. Provided that β1 ̸= 1 and β1 ̸= 1+β2, there is also
another equilibrium point which is more interesting; call it (x∗,c∗).)

(b) Show that (x∗,c∗) always lies on the line x + c = 1.

(c) Show that (x∗,c∗) lies in the positive quadrant (i.e., x∗ > 0 and c∗ > 0) if and only if β1 belongs
to the open interval (1+β2,∞). We will call this the “good” case.

(d) We will also consider two “bad” cases, with β1 in the interval (0,1) or (1,1+β2). In which
quadrant does (x∗,c∗) lie in those two cases?

(As usual, we ignore the borderline cases β1 = 1 and β1 = 1+β2.)

(e) Compute the system’s Jacobian matrix J (x,c), and in particular J (0,1) and J (x∗,c∗).

Solutions.

A35 (a) Determine the eigenvalues and eigenvectors of J (0,1) from problem A34e.

(b) Use the eigenvalues to determine the stability and type (focus/node/saddle, etc.) of the
washout equilibrium (0,1) in all three cases:

• the first bad case β1 ∈ (0,1),

• the second bad case β1 ∈ (1,1+β2),

• the good case β1 ∈ (1+β2,∞).

(Do not use the trace–determinant criterion! It’s much easier to determine the type directly
from the eigenvalues here.)

(c) Determine from J (x∗,c∗) whether the nontrivial equilibrium (x∗,c∗) is stable or unstable in
the good case β1 ∈ (1+β2,∞).

(Here it’s very convenient to use the trace–determinant criterion.)

Remark 1: Although J (x∗,c∗) may look a little “nasty”, it’s actually not that difficult to find its eigenvalues
and eigenvectors, so you can try that if you like. This will quickly give you information about what
type of equilibrium it is, not just whether it’s stable or not. But we will soon obtain this information in
another way (problem A36c), so it’s not really necessary to do it at this stage.

Remark 2: The bad cases are not relevant for (x∗,c∗), since we are only interested in the phase portrait
in the nonnegative quadrant, and we have seen that (x∗,c∗) only lies there in the good case.

A36 (a) Show, from the ODEs, that the point
(
x(τ),c(τ)

)
moves in such a way that its perpendicular

distance to the line x + c = 1 decreases monotonically towards zero (or is identically zero).

Hint.

(b) Explain why this implies that no equilibrium can be a focus!

(c) Together with what we found in problem A35c, what does this tell us about the type of the
equilibrium (x∗,c∗) in the good case?

A37 Now it’s time to look at the nullclines. Recall that our system is

x ′ =
(
β1c

β2 + c
−1

)
x, c ′ = 1− c − β1cx

β2 + c
.

The x-nullcline is clearly just the union of two straight lines:(
β1c

β2 + c
−1

)
x = 0 ⇐⇒ x = 0 or c = c∗ = β2

β1 −1
.
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The c-nullcline is a curve, which can be expressed with x as a function of c:

1− c − β1cx

β2 + c
= 0 ⇐⇒ x = (1− c)(β2 + c)

β1c
=− 1

β1
c + 1−β2

β1
+ β2

β1c
=: g (c).

(a) Use calculus to draw this curve x = g (c) in the xc-plane, in the good case β1 ∈ (1+β2,∞). (In
the end we will only be interested in nonnegative x and c, but you should draw the curve in
the whole xc-plane, just for practice!) Also draw the line x + c = 1 in the same figure.

Solution.

(b) Do the same for the two bad cases.

A38 Now we can finally draw the phase portrait for the nondimensionalized chemostat model! To
facilitate the marking of the homework, please draw the x-axis horizontally and the c-axis vertically,
like this:

x

c

(a) Sketch the phase portrait in the nonnegative quadrant of the xc-plane, in the good case
β1 ∈ (1+β2,∞).

(As usual, consider the nullclines and the signs of dx/dτ and dc/dτ. But you should also try to
use all the other information that you have gathered above, such as the type of the equilibrium
points, the principal directions, the important observations about the line x + c = 1, etc.)

(b) The same, but for the first bad case β1 ∈ (0,1).

(c) And the same again, but for the second bad case β1 ∈ (1,1+β2).

A39 It only remains to translate these results back to the original chemostat model, and think a little
about whether they agree with our intuition, and in particular with the thought experiments from
problem A32.

(a) By now it should hopefully be clear what is “good” and “bad” about the different cases. Show
that the condition β1 > 1 corresponds to Kmax > D in terms of the original parameters, and
explain why this condition should obviously be necessary for avoiding washout.

(b) But β1 > 1 is not sufficient to avoid washout; we need the stronger condition β1 > 1+β2. In
order to understand this condition, express it in terms of the original parameters, and show
that (provided the condition Kmax > D holds to begin with) it can be rewritten as Cin >C∗,
where

C∗ = KmD

Kmax −D

is the equilibrium value of C that corresponds to c = c∗.

Why does it make sense that Cin ought to be greater than C∗ in order to avoid washout?
What’s the sign of dC /dt if Cin ≤C∗?

(c) Note that the expression above for the equilibrium nutrient concentration C∗ doesn’t depend
on the nutrient supply concentration Cin.

Give a conceptual explanation of why it must be like that, as follows: Why should the equation
f (C∗) = D hold at a nontrivial equilibrium? (This can be seen from the ODE for X . But also
think about what it means biologically.) Why does this condition determine C∗ uniquely (if
Kmax > D)?
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Lesson 3

Lecture 9. More about existence and uniqueness

(Not covered in Arrowsmith & Place; see notes below instead.)

Our goal this time is to use Picard iteration, also known as the method of successive approximations, to
prove the Picard–Lindelöf theorem, the fundamental existence and uniqueness theorem for a system of
(non-autonomous) first order ODEs ẋ = X

(
t ,x

)
with a given initial condition x(t0) = c.

Preliminaries from analysis: uniform convergence

We will need some theorems about convergence of sequences and series of functions (not just numbers).

Definition (Pointwise and uniform convergence). Suppose f and f0, f1, f2, . . . are real-valued functions
all defined on the same set I (for example an interval).

• The sequence ( fn)∞n=0 converges to the function f pointwise on I if

lim
n→∞ fn(x) = f (x)

for each x ∈ I .

[Equivalently: for each x ∈ I and for each ε> 0 there is an N (which may depend on x and ε) such
that

∣∣ fn(x)− f (x)
∣∣< ε for all n ≥ N .]

• The sequence ( fn)∞n=0 converges to the function f uniformly on I if

lim
n→∞sup

x∈I

∣∣ fn(x)− f (x)
∣∣= 0.

[Equivalently: for each ε> 0 there is an N (which may depend on ε) such that
∣∣ fn(x)− f (x)

∣∣< ε for
all x ∈ I and all n ≥ N .]

• The function series
∑∞

n=0 fn(x) converges pointwise/uniformly to the function s(x) if the sequence
of partial sums sn(x) =∑n

k=0 fk (x) converges pointwise/uniformly to s(x).

Remark. The same definitions also apply to complex-valued or vector-valued functions, etc., with the
suitable interpretation of what

∣∣ fn(x)− f (x)
∣∣ means.

Theorem. Uniform convergence implies pointwise convergence, but not the other way around.

Proof. If fn → f uniformly, then for a given ε> 0 one can find an N which works for all x, so the same
number N will work for each particular x in the definition of pointwise convergence.

An example showing that the converse fails is the sequence fn(x) = xn on the interval [0,1], which
converges pointwise, but not uniformly, to the discontinuous function

f (x) =
{

0, 0 ≤ x < 1,

1, x = 1.

Theorem (The uniform limit theorem). If each fn is continuous on I , and fn → f uniformly, then f is
continuous on I .

Proof. Suppose a ∈ I . Let ε> 0. Since fn → f uniformly, there is an N such that
∣∣ fN (x)− f (x)

∣∣< ε/3 for
all x ∈ I . Since fN is continuous, there is a δ > 0 such that

∣∣ fN (x)− fN (a)
∣∣ < ε/3 for all x ∈ I such that

|x −a| < δ. The triangle inequality gives∣∣ f (x)− f (a)
∣∣= ∣∣ f (x)− fN (x)+ fN (x)− fN (a)+ fN (a)− f (a)

∣∣
≤ ∣∣ f (x)− fN (x)

∣∣+ ∣∣ fN (x)− fN (a)
∣∣+ ∣∣ fN (a)− f (a)

∣∣
< ε

3
+ ε

3
+ ε

3
= ε

for all x ∈ I such that |x −a| < δ. Thus f is continuous at a.
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Theorem (The Weierstrass M-test). If the numerical series
∑∞

n=0 Mn converges, and if
∣∣ fn(x)

∣∣ ≤ Mn

for all x ∈ I , then the function series
∑∞

n=0 fn(x) converges uniformly (and absolutely) on I to some
function S(x).

Proof. (Omitted.)

Remark. In the M-test, if each fn is continuous, then the sum S is also a continuous function. This
follows by applying the uniform limit theorem to the sequence of partial sums.

Equivalent integral equation

Lemma. Let I ⊆ R be an open interval (bounded or unbounded), and assume that X : I ×Rn → Rn is
continuous. Let t0 ∈ I . Then the function x(t ) (t ∈ I ) is a continuously differentiable solution of the initial
value problem

ẋ(t ) = X
(
t ,x(t )

)
for t ∈ I ,

x(t0) = c,
(A)

if and only if it is a continuous solution of the integral equation

x(t ) = c+
∫ t

t0

X
(
s,x(s)

)
d s for t ∈ I . (B)

The same statement holds also for closed intervals I , provided that the derivative ẋ(t ) is interpreted as a
one-sided derivative when t is an endpoint of I .

Proof. This is an immediate consequence of the fundamental theorem of calculus.

Picard iteration

Picard’s idea for proving the existence of a solution to problem (A) is to recursively define an infinite
sequence of functions

x0(t ), x1(t ), x2(t ), . . . (t ∈ I )

by the formulas
x0(t ) = c,

xn(t ) = c+
∫ t

t0

X
(
s,xn−1(s)

)
d s for n ≥ 1,

and to show that this sequence converges (under some conditions) to a continuous function x(t ) which
satisfies the integral equation (B), and hence also the initial value problem (A). The uniqueness of this
solution is proved by separate argument (but under the same conditions).

We may note right away that each function xn(t ) in the sequence is differentiable on I . This is obvious
for n = 0 since x0 is just a constant function, and for n ≥ 1 it follows from the fundamental theorem of
calculus:

dxn

dt
(t ) = X

(
t ,xn−1(t )

)
.

And since the functions xn(t ) are differentiable, they are automatically continuous as well.

The Lipschitz condition

How to prove that the sequence defined by Picard iteration converges? Answer: We write

xn =
(
xn −xn−1

)
+·· ·+

(
x2 −x1

)
+

(
x1 −x0

)
+x0

= c+
n∑

k=1

(
xk −xk−1

)
,
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and apply the Weierstrass M-test to show that the function series

c+
∞∑

k=1

(
xk −xk−1

)
converges (uniformly, on some interval).

For this, we will need to estimate the differences xk −xk−1. For k ≥ 2 we have

xk (t )−xk−1(t ) =
(

c+
∫ t

t0

X
(
s,xk−1(s)

)
d s

)
−

(
c+

∫ t

t0

X
(
s,xk−2(s)

)
d s

)
=

∫ t

t0

(
X
(
s,xk−1(s)

)−X
(
s,xk−2(s)

))
d s.

To get anything interesting out of this expression, it’s necessary to assume something about the function X.
The natural assumption in this context is that X satisfies the following so-called Lipschitz condition with
respect to x: there is some setΩ⊆ Rn and some constant L > 0 such that1

|X(t ,a)−X(t ,b)| ≤ L |a−b| for all t ∈ I and for all a, b ∈Ω. (Lip)

This assumption allows us to make an estimate where we get rid of the terms containing X, as follows: if

xk−1(t ) ∈Ω and xk−2(t ) ∈Ω for all t ∈ I ,

then for t0 ≤ t ∈ I we have

|xk (t )−xk−1(t )| =
∣∣∣∣∫ t

t0

(
X
(
s,xk−1(s)

)−X
(
s,xk−2(s)

))
d s

∣∣∣∣ (put |· · ·| around the equality above)

≤
∫ t

t0

∣∣∣X(
s,xk−1(s)

)−X
(
s,xk−2(s)

)∣∣∣ d s (triangle inequality for integrals)

≤ L
∫ t

t0

|xk−1(s)−xk−2(s)| d s (because of the Lipschitz condition),

and similarly for t0 ≥ t ∈ I with the bounds of integration in the opposite order:

|xk (t )−xk−1(t )| ≤ L
∫ t0

t
|xk−1(s)−xk−2(s)| d s.

In the proofs below, these inequalities will allow us to use knowledge about one difference xk−1 −xk−2 to
say something about the next difference xk −xk−1.

The Picard–Lindelöf theorem

Theorem (Picard–Lindelöf theorem, global version). Let I ⊆ R be an open interval, and assume that
X : I ×Rn → Rn is continuous and satisfies the Lipschitz condition (Lip) on the whole space Rn :

|X(t ,a)−X(t ,b)| ≤ L |a−b| for all t ∈ I and for all a, b ∈ Rn .

1For example, in the one-dimensional case, if the partial derivative ∂X
∂x (t , x) exists and satisfies the boundedness condition∣∣∣∣∂X

∂x
(t , x)

∣∣∣∣≤ L for all t ∈ I and for all a, b ∈Ω,

then the mean value theorem for derivatives implies that

|X (t , a)−X (t ,b)| =
∣∣∣∣(b −a)

∂X

∂x
(t ,ξ)

∣∣∣∣≤ L |b −a| for all t ∈ I and for all a, b ∈Ω,

so that the Lipschitz condition holds. Similarly in higher dimensions. For simplicity, one often uses the stronger assumption that
X(t ,x) is of class C 1; this gives the Lipschitz condition automatically.
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Then for any t0 ∈ I and any c ∈ Rn , the initial value problem (A),

ẋ(t ) = X
(
t ,x(t )

)
for t ∈ I ,

x(t0) = c,

has exactly one solution x(t). (Note that the interval I may be bounded or unbounded, and that the
solution is defined on the whole interval t ∈ I .)

Theorem (Picard–Lindelöf theorem, local version). Let I ⊆ R be an open interval, and assume that
X : I ×Ω→ Rn is continuous and satisfies the Lipschitz condition (Lip) on some open setΩ⊆ Rn :

|X(t ,a)−X(t ,b)| ≤ L |a−b| for all t ∈ I and for all a, b ∈Ω.

Given any t0 ∈ I and any c ∈Ω, take h > 0 and r > 0 small enough that the interval J = [t0 −h, t0 +h] is
contained in I and the closed ball B = B(c,r ) is contained inΩ, and let

C = max
(t ,x)∈J×B

∣∣X(
t ,x

)∣∣ .

(This maximum exists by the extreme value theorem.) Then the initial value problem (A),

ẋ(t ) = X
(
t ,x(t )

)
for t ∈ [t0 −ε, t0 +ε] where ε= min(h,r /C ),

x(t0) = c,

has exactly one solution x(t ). (Note that we cannot in general guarantee that the solution is defined on
the whole interval I , only on a subinterval.)

Proof of the global version. Define the sequence
(
xn(t )

)∞
n=0 for t ∈ I by Picard iteration as above.

Take any S ∈ I and T ∈ I with S < t0 < T . We will show that there is a unique solution defined on the
interval [S,T ], and since S and T are arbitrary, this implies that there is a unique solution on the whole
interval I .

Since the function X is continuous and the interval [S,T ] is closed and bounded, the maximum

M = max
t∈[S,T ]

|X(t ,c)|

exists, by the extreme value theorem.
Let t ∈ [t0,T ] to begin with. Then we have

|x1(t )−x0(t )| =
∣∣∣∣(c+

∫ t

t0

X
(
s,c

)
d s

)
−c

∣∣∣∣≤ ∫ t

t0

∣∣X(
s,c

)∣∣ d s ≤ M (t − t0),

Now that we have an estimate for the first difference x1 −x0, we can start estimating the other differences
xk −xk−1 successively, using the inequality that we derived in the section about the Lipschitz condition
above. This gives (still for t ∈ [t0,T ]):

|x2(t )−x1(t )| ≤ L
∫ t

t0

|x1(s)−x0(s)| d s ≤ L
∫ t

t0

M (s − t0)d s = LM

2
(t − t0)2,

|x3(t )−x2(t )| ≤ L
∫ t

t0

|x2(s)−x1(s)| d s ≤ L
∫ t

t0

L2M

2
(s − t0)2 d s = L2M

2 ·3
(t − t0)3,

|x4(t )−x3(t )| ≤ L
∫ t

t0

|x3(s)−x2(s)| d s ≤ L
∫ t

t0

L2M

2 ·3
(s − t0)3 d s = L3M

2 ·3 ·4
(t − t0)4,

and so on, with an obvious pattern emerging. To get a uniform estimate, let t = T :

|xk (t )−xk−1(t )| ≤ Lk−1M

k !
(T − t0)k for all t ∈ [t0,T ] and k ≥ 1.
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If we instead consider t ∈ [S, t0], we find in the same way that

|xk (t )−xk−1(t )| ≤ Lk−1M

k !
(t0 −S)k for all t ∈ [S, t0] and k ≥ 1.

We can combine these two estimates into a single uniform estimate over the whole interval [S,T ], less
sharp but still good enough for our purposes:

|xk (t )−xk−1(t )| ≤ Lk−1M

k !
(T −S)k for all t ∈ [S,T ] and k ≥ 1.

The numerical series

∞∑
k=1

Lk−1M

k !
(T −S)k = M

L

∞∑
k=1

(
L (T −S)

)k

k !
= M

L

(
eL (T−S) −1

)
converges, so the Weierstrass M-test shows the uniform convergence on [S,T ] of the function series that
we have majorized,

c+
∞∑

k=1

(
xk (t )−xk−1(t )

)
.

The partial sums of this series are just the functions

xn(t ) = c+
n∑

k=1

(
xk (t )−xk−1(t )

)
,

so what we have shown is that the function sequence
(
xn

)∞
n=0 converges uniformly on [S,T ] to some

function x. And since each function xn is continuous, the uniform limit theorem shows that this function x
is continuous.

Moreover, for t ∈ [S,T ],

x(t )−c−
∫ t

t0

X
(
s,x(s)

)
d s

= x(t )−xn(t )+xn(t )−c−
∫ t

t0

X
(
s,x(s)

)
d s (add and subtract xn)

= x(t )−xn(t )+
∫ t

t0

X
(
s,xn−1(s)

)
d s −

∫ t

t0

X
(
s,x(s)

)
d s (use definition of xn)

= x(t )−xn(t )+
∫ t

t0

(
X
(
s,xn−1(s)

)
d s −X

(
s,x(s)

))
d s,

so ∣∣∣∣x(t )−c−
∫ t

t0

X
(
s,x(s)

)
d s

∣∣∣∣≤ |x(t )−xn(t )|+
∣∣∣∣∫ t

t0

∣∣∣X(
s,xn−1(s)

)
d s −X

(
s,x(s)

)∣∣∣ d s

∣∣∣∣
≤ |x(t )−xn(t )|+L

∣∣∣∣∫ t

t0

|xn−1(s)−x(s)| d s

∣∣∣∣ ,

where the right-hand side can be made arbitrarily small by taking n large enough, due to the uniform
convergence

max
t∈[S,T ]

|xn(t )−x(t )|→ 0 as n →∞.

Therefore, since the left-hand side is nonnegative and independent of n, it must be zero:

x(t )−c−
∫ t

t0

X
(
s,x(s)

)
d s = 0.

In other words, the continuous function x(t ) satisfies the integral equation (B) on the interval [S,T ], and
thus it also satisfies the equivalent initial value problem (A) on [S,T ].

44



[Table of contents]

To show uniqueness, assume that the function y(t ) is also a continuous solution of (B) on [S,T ]. Then
the maximum

A = max
t∈[S,T ]

∣∣y(t )−c
∣∣

exists, by the extreme value theorem. For t ∈ [t0,T ] we first estimate

∣∣y(t )−x1(t )
∣∣= ∣∣∣∣(c+

∫ t

t0

X
(
s,y(s)

)
d s

)
−

(
c+

∫ t

t0

X
(
s,x0(s)

)
d s

)∣∣∣∣ (def. of y and x1)

≤
∫ t

t0

∣∣∣X(
s,y(s)

)−X
(
s,c

)∣∣∣ d s (triangle inequality for integrals)

≤ L
∫ t

t0

∣∣y(s)−c
∣∣ d s (Lipschitz condition)

≤ L A (t − t0) (definition of A),

and then successively (in a manner very similar to what we did earlier)

∣∣y(t )−x2(t )
∣∣≤ L2 A (t − t0)2

2
,

∣∣y(t )−x3(t )
∣∣≤ L3 A (t − t0)3

2 ·3
,

∣∣y(t )−x4(t )
∣∣≤ L4 A (t − t0)4

2 ·3 ·4
,

and so on. Together with the similar estimates for t ∈ [S, t0] we get

∣∣y(t )−xn(t )
∣∣≤ Ln A (T −S)n

n!
for all t ∈ [S,T ] and n ≥ 0.

The right-hand side tends to zero as n →∞, so the limit of the left-hand side,
∣∣y(t )−x(t )

∣∣, must also be
zero. Thus y(t ) = x(t ) for all t ∈ [S,T ], and uniqueness is proved.

Idea of proof of the local version. Do more or less the same thing, but also use the restrictions to make
sure that the Picard iteration doesn’t take us outside of the region where the Lipschitz condition holds.

Exercises

• Integral equations and Picard iteration: A40.

• Non-uniqueness and non-existence: A41, A42.

• Grönwall’s lemma: A43, A44.

Additional problems

A40 (a) Find the exakt solution to the integral equation

x(t ) = 1+
∫ t

0
x(s)d s.

For comparison, also compute the sequence of Picard approximations

xn(t ) = 1+
∫ t

0
xn−1(s)d s

starting with the constant function x0(t ) = 1. Answer.

(b) Do the same for

x(t ) = 3+
∫ t

0
4s x(s)d s.
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A41 Consider the ODE t ẋ = 2x. (Notice that the coefficient of ẋ equals zero at t = 0, so we might expect
some “trouble” there; it’s a singular point of the equation.)

(a) Verify that

x(t ) =
{

t 2, t ≥ 0,

C t 2, t < 0

satisfies the ODE for any constant C . Thus there are infinitely many solutions satisfying the
condition x(1) = 1.

(b) Show that there are also infinitely many solutions satisfying the condition x(0) = 0, but no
solutions satisfying x(0) = b with b ̸= 0.

A42 Find all functions x(t ), t ∈ R, which satisfy

ẋ = 2
√
|x|, x(0) = 0.

A43 There are several variants of Grönwall’s lemma (or Grönwall’s inequality), which all boil down to
the fact that if a function satisfies a differential or integral inequality of a certain form, then it can
be no bigger than the solution of the corresponding differential or integral equation.

(The inequality limits how fast the function can grow, and to push those limits to the maximum
and grow as fast as possible, the function should satisfy the inequality with equality.)

Here your task is to prove (with guidance) the following version of Grönwall’s lemma:

Theorem. Let a(t ) and b(t ) be continuous functions with b(t ) ≥ 0, and suppose that u(t ) satisfies
the integral inequality

u(t ) ≤ a(t )+
∫ t

0
b(s)u(s)d s for t ≥ 0.

Then
u(t ) ≤ y(t ) for t ≥ 0,

where y(t ) is the solution of the corresponding integral equation

y(t ) = a(t )+
∫ t

0
b(s) y(s)d s,

namely

y(t ) = a(t )+
∫ t

0
a(s)b(s)eB(t )−B(s) d s, where B(t ) =

∫ t

0
b(τ)dτ.

Outline of proof. Follow these steps:

• First rewrite the integral equation for y(t) as an ODE for the integral I (t) = ∫ t
0 b(s) y(s)d s =

y(t )−a(t ) appearing on the right-hand side:

I ′(t )−b(t ) I (t ) = a(t )b(t ), I (0) = 0.

• Multiply both sides by the integrating factor e−B(t ) and integrate from 0 to t .

• After having solved for I (t ) in this way, you also know what y(t ) is, namely y(t ) = a(t )+ I (t ).
Verify that your expression for y(t) agrees with the formula for y(t) given in the theorem
above.

• Next consider the inequality for u(t). Let J(t) = ∫ t
0 b(s)u(s)d s be the integral appearing on

the right-hand side. It satisfies J ′(t) = b(t)u(t). By assumption we have u ≤ a + J and b ≥ 0,
and therefore J ′ = bu ≤ b(a + J ). So we know that J satisfies

J ′(t )−b(t ) J (t ) ≤ a(t )b(t ), J (0) = 0.
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• Convince yourself that you can now perform exactly the same steps as when you solved the
equation for I (t) (multiply by the integrating factor, integrate, etc.), but with J instead of I
and “≤” instead of ”=”. (Here it’s important that t ≥ 0.)

• And since you do the same steps, you will get the same result in the end, except with “u(t ) ≤”
instead of “y(t ) =”.

• This proves that u(t ) ≤ y(t ) for t ≥ 0. Done!

As a bonus question, see if you can prove this variant of Grönwall’s lemma in a similar way:

Theorem. Let g be a continuous function (which need not be positive). If u(t ) is continuous for
t ≥ 0 and differentiable for t > 0, and satisfies the differential inequality

u′(t ) ≤ g (t )u(t ) for t > 0,

u(0) = c,

then
u(t ) ≤ y(t ) for t ≥ 0,

where y(t ) is the solution of the corresponding differential equation

y ′(t ) = g (t ) y(t ) for t > 0,

y(0) = c,

namely

y(t ) = c eG(t ), G(t ) =
∫ t

0
g (s)d s.

A44 (a) Compute the solution x(t) of the initial value problem ẋ = x2, x(0) = c > 0, and note that it
blows up after finite time (as t ↗ 1/c).

(b) In part (a), the right-hand side of the ODE was obviously quadratic in x.

In contrast, show that if the right-hand side of the system ẋ = X(x) is linearly bounded,
meaning that there are constants a ≥ 0 and b ≥ 0 such that

|X(x)| ≤ a +b |x| for all x ∈ Rn ,

then the solution x(t ) with initial value x(0) = x0 cannot blow up in finite time, so it is defined
for all t ≥ 0 (regardless of x0).

(We are assuming that the vector field X(x) is nice enough for the flow to exist at least locally,
say of class C 1. It can be proved that if X(x) is defined for all x ∈ Rn , then the only way for
solutions to cease existing after finite time is that |x| →∞. Let us take this fact for granted
here.) Hint.

Lecture 10. Linear equations with non-constant coefficients

(Not covered in Arrowsmith & Place; see notes below instead.)

Second-order linear ODEs

Many ODE books with a more “classical” flavour allocate plenty of space to the topic of second order
(inhomogeneous) linear ODES,

ẍ +p1(t ) ẋ +p0(t ) x = f (t ),

which appear in many applications, and are also of historical importance. Some particular such ODEs
have been studied so much that one could easily spend several courses on them alone, like the Bessel
equation (with parameter α ∈ C),

ẍ + 1
t ẋ + t 2−α2

t 2 x = 0.
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Any second-order ODE can be rewritten as a system of two first-order ODEs, for example by letting x1 = x
and x2 = ẋ:

ẍ+p1(t ) ẋ+p0(t ) x = f (t ) ⇐⇒
(

ẋ1

ẋ2

)
=

(
x2

f (t )−p1(t ) x2 −p0(t ) x1

)
=

(
0 1

−p0(t ) −p1(t )

)(
x1

x2

)
+

(
0

f (t )

)
.

Here we will focus more on systems of first-order (inhomogeneous) linear ODEs in general:

ẋ = A(t )x+ f(t ),

where x(t ) ∈ Rn and A(t ) is some n×n matrix. From the general results about systems we can then obtain
some of the basic facts about second-order linear ODEs simply by considering the special case when
n = 2 and ẋ1 = x2.

First-order systems of linear ODEs

Theorem. Assume that A(t ) and f(t ) are continuous on some time interval I (bounded or not) containing
t = 0. Then the initial value problem

ẋ = A(t )x+ f(t ), x(0) = x0

has a unique solution defined on all of I .

Proof. Let J = [t1, t2] be an arbitrary compact subinterval of I containing t = 0. By the extreme value
theorem, each matrix entry Ai j (t ) is bounded on J , and since there are only finitely many matrix entries,
there must be a common constant which bounds all of them:∣∣Ai j (t )

∣∣≤C for all i and j , and all t ∈ J .

Then the i th entry in the matrix product A(t)y can be estimated using the triangle inequality and the
Cauchy–Schwarz inequality:∣∣(A(t )y

)
i

∣∣= ∣∣Ai 1(t ) y1 +·· ·+ Ai n(t ) yn
∣∣≤C

∣∣y1
∣∣+·· ·+C

∣∣yn
∣∣≤C

p
n

∣∣y∣∣ .

Squaring, summing over i , and taking the square root, we get∣∣A(t )y
∣∣≤C n

∣∣y∣∣ ,

for any vector y.
Using this property we can show that the right-hand side X(t ,x) = A(t)x+ f(t) satisfies the global

Lipschitz condition with Lipschitz constant L =C n. Indeed,

X(t ,a)−X(t ,b) =
(

A(t )a+ f(t )
)
−

(
A(t )b+ f(t )

)
= A(t )a− A(t )b = A(t ) (a−b)

implies that

|X(t ,a)−X(t ,b)| = |A(t )(a−b)| ≤C n |a−b| for all t ∈ J and for all a, b ∈ Rn .

By the global Picard–Lindelöf theorem there is therefore a unique solution defined on all of J , and since
the subinterval J was arbitrary, we can extend this solution as far as we like inside I .

Theorem. The general solution of the inhomogeneous system ẋ− A(t )x = f(t ) has the form

x(t ) = xhom(t )+xpart(t ),

where xpart is some particular solution, and xhom is the general solution of the corresponding homoge-
neous system ẋ− A(t )x = 0.

Proof. This is just a fact about linearity, and not really about differential equations. If x = x1 and x = x2

are two particular solutions, then by linearity their difference x = x1 −x2 satisfies the homogeneous
system.
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The homogeneous case

Let’s look at the homogeneous system ẋ = A(t )x first. If A(t ) = A is a constant matrix, we have seen before
that the solution is simply

x(t ) = e t A x(0),

but if A(t ) is time-dependent, we can’t in general find an explicit solution formula like that. But we can
still say a few things in principle about the structure of the solution. To formulate the theorem, let

(e1, . . . ,en)

denote the standard basis for Rn , i.e., ek = (0, . . . ,0,1,0, . . . ,0)T with a 1 in the kth position.

Theorem (Solution space). The homogeneous system ẋ = A(t )x has an n-dimensional solution space.
For example, a basis is given by the functions g1(t ), . . . , gn(t ), where x(t ) = gk (t ) is the (unique) solution
of the initial value problem starting at ek :

ẋ = A(t )x, x(0) = ek .

In terms of the n ×n-matrix
Φ(t ) =

[
g1(t ), . . . ,gn(t )

]
,

any solution has the form
x(t ) =Φ(t )x(0). (SOL)

Proof. Let x(t ) = z(t ) be any solution of ẋ = A(t )x, and let c = z(0). Then the functions x(t ) = z(t ) and

x(t ) = c1 g1(t )+·· ·+cn gn(t )

both satisfy the initial value problem

ẋ = A(t )x, x(0) = c,

so by uniqueness they must be the same function:

z(t ) = c1 g1(t )+·· ·+cn gn(t ) =Φ(t )c.

Thus an arbitrary solution z can be written as a linear combination of the functions gk , which shows that
they span the solution space, and the formula (SOL) also follows.

To show that the functions gk are linearly independent, suppose that the linear combination x(t ) =∑
ck gk (t ) is the zero function; then in particular it’s zero when t = 0:

0 = x(0) =∑
ck gk (0) =∑

ck ek = (c1, . . . ,cn)T .

In other words, c1 = ·· · = cn = 0.

Proposition. The columns of an n×n matrixΦ(t ) are solutions of the linear system ẋ = A(t )x if and only
if the matrix itself is a solution of the matrix-valued linear ODE

Φ̇(t ) = A(t )Φ(t ).

Proof. This is an immediate consequence of how matrix multiplication works: the kth column in AΦ
equals A times the kth column inΦ.

Definition. Any time-dependent n ×n matrix whose columns are linearly independent solutions of
ẋ = A(t )x is called a fundamental matrix for the system.

Remark. The matrixΦ(t ) in the theorem above is thus one particular fundamental matrix, distinguished
by the property that Φ(0) = I . Any other fundamental matrix Ψ(t) has the form Ψ(t) =Φ(t) M where
M =Ψ(0) is a nonsingular constant n×n matrix; indeed, this is just a change of basis in the solution space.
In terms of such aΨ, the general solution of the initial value problem is x(t ) =Φ(t )x(0) =Ψ(t ) M−1 x(0).
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Rephrasing what we said before the theorem: If A is constant, then Φ(t) = e t A is the fundamental
matrix satisfying Φ(0) = I , but if A is time-dependent we cannot in general compute the fundamental
matrixΦ(t ) explicitly; we only know from the Picard–Lindelöf theorem that it exists and is unique. But
curiously enough, we can always compute its determinant:

Theorem (Liouville’s identity). IfΦ(t ) is a solution of the matrix ODE Φ̇(t ) = A(t )Φ(t ), then its determi-
nant1

W (t ) = detΦ(t )

satisfies the scalar ODE
Ẇ (t ) = tr

(
A(t )

)
W (t ),

and hence

W (t ) = exp

(∫ t

0
tr

(
A(s)

)
d s

)
W (0).

Proof. A down-to-earth way of proving this is to just compute. Consider the 3× 3 case, for ease of
notation, so that

W (x) = det
(
g1,g2,g3

)
=

∣∣∣∣∣∣
g11 g21 g31

g12 g22 g32

g13 g23 g33

∣∣∣∣∣∣= g11g22g33 +·· · .

When differentiating this using the product rule for derivatives, each of the n! terms in the determinant
will give rise to n terms, and the resulting sum can be rearranged back into a sum of n determinants:

Ẇ = d

dt
det

(
g1,g2,g3

)
=

(d g11

dt
g22g33 + g11

d g22

dt
g33 + g11g22

d g33

dt

)
+·· ·

= det
(dg1

dt
,g2,g3

)
+det

(
g1,

dg2

dt
,g3

)
+det

(
g1,g2,

dg3

dt

)
= det

(
A g1,g2,g3

)
+det

(
g1, A g2,g3

)
+det

(
g1,g2, A g3

)
.

If we expand all these determinants, what terms would we get that contain A11? Answer: the terms
appearing in the expression∣∣∣∣∣∣

A11g11 0 0
0 g22 g32

0 g23 g33

∣∣∣∣∣∣+
∣∣∣∣∣∣

0 A11g21 0
g12 0 g32

g13 0 g33

∣∣∣∣∣∣+
∣∣∣∣∣∣

0 0 A11g31

g12 g22 0
g13 g23 0

∣∣∣∣∣∣= A11 det
(
g1,g2,g3

)
.

And the terms that contain A12 are∣∣∣∣∣∣
A12g12 0 0

0 g22 g32

0 g23 g33

∣∣∣∣∣∣+
∣∣∣∣∣∣

0 A12g22 0
g12 0 g32

g13 0 g33

∣∣∣∣∣∣+
∣∣∣∣∣∣

0 0 A12g32

g12 g22 0
g13 g23 0

∣∣∣∣∣∣= A12

∣∣∣∣∣∣
g12 g22 g32

g12 g22 g32

g13 g23 g33

∣∣∣∣∣∣ ,

but this is zero since two rows are equal, so there will be no terms containing A12 in the expansion.

Similarly, we get contributions A22 det
(
g1,g2,g3

)
and A33 det

(
g1,g2,g3

)
, but no terms containing an Ai j

with i ̸= j . Thus,

Ẇ = (A11 + A22 + A33) det
(
g1,g2,g3

)
= tr(A)W,

as desired. The formula for W (t ) is obtained by solving this ODE for W using an integrating factor.

Remark. Liouville’s identity shows that if the columns of the matrix Φ(t) are solutions of some linear
system ẋ = A(t )x, then W (t ) = detΦ(t ) is either identically zero or never zero. The case W (t ) = 0 occurs
when the columns ofΦ are linearly dependent functions, and W (t ) ̸= 0 when they are linearly indepen-
dent. But beware that if we just look at the determinant of some arbitrary time-dependent matrixΦ(t ),
then the question of linear independence of the columns is not this simple! (See problem A49.)

1Called the Wronskian determinant, or simply the Wronskian.
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Consider the special case of second-order linear homogeneous ODEs

ẍ +p1(t ) ẋ +p0(t ) x = 0,

which can be written as ẋ = Ax with

x(t ) =
(

x(t )
ẋ(t )

)
, A(t ) =

(
0 1

−p0(t ) −p1(t )

)
,

as explained a few pages ago. Since tr
(

A(t )
)=−p1(t ) in this case, Liouville’s identity takes the following

form:

Theorem (Abel’s identity). If x = y(t) and x = z(t) are two solutions of ẍ + p1ẋ + p0x = 0, then their
Wronskian

W (t ) =
∣∣∣∣y(t ) z(t )
ẏ(t ) ż(t )

∣∣∣∣= y(t ) ż(t )− ẏ(t ) z(t )

satisfies
Ẇ (t ) =−p1(t )W (t ),

and hence

W (t ) = exp

(
−

∫ t

0
p1(s)d s

)
W (0).

The inhomogeneous case

Now to the question of finding a particular solution xpart(t ) of the inhomogeneous system

ẋ− A(t )x = f(t ),

supposing that we already know the general solution xhom(t) of the homogeneous equation. (In other
words, supposing that we know a fundamental matrix.) This can be done by a method called variation of
constants, variation of parameters or Lagrange’s method, as follows:

Theorem (Variation of constants). IfΦ(t ) is a fundamental matrix for the homogeneous system, then

xpart(t ) =Φ(t )
∫ t

0
Φ(s)−1 f(s)d s

is a particular solution of the inhomogeneous system.

Proof. The fundamental matrix satisfies Φ̇= AΦ (by definition). Make the change of variables

x(t ) =Φ(t )y(t ).

When we substitute this into the system, together with ẋ = Φ̇y+Φ ẏ, we obtain

ẋ(t )− A(t )x(t ) = f(t )

⇐⇒ Φ̇(t )y(t )+Φ(t ) ẏ(t )− A(t )Φ(t )y(t ) = f(t )

⇐⇒
(
Φ̇(t )− A(t )Φ(t )

)
︸ ︷︷ ︸

=0

y(t )+Φ(t ) ẏ(t ) = f(t )

⇐⇒ Φ(t ) ẏ(t ) = f(t )

⇐⇒ ẏ(t ) =Φ(t )−1 f(t ).

(We know thatΦ(t )−1 exists for every t , since the Wronskian W (t ) = detΦ(t ) is never zero, by Liouville’s
identity.) Now just change t to s, integrate both sides from (say) 0 to t to find a particular y(t) which
works, and go back to the old variables x. Done!
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Remark. There is no need to memorize the solution formula; just repeat the procedure in the proof every
time you need it! The reason for the funny name “variation of constants” is that the general solution of
the homogeneous system is

xhom(t ) =Φ(t )c,

where c = (c1, . . . ,cn)T is an arbitrary constant vector, and the idea here is to try to find a particular
solution by “letting the constants ck vary”, i.e., by replacing them with the time-dependent quantities

y(t ) = (
y1(t ), . . . , yn(t )

)T :
xpart(t ) =Φ(t )y(t ).

Back to single second-order (or higher-order) ODEs

Now consider again a single linear ODE of order n, with time-dependent coefficients:

d n x

dt n +pn−1(t )
d n−1x

dt n−1 +·· ·+p1(t )
dx

dt
+p0(t ) x = f (t ).

The general solution of this inhomogeneous equation equals one particular solution plus the general
solution of the homogeneous equation

d n x

dt n +pn−1(t )
d n−1x

dt n−1 +·· ·+p1(t )
dx

dt
+p0(t ) x = 0.

The first question is how we may find a basis for the n-dimensional solution space of the homogeneous
equation. Sometimes we might get lucky and find one solution (by inspired guessing or power series
methods or something else). This can then be used for finding other solutions, by the following simple
trick:

Theorem (Reduction of order). Suppose x0(t ) is a known solution of the homogeneous equation. Then
the substitution x(t ) = Y (t ) x0(t ) leads to a homogeneous equation of order n −1 for y(t ) = Ẏ (t ).

Proof. Substitute
x = Y x0,

ẋ = Ẏ x0 +Y ẋ0,

ẍ = Ÿ x0 +2Ẏ ẋ0 +Y ẍ0,
...

into the homogeneous ODE for x. Then the coefficient of Y will be x(n)
0 +pn−1 x(n−1)

0 +·· ·+p1 ẋ0 +p0 x0,
which equals zero by assumption. Thus only Ẏ , Ÿ , . . . ,Y (n) appear in the equation, so if we let y = Ẏ we
get an equation involving only y, ẏ , . . . , y (n−1).

Remark. The reduced equation always has the trivial solution y(t ) = 0, which gives Y (t ) =C . But this is
quite uninteresting, since x(t ) = Y (t ) x0(t ) =C x0(t ) is then just a constant multiple of the already known
solution x0(t ).

Remark. If we manage to find a solution of a second-order homogeneous linear ODE, then reduction of
order gives a first-order equation, which means that we can find a nontrivial solution with the help of an
integrating factor. We can then integrate this solution y(t ) to find a non-constant Y (t ), and hence find a
second linearly independent solution x(t ) = Y (t ) x0(t ). So in this case x0(t ) and Y (t ) x0(t ) will be a basis
of the solution space.

For finding a particular solution of the inhomogeneous equation, we have the method of variation of
constants, as a special case of what we did for systems. Rewrite the ODE as a first-order system by letting
x1 = x, x2 = ẋ, etc.:

ẋ1

ẋ2
...

ẋn−1

ẋn

=


x2

x3
...

xn

f (t )−∑n
k=1 pk−1(t ) xk

=


0 1

0 1
. . .

0 1
−p0(t ) −p1(t ) · · · −pn−2(t ) −pn−1(t )




x1

x2
...

xn−1

xn

+


0
0
...
0

f (t )
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Let’s look at the case n = 3 to simplify notation:ẋ1

ẋ2

ẋ3

=
 x2

x3

f (t )−p0(t ) x1 −p1(t ) x2 −p2(t ) x3

=
 0 1 0

0 0 1
−p0(t ) −p1(t ) −p2(t )

x1

x2

x3

+
 0

0
f (t )


The method requires that we already know the general solution xhom of the homogeneous equation, say

xhom(t ) = c1g1(t )+ c2g2(t )+ c3g3(t )

where (g1, g2, g3) is a known basis for the solution space. We are going to seek a particular solution by
“letting the constants ck vary”, i.e., replacing ck by yk (t ):

xpart(t ) = y1(t ) g1(t )+ y2(t ) g2(t )+ y3(t ) g3(t ).

In terms of the first-order system, this means that

Φ(t ) =
g1 g2 g3

ġ1 ġ2 ġ3

g̈1 g̈2 g̈3


is a fundamental matrix, and we are making the substitution x(t ) =Φ(t )y(t ). Simply remembering what
we did for systems above, we know that this leads toΦ(t ) ẏ = f(t ):g1 g2 g3

ġ1 ġ2 ġ3

g̈1 g̈2 g̈3

ẏ1

ẏ2

ẏ3

=
 0

0
f (t )

 .

This system of equations determines ẏ, which we can then integrate to find y, and hence xpart.

Remark. Books which deal only with single higher-order ODEs (rather than systems of first-order ODEs)
usually present the method of variation of constants in the following way, which in my opinion is rather
obscure. Start with

x = y1g1 + y2g2 + y3g3.

Take the first derivative:
ẋ = (ẏ1g1 + ẏ2g2 + ẏ3g3)+ (y1 ġ1 + y2 ġ2 + y3 ġ3).

For some mysterious reason (“just because it works”), we require the first bracket to be zero: ẏ1g1 +
ẏ2g2 + ẏ3g3 = 0. So only the second bracket remains in ẋ = y1 ġ1 + y2 ġ2 + y3 ġ3, and taking the derivative
of this gives

ẍ = (ẏ1 ġ1 + ẏ2 ġ2 + ẏ3 ġ3)+ (y1 g̈1 + y2 g̈2 + y3 g̈3).

Again we require the first bracket to be zero: ẏ1 ġ1+ ẏ2 ġ2+ ẏ3 ġ3 = 0. This leaves ẍ = y1 g̈1+ y2 g̈2+ y3 g̈3, so

...
x = (ẏ1 g̈1 + ẏ2 g̈2 + ẏ3 g̈3)+ (y1

...
g 1 + y2

...
g 2 + y3

...
g 3)

Now using that g1, g2 and g3 satisfy the homogeneous equation, we find after some computation that if
we want x to satisfy the inhomogeneous equation, then we must require the first bracket here to satisfy
ẏ1 g̈1 + ẏ2 g̈2 + ẏ3 g̈3 = f . These three requirements are exactly the matrix equationΦ ẏ = f that we found
above in a much simpler way, using systems and matrix algebra.

Exercises

• Reduction of order: A45, A46.

• Variation of constants: A47, A48.

• Wronskians: A49.
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Additional problems

A45 Determine α2 such that that the Bessel equation

t 2ẍ + t ẋ + (t 2 −α2) x = 0 (t > 0)

has a solution x0(t ) = t−1/2 sin t , and use reduction of order to find another (linearly independent)
solution. Answer.

A46 (a) The usual rule based on the characteristic polynomial says that x(t) = Ae2t +Be3t is the
general solution of ẍ −5ẋ +6x = 0. Give a direct proof that this really is the most general
solution, by applying reduction of order using the known solution x0(t ) = e2t .

(b) Similarly, show that x(t ) = (At +B)e−3t is the general solution of ẍ +6ẋ +9x = 0, by applying
reduction of order with x0(t ) = e−3t .

(If you look back in your calculus textbook, you will probably find arguments like these in the
section explaining the theory behind the characteristic polynomial.)

A47 Find the general solution. (Variation of constants is useful for finding a particular solution, at least
in the more difficult cases. But just for practice, you can use it in the simpler cases as well. And if
you don’t get enough of this, you can look back at problem A3.)

(a) ẍ +2ẋ +x = 2sin t .

(b) ẍ +9x = cos3t .

(c) ẍ +x = tan t .

(d) ẋ1 = 2x1 −5x2 +4t , ẋ2 = x1 −2x2 +1.

(e) (t 2 −1)ẍ −2t ẋ +2x = t 2 −1. (To find xhom(t ), try a power series solution.)

Answers.

A48 Find the general solution of the system(
ẋ
ẏ

)
=

(
0 4
−1 4

)(
x
y

)
+ e2t

1+ t 2

(
1
0

)
.

Answer.

A49 (a) Show that there is no second-order ODE ẍ + p1(t) ẋ + p0(t) x = 0 whose general solution
has the form x(t) = At +B cos t , if we require the coefficients p0 and p1 to be defined and
continuous for all t ∈ R.

(b) Show that there is such an ODE if we remove the requirement that p0 and p1 be defined on
the whole real line.

(c) Find a 2×2 matrixΦ(t ) such that its columns are linearly independent (as functions of t ), but
detΦ(t ) is zero at some points.

(d) Show that things can be even worse than in (b): the functions y(t ) = t 3 and z(t ) = |t |3 (t ∈ R)
are linearly independent, but their Wronskian is identically zero.

Hints.

Lesson 4

Lesson 5

These last two lessons are for catching up and working on the homework problems.
There is an optional video lecture, Outlook: Poincaré maps, attractors, chaotic systems, that you

can watch if you like. This material is not a part of the course, but is provided as “edutainment”, and to
give a rough idea of some additional topics which are important in the theory of dynamical systems.
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Answers, hints, solutions

A1 (a) ẋ = 2x ⇐⇒ (ẋ −2x)e−2t = 0 ⇐⇒ d
dt

(
xe−2t

) = 0 ⇐⇒ xe−2t = C ⇐⇒ x = Ce2t (where C of
course denotes an arbitrary real constant).

(b) ẋ = 2x+7 ⇐⇒ (ẋ−2x)e−2t = 7e−2t ⇐⇒ d
dt

(
xe−2t

)= 7e−2t ⇐⇒ xe−2t =− 7
2 e−2t +C ⇐⇒ x =(− 7

2 e−2t +C
)
e2t =− 7

2 +Ce2t .

(c) ẋ = 2x + e5t ⇐⇒ (ẋ −2x)e−2t = e5t e−2t ⇐⇒ d
dt

(
xe−2t

)= e3t ⇐⇒ xe−2t = 1
3 e3t +C ⇐⇒ x =( 1

3 e3t +C
)
e2t = 1

3 e5t +Ce2t .

(d) ẋ = 2x+ t 2e5t ⇐⇒ d
dt

(
xe−2t

)= t 2e3t ⇐⇒ xe−2t = ∫
e3t · t 2 dt = 1

3 e3t · t 2− 1
9 e3t ·2t + 1

27 e3t ·2+
C ⇐⇒ x = ( 1

3 t 2 − 2
9 t + 1

27

)
e5t +Ce2t .

(e) ẋ = 2x + t 2e2t ⇐⇒ (ẋ − 2x)e−2t = t 2 ⇐⇒ d
dt

(
xe−2t

) = t 2 ⇐⇒ xe−2t = 1
3 t 3 +C ⇐⇒ x =( 1

3 t 3 +C
)
e2t .

(f) ẋ = t x ⇐⇒ (ẋ − t x)e−t 2/2 = 0 ⇐⇒ d
dt

(
xe−t 2/2

)= 0 ⇐⇒ xe−t 2/2 =C ⇐⇒ x =Ce t 2/2.

(g) ẋ +2t x = t ⇐⇒ d
dt

(
xe t 2)= te t 2 ⇐⇒ xe t 2 = 1

2 e t 2 +C ⇐⇒ x = 1
2 +Ce−t 2

.

(h) For t > 0 we have t ẋ +2x = sin t ⇐⇒ ẋ + 2
t x = sin t

t ⇐⇒ (
ẋ + 2

t x
)
t 2 = sin t

t · t 2 ⇐⇒ d
dt

(
xt 2

)=
t sin t ⇐⇒ xt 2 = ∫

sin t · t dt = (−cos t ) · t − (−sin t ) ·1+C ⇐⇒ x = (sin t − t cos t +C )/t 2.

(i) (1+t 2)ẋ+2t x = 2t ⇐⇒ d
dt

(
(1+t 2)x

)= 2t ⇐⇒ (1+t 2)x = t 2+C ⇐⇒ x = t 2+C
1+t 2 = [

let C = 1+D
]=

1+ D
1+t 2 .

A2 (a) The constant function x = 0 is a solution. All other solutions are nonzero everywhere (thanks
to the theorem about uniqueness of solutions, which applies since the right-hand side
X (x, t) = 2x is obviously a C 1 function). So when we seek these other solutions, it’s safe to
divide by x, which gives 1

x ẋ = 2. Integrating both sides with respect to t yields ln |x| = 2t +C ,
which is equivalent to |x| = e t+C , which in turn is equivalent to x =±e t+C =±eC e t . Here C is
an arbitrary real constant, which means that D =±eC is an arbitrary nonzero real constant.
So the nonzero solutions are given by x = De t , where D ̸= 0. Together with the constant
solution that we found to begin with, we have thus found the answer to be “x = 0 or x = De t ,
D ̸= 0”. However, a simpler way to express this just “x = De t , D ∈ R”. (You do agree that this is
indeed the same thing, don’t you?)

So we find (of course) the same answer as in A1a above (except for the irrelevant detail that the
constant is called D instead of C ), but notice how much simpler it was to use an integrating
factor instead!

(b) x = 0 is a solution. All other solutions are given by 1
x ẋ = t ⇐⇒ ln |x| = 1

2 t 2 +C ⇐⇒ x =
±eC e t 2/2 = De t 2/2, where D =±eC ̸= 0. We can summarize this as x = De t 2/2, D ∈ R.

(c) x = 1 and x =−1 are constant solutions. All other solutions satisfy x2−1 ̸= 0, so they are found
from ẋ

x2−1
= 1 ⇐⇒ t+C = ∫ dx

x2−1
= 1

2

∫ ( 1
x−1− 1

x+1

)
dx = 1

2

(
ln |x −1|−ln |x +1|)= 1

2 ln
∣∣ x−1

x+1

∣∣ ⇐⇒
x−1
x+1 =±e2(t+C ) = De2t , where D =±e2t ̸= 0. Now we can solve for x as follows, to obtain the

nonconstant solutions: x−1
x+1 = ±e2(t+C ) = De2t ⇐⇒ x −1 = (x +1)De2t ⇐⇒ x(1−De2t ) =

1+De2t ⇐⇒ x = 1+De2t

1−De2t , where still D ̸= 0. Letting D = 0 in this formula recovers the constant
solution x = 1, which allows us to simplify the answer a little, but we still need to give the
other constant solution x =−1 separately (it doesn’t correspond to any D ∈ R, but rather to
the limiting case D →∞).

Answer: x =−1 or x = 1+De2t

1−De2t , D ∈ R.

Remark: Actually this answer isn’t quite complete, since it doesn’t specify the interval of
existence for the solution x(t ), i.e., the maximal interval on the t-axis where x(t ) makes sense.
Let’s investigate how this interval depends on what initial value x(t0) = x0 that we impose!
The initial values x0 =±1 correspond to the constant solutions x(t) =±1, which of course
exist for all t ∈ R. For initial values x0 ̸= ±1, we can most easily determine the parameter D
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from the equation x−1
x+1 = De2t which appeared as an intermediate step in our solution above;

this gives D = x0−1
x0+1 e−2t0 ̸= 0. If −1 < x0 < 1, then D < 0, so that the denominator 1−De2t

in x(t) stays positive always, implying that x(t) exists for all t ∈ R. (Note that the solution
stays between ±1 for all t , is decreasing, and satisfies x(t) →∓1 as t →±∞.) But if x0 > 1,
then 0 < D < e−2t0 , so that the denominator becomes zero when e2t = 1/D > e2t0 , i.e. at
some time t = t∗ such that t∗ > t0. (We could compute t∗ in terms of x0 if we like, but never
mind.) This means that x(t) “blows up in finite time”: x(t) ↗∞ as t ↗ t∗. The formula for
x(t) is undefined only for t = t∗, but it’s not really meaningful2 to consider the values x(t)
obtained from that formula for t > t∗ as providing a solution to our initial value problem,
since that part of the graph x = x(t ) is “disconnected” from the given initial value x(t0) = x0

by a vertical asymptote t = t∗. So the interval of existence for the solution x(t) in the case
x0 > 1 is (−∞, t∗). Similarly, if x0 <−1, then e2t < D and the denominator becomes zero at
some time t = t∗ such that t∗ < t0. Now the solution “blows up in finite backwards time”:
x(t ) ↘−∞ as t ↘ t∗. Thus, the interval of existence for the solution x(t ) in this case is (t∗,∞).

(d) Note that the ODE can be written as t 2ẋ = (x +1)2, with x =−1 as a constant solution. But
since x(−1) is not supposed to be −1, that’s not the solution that we seek, so we look among
the other solutions, given by 1

(x+1)2 ẋ = 1
t 2 ⇐⇒ −1

x+1 = −1
t +C . Inserting t =−1 and x = 1 here

shows that C =− 3
2 . Now solving for x gives the answer:

x(t ) = t

1−C t
−1 =− t +2

3t +2
.

The interval of existence is the largest interval on the t-axis which contains the point t0 =−1
where the initial condition was given, but not the singular point t∗ =− 2

3 where the solution

blows up. In other words, it’s (−∞,− 2
3 ).

Remark: Another option is to use definite integrals:∫ x(t )

x(−1)

dx

(x +1)2 =
∫ t

−1

dτ

τ2 ⇐⇒
[ −1

x +1

]x(t )

1
=

[−1

τ

]t

−1

⇐⇒ −1

x(t )+1
− −1

2
= −1

t
− −1

−1

⇐⇒ x(t ) =− t +2

3t +2
.

(e) This is the same ODE as in the previous part, but now the initial condition x(−1) = −1
immediately implies that the solution which we seek is the constant solution x(t ) =−1 (with
R as the interval of existence)!

A3 (a–e) See problem A1.

(f) x(t ) = Ae−2t +Be−4t + (4t −3)/32+ t e−2t .

(g) x(t ) = (At +B)e−3t .

(h) x(t ) = e−3t (A cos t +B sin t )+ te−3t sin t .

(i) x(t ) = Ae t +e−t/2
(
B cos

p
3 x
2 +C sin

p
3 x
2

)+ 1
3 xex + 1

2 (cos x − sin x).

A4 (a) The constant solutions are x = 0 and x = K . The non-constant solutions are given by∫
dx

x
(
1−x/K

) = ∫
r dt ⇐⇒ r t +C =

∫ (
1

x
+ 1

K −x

)
dx = ln |x|− ln |K −x| = ln

∣∣∣ x

K −x

∣∣∣ ,

which gives x
K−x =±er t+C = Der t , where D =±eC ̸= 0. Solving for x gives x = K Der t

1+Der t . Here

D = 0 gives the constant solution x = 0, so we now have that x = K or x = K Der t

1+Der t with D ∈ R.

2Unless we treat t as a complex variable, which we will not do in this course.
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For x(0) = x0 ̸= K , we have D = x0
K−x0

, which gives

x(t ) = K Der t

1+Der t =
K x0

K−x0
er t

1+ x0
K−x0

er t
= K x0er t

(K −x0)+x0er t = K x0er t

K + (er t −1)x0
,

as desired. And, as can be verified directly, this formula also happens to correctly give the
constant solution x(t ) = K in the case x0 = K , so it works for all x0 ∈ R !

(b) By writing the ODE as ẋ−r x =− r
K x2 we see that it’s a Bernoulli equation (“LHS is linear, RHS

is a power of x”). We first note that there’s a constant solution x = 0, and then we seek the
other solutions by dividing by x2 and letting y(t ) = 1/x(t ) :

ẋ − r x

x2 =− r

K
⇐⇒ − ẋ

x2 + r

x
= r

K
⇐⇒ d

dt

(
1

x

)
+ r · 1

x
= r

K
⇐⇒ ẏ + r y = r

K
.

This linear equation for y is easily solved (using an integrating factor, or y(t) = yhom(t)+
ypart(t ) with the very simple ansatz ypart(t ) = A), which gives

y(t ) =Ce−r t + 1

K
.

An initial condition x(0) = x0 ̸= 0 corresponds to y(0) = 1/x0, which gives C = 1
x0

− 1
K , so that

y(t ) =
(

1

x0
− 1

K

)
e−r t + 1

K
= (K −x0)e−r t +x0

x0K
.

And the reciprocal of this gives us the desired formula for x = 1/y ,

x(t ) = x0K

(K −x0)e−r t +x0
.

We derived this under the assumption x0 ̸= 0, but it’s clear that the formula works for all
x0 ∈ R, since it correctly gives the constant solution x(t ) = 0 when x0 = 0.

A5 x(t ) = 1+ t 3

2 ·3
+ t 6

2 ·3 ·5 ·6
+ t 9

2 ·3 ·5 ·6 ·8 ·9
+ . . .

A6 The paradox is the following: Accordingto the phase portrait, x(t) should clearly tend to −∞ if
x0 < 0, but the solution formula gives limt→∞ x(t ) = K for any x0 ̸= 0. A hint, if you can’t figure out
what’s going on here, is that the logistic equation is rather similar to the ODE in problem A2c, and
that the discussion in the solution to that problem might put you on the right track.

A7 ẋ = (x2 − t 2)/2t x.

A9 (a) The equilibrium points are (x, y) = (−2,0) and (1,3).

x

y

R

L

x

y

D

U

x

y

RD

LU

RU

RU

LD

A14 For example, (u, v, w) = (x, y −xz, z) works.

(This shows that the nonlinear system in indeed locally topologically equivalent to its linearization
at the hyperbolic equilibrium point (0,0,0), as the linearization theorem promises. In this case,
we actually happen to get more than that: the systems are even globally C∞-conjugate, since the
mapping h(x, y, z) = (x, y −xz, z) is a bijection of class C∞ from R3 to R3 with inverse of class C∞.)
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A17 With V (x, y) = x2 + c yk we have

V̇ =V ′
x ẋ +V ′

y ẏ

= 2x(−x +6y3 −3y4)+ ck yk−1(−x − y + 1
2 x y)

=−2x2 +12x y3 −6x y4 − ck x yk−1 − ck yk + 1
2 ckx yk

= (−2x2 − ck yk )+x(12y3 − ck yk−1)− 1
2 x y(12y3 − ck yk−1).

Taking k = 4 and c = 3, we get a positive definite function V = x2 +3y4 such that V̇ =−2x2 −12y4

is negative definite. So V is a strong Liapunov function for the system, and hence the origin is
asymptotically stable. Moreover, it’s globally asymptotically stable, since we also have V (x, y) →∞
as

√
x2 + y2 →∞.

A18 We have V (x, y) = x2(2− x2)+ y4 > 0 if |x| < p
2 and (x, y) ̸= (0,0), so V is positive definite in the

strip defined by the inequality |x| <p
2. Furthermore,

V̇ = 4(x −x3)ẋ +2y ẏ = (
4x2(1−x2)+2y2)(x2 + y2 −1) < 0

for 0 < x2 + y2 < 1, so V̇ is negative definite in the open unit circle Ω = {
x2 + y2 < 1

}
, which is

contained in the strip. So V is a strong Liapunov function in the open unit circle. Liapunov’s
theorem thus shows that the origin is asymptotically stable.

Next, for any k ∈ (0,1), the sublevel set

Bk = {
(x, y) ∈Ω : V (x, y) ≤ k

}
is given by

Bk =
{

(x, y) ∈ R2 : |x| ≤
√

1−p
m and

∣∣y
∣∣≤√

(1−x2)2 −m

}
, where m = 1−k.

(You may have to do a bit of careful thinking to convince yourself that this is true!) So that set is a
closed topological ball contained inΩ:

x

y

Bk

Ω

The smallest value α of V (x, y) on the boundary ∂B is of course α= k, since that’s the only value of
V (x, y) on the boundary, so (according to the usual recipe) the set

Nk = {
(x, y) ∈ Bk : V (x, y) <α}= interior(Bk )

is a domain of stability. Since this is true for any k ∈ (0,1), we can get a larger domain by taking the
union over all these Nk , giving the answer

N = ⋃
0<k<1

Nk = {
(x, y) ∈Ω : V (x, y) < 1

}= {
(x, y) ∈ R2 : |x| ≤ 1 and

∣∣y
∣∣≤ ∣∣1−x2∣∣}.
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x

y

N

Remark: Note that the level set V = 1 is the union of the two parabolas y = ±(1 − x2), since
V (x, y)−1 = (2x2 + y2 −x4)−1 = y2 − (1−x2)2 = (

y + (1−x2)
)(

y − (1−x2)
)
, so that V (x, y)−1 = 0 iff

y =±(1−x2).

A19 We have V (0,0) = 0 and V (x, y) = x2(1+ 1
3 x)+ y2 > 0 if (x, y) ̸= (0,0) and x >−3, and moreover

V̇ = (2x +x2)ẋ +2y ẏ =−2y(2x +x2)+2y(2x +x2 − y3) =−2y4 ≤ 0

for all (x, y), so that V is a weak Liapunov function in the region Ω1 = {(x, y) : x > −3}. Hence,
by Liapunov’s theorem, the origin is a stable equilibrium. Next, consider the subregion Ω2 =
{(x, y) : x >−2}, where V is obviously still a weak Liapunov function. The set of points inΩwhere
V̇ = 0, call it S, is the portion of the x-axis where x > −2. For (0,0) ̸= (x, y) ∈ S, we have ẋ = 0
and ẏ = 2x + x2 = x(x + 2) ̸= 0, so that the vector field is transversal to S except at the origin;
hence the only complete trajectory contained in S is the origin, so the hypotheses for LaSalle’s
theorem are fulfilled, showing that the origin is in fact asymptotically stable. But it is not globally
asymptotically stable, for the simple reason that there is another equilibrium point (−2,0).

A21 V (x, y) = 19x2 +8x y +3y2.

A22 Hints: One can write V̇ as

V̇ =−2
x2(1−x2 y2)2 + y2(1+2x2)(1+x2 y2)

(1+x2)2 ,

and
(
x(t ), y(t )

)= (e2t ,e−2t ) is a particular solution of the system.

A23 ṙ = r −r 3, θ̇ = r 2(1−cosθ). You can use the computer to check your phase portrait (Wolfram Alpha
link).

A25 Allow me to write (x, y) instead of (x1, x2) for simplicity, so that the system reads

ẋ = y2 −x2, ẏ = 2x y.

Let’s try to obtain the flow lines on the form x = x(y), by solving the ODE

x ′(y) = dx

dy
= ẋ

ẏ
= y2 −x2

2x y
= 1

2

(
y

x
− x

y

)
.

Introducing a new dependent variable z(y) via the relation x(y) = y z(y), we get x ′(y) = z(y)+y z ′(y),
so that

x ′ = 1

2

(
y

x
− x

y

)
⇐⇒ y z ′+ z = 1

2

(
1

z
− z

)
⇐⇒ z ′+ 3

2y
· z = 1

2y
· 1

z
.

(Let’s assume y ̸= 0, since we’re dividing by y .) This is now a Bernoulli equation, since the LHS in
linear and the RHS is proportional to a power of z. So we divide by this power z−1, i.e., we multiply
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by z, and get a linear ODE for the function w(y) = z(y)2, which we can solve using the integrating
factor e3ln y = y3 :

· · · ⇐⇒ zz ′+ 3

2y
· z2 = 1

2y
⇐⇒ w ′+ 3

y
·w = 1

y
⇐⇒ (

y3w
)′ = 1

y
· y3

⇐⇒ y3w = 1
3 y3 +C ⇐⇒ w = 1

3
+ C

y3 ⇐⇒ x(y) = y z(y) =±y
√

w(y) =±y

√
1

3
+ C

y3 .

We can solve for C to obtain a constant of motion F (x, y) if we like,

C = y3w − 1
3 y3 = y3z2 − 1

3 y3 = y3(x/y)2 − 1
3 y3 = x2 y − 1

3 y3 =: F (x, y),

but the explicit form x = x(y) above is more useful when drawing the phase portrait.

For C = 0 we simply have the lines x = ±y/
p

3, and the curves x = x(y) for C ̸= 0 can be drawn
using standard calculus methods. In addition, we can make use of the nullclines of the original
system (i.e., the coordinate axes and the lines y =±x), as well as taking the signs of ẋ and ẏ into
account (of course!). Then we also see what happens when y = 0, the case that we discarded above:
along the line y = 0 we have solution curves “←− 0 ←−”. (This, by the way, is the simplest way of
seeing that the origin is unstable in problem 3.22.)

You can check your phase portrait using the computer (Wolfram Alpha link).

A27 Hint: To show that the solution curves spiral outwards, consider in what direction they deviate
from the closed solution curves of the conservative system ẋ =−y , ẏ = x (1− y2).

A28 Hints: What you need to check is that at every point (x, y) on the parabola y = x2, the vector
(ẋ, ẏ) = (x2 − x − y, x2 −3y) is a tangent vector to the parabola. Once this is done, you know that
solutions starting on the parabola have to stay on it. Then letting y = x2 in the equation for ẏ gives
ẏ =−2y ; what does this tell you about the lifetime of the solution?

A30 (a) This is trivial, just add up the right-hand sides of the ODEs!

(b) Since R ≥ 0, the relation R = 1− I −S means that 1− I −S ≥ 0, or in other words I +S ≤ 1.

(c) Every point on the S-axis is an equilibrium point. (Which is natural – after all, if I = 0 then
there is no infection spreading in the population, so everything will just remain as it is!)

S

I

S =β/α

RD LD LU

LU RU RD

(d) For I S ̸= 0 we get dI /dS = (αI S −βI )/(−αI S) = −1+ β
αS , which immediately integrates to

I (S) =−S + β
α ln |S|+C . So all these curves, for different values of C , are just translates in the

I -direction of the curve for C = 0, I (S) =−S + β
α ln |S|. And that curve is fairly easy to draw

using standard calculus methods:
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S

I

S =β/α

The local maximum is I
(β
α

)= β
α

(−1+ ln β
α

)
, whose height depends on the value of β/α that we

have chosen when drawing the graph. But this detail is quite irrelevant, since we are looking
at the whole family of parallel curves anyway:

S

I

S =β/α

(e) The two cases, drawn in the triangle D only:

S

I

S =β/α< 1

S

I

S =β/α> 1

(f) As t →∞, the curve (S(t), I (t)) approaches some equilibrium point (S∗,0) on the positive
S-axis, so the epidemic dies out, and there will be a fraction S∗ ∈ (0,1) of the population that
never got infected, while the rest of the population (the fraction R∗ = 1−S∗) have had the
disease and recoved. The value of S∗ depends on the initial conditions (and on the value of
β/α, of course).

If β/α< 1, then the parameter β which measures the recovery rate is small in comparison to
the parameter α which measures how contagious the disease is. In this case, a small number
of infectives introduced into a susceptible population will lead to an outbreak, where I (t)
peaks when S =β/α, after which the epidemic subsides (because more people are become
immune, so that it’s getting less and less likely for an infected individual to meet someone
who is susceptible). But in the other case β/α> 1, the recovery rate β is high in comparison
with the contagiousness α – high enough that the number of infected will start decreasing
right away.
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A34 (a) The conditions for equilibrium are(
β1c

β2 + c
−1

)
x = 0, 1− c − β1cx

β2 + c
= 0.

The first condition holds iff x = 0 or β1c
β2+c = 1. In the first case, x = 0, we get c = 1 from the

second condition. The other case is what leads to the nontrivial equilibrium (x,c) = (x∗,c∗);

the condition β1c∗
β2+c∗ = 1 can be solved for c∗ provided that β1 ̸= 1, yielding c∗ = β2

β1−1 , and it

also turns the second condition into 1−c∗−1 ·x∗ = 0, so that x∗ = 1−c∗. Thus, the equilibria
are

(x,c) = (0,1), (x,c) = (x∗,c∗) =
(
1− β2

β1 −1
,
β2

β1 −1

)
.

Note that if β1 = 1+β2, then (x∗,c∗) = (0,1), so in order to have two distict equilibrium points,
we need to impose the condition β1 ̸= 1+β2 (in addition to β1 ̸= 1).

(b) In the process of finding (x∗,c∗) we found that x∗ = 1− c∗, so clearly (x∗,c∗) satisfies the
line’s equation x +c = 1. (It may be noted that the other equilibrium (x,c) = (0,1) also lies on
that line.)

(c) The point (x∗,c∗) lies on the line x + c = 1, so if it’s going to be in the positive quadrant, it
must lie on the line segment between the points (1,0) and (0,1). This happens iff 0 < c∗ < 1,
i.e.,

0 < β2

β1 −1
< 1.

The parameters β1 and β2 are both positive by definition, so the left inequality holds iff
β1 −1 > 0. Under this condition, we can multiply the right inequality by the positive number
β1 −1, to obtain β2 <β1 −1. (Remember to carefully keep track of signs when working with
inequalities! After all, if you multiply an inequality by a negative number, then it must be
reversed.) So the double inequality holds iff β1 > 1 and β1 > 1+β2, where the first condition
can be removed, since it’s automatically fulfilled if the second one is. So in the end, we’re left
with just the condition β1 > 1+β2.

(d) If 0 <β1 < 1, then β1 −1 < 0, so that c∗ = β2
β1−1 < 0, which means that (x∗,c∗) is on the part of

the line x +c = 1 that lies in the fourth quadrant (if we draw the x-axis horizontally and the
c-axis vertically).

If 1 <β1 < 1+β2, then 0 <β1 −1 <β2, so c∗ = β2
β1−1 > 1, and (x∗,c∗) is on the part of the line

x + c = 1 that lies in the second quadrant.

(e) Computing the derivatives, we find

J (x,c) =
( β1c
β2+c −1 β1β2x

(β2+c)2

− β1c
β2+c −1− β1β2x

(β2+c)2

)
,

so

J (0,1) =
( β1
β2+1 −1 0

− β1
β2+1 −1

)
and

J (x∗,c∗) =
 β1c∗
β2+c∗ −1 β1β2x∗

(β2+c∗)2

− β1c∗
β2+c∗ −1− β1β2x∗

(β2+c∗)2

=
 0 (1−β1)(β2+1−β1)

β1β2

−1 −1− (1−β1)(β2+1−β1)
β1β2

=
 0 (1−β1)(β2+1−β1)

β1β2

−1 − (1−β1)2+β2
β1β2

 .

A36 (a) Hint: The perpendicular distance from the point
(
x(τ),c(τ)

)
to the line x + c = 1 is∣∣∣∣ x(τ)+ c(τ)−1p

2

∣∣∣∣ .

Let y(τ) = x(τ)+ c(τ)−1, compute y ′(τ), show that it can be expressed solely in terms of y(τ),
and solve that ODE for y(τ). What does the result tell you about the distance

∣∣y(τ)
∣∣/
p

2?
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A37 (a) We have two expressions for g , both of which are useful:

g (c) = (1− c)(β2 + c)

β1c
=− 1

β1
c + 1−β2

β1
+ β2

β1c
,

In the second expression, the third term β2
β1c tends to zero as c →±∞. This means that the

straight line given by the first two terms, x =− 1
β1

c + 1−β2
β1

, is a skew asymptote to the curve

x = g (c). We also have g (c) →±∞ as c → 0± because of the c in the denominator of the third
term, and g (c) is of course undefined at c = 0.

Being the c-nullcline, the curve of course passes through both equilibria (0,1) and (x∗,c∗),
and also through the point (x,c) = (0,−β2), as we see from the factor β2 + c in the first
expression for g .

Taking derivatives (using the second expression), we find

g ′(c) =− 1

β1
− β2

β1c2 =−c2 +β2

β1c2 < 0 for all c ̸= 0,

which means that g is decreasing on the interval c < 0 and on the interval c > 0 (although it’s
not a decreasing function as a whole!), and

g ′′(c) = 2β2

β1c3 ,

which has the same sign as c, so that g is concave on the interval c < 0 and convex on the
interval c > 0.

Now we have everything that we need in order to draw the graph. I’m drawing the x-axis
horizontally, which means that the graph x = g (c) will be “flipped” compared to the usual
way of drawing graphs. I hope you will not find this too confusing! The graph is drawn with
β1 = 5 and β2 = 1/2 (so that β1 > 1+β2, the good case).

x

c

x + c = 1

x = g (c)

x =− 1
β1

c + 1−β2
β1

(0,1)

(x∗,c∗)

(0,−β2)

Note that the argument about convexity is necessary in order to show that the curve really lies
at it is drawn in relation to the line x + c = 1. It’s not enough to just check that g is decreasing
– it could be decreasing and pass through the equilibria, yet still stay above the line, right?

A40 (a) Exact solution x(t ) = e t . Picard iterates xn(t ) =
n∑

k=0

t k

k !
.

A44 (b) Hint: Assume, for a contradiction, that some solution x(t ) only exists for 0 ≤ t < t0. From

x(t ) = x0 +
∫ t

0
X(x(s))d s,
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deduce that

|x(t )| ≤ |x0|+at +
∫ t

0
b |x(s)| d s for 0 ≤ t < t0,

and apply Grönwall’s lemma from problem A43 to show that |x(t )| cannot tend to ∞ as t ↗ t0.

A45 α2 = 1/4, x(t ) = t−1/2 cos t .

A47 (a) x(t ) = (At +B)e−t −cos t .

(b) x(t ) = A cos3t +B sin3t + 1
6 t sin3t .

(c) x1(t ) = A(cos t +2sin t )+B(−5sin t )+8t −1,
x2(t ) = A sin t +B(cos t −2sin t )+4t −2.

(d) x(t ) = A cos t +B sin t + 1
2 cos t · ln

∣∣ 1−sin t
1+sin t

∣∣.
(e) x(t ) = At +B(1+ t 2)− t 2 + t ln

∣∣ 1+t
1−t

∣∣+ 1
2 (1+ t 2) ln

∣∣1− t 2
∣∣.

A48 (
x(t )
y(t )

)
= e2t arctan t

(
1−2t
−t

)
+e2t ln(1+ t 2)

(
1

1/2

)
+e2t

(
1−2t 4t
−t 1+2t

)(
C1

C2

)
.

A49 Hints:

(a) Consider the Wronskian W = y ż − ẏ z of y(t ) = t and z(t ) = cos t .

(b) Just plug x(t ) = t and x(t ) = cos t into the ODE and see what p0(t ) and p1(t ) must be in order
for the ODE to be satisfied. In your answer, you should be able to see why there’s a problem
when the Wronskian becomes zero.

(c) Same as for (a).
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