Uppgift 4.2: 31 

Typesetting:-mrow(Typesetting:-mi( 

Potentialvandring i de tvÃ¥ nätmaskorna ger ekvationerna 

Typesetting:-mrow(Typesetting:-mi( 

`+`(`*`(L, `*`((D(i[1]))(t))), `*`(R[1], `*`(`+`(i[1](t), `-`(i[2](t))))), `-`(E)) = 0, `+`(`/`(`*`(i[2](t)), `*`(C)), `*`(`+`(R[1], R[2]), `*`((D(i[2]))(t))), `-`(`*`(R[1], `*`((D(i[1]))(t))))) = 0 (4.1)
 

Om numeriska data samlas i en mängd blir kalkylen överskÃ¥dligare 

Typesetting:-mrow(Typesetting:-mi( 

{L = 2, C = `/`(1, 125), R[1] = 50, R[2] = 25, E = 100} (4.2)
 

Begynnelsedata 

Typesetting:-mrow(Typesetting:-mi( 

i[1](0) = 0, i[2](0) = 0 (4.3)
 

Differentialekvationen med numeriska data pÃ¥ komponenterna 

Typesetting:-mrow(Typesetting:-mi( 

`+`(`*`(2, `*`((D(i[1]))(t))), `*`(50, `*`(i[1](t))), `-`(`*`(50, `*`(i[2](t)))), `-`(100)) = 0, `+`(`*`(125, `*`(i[2](t))), `*`(75, `*`((D(i[2]))(t))), `-`(`*`(50, `*`((D(i[1]))(t))))) = 0 (4.4)
 

har med givna begynnelsevillkor lösningen 

Typesetting:-mrow(Typesetting:-mi( 

{i[1](t) = `+`(2, `*`(`/`(1, 10), `*`(exp(`+`(`-`(`*`(5, `*`(t))))), `*`(`+`(`*`(40, `*`(`^`(6, `/`(1, 2)), `*`(sin(`+`(`*`(`/`(5, 3), `*`(`^`(6, `/`(1, 2)), `*`(t)))))))), `-`(`*`(20, `*`(cos(`+`(`*`... (4.5)
 

Lösningarna ritas pÃ¥ vanligt sätt 

Typesetting:-mrow(Typesetting:-mi( 

Plot_2d