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Solutions of all problems have to be complete and all arguments well motivated. When known  
theorems are used it has to be shown that the assumptions are fulfilled. Each problem is worth  
3 points and 2 points are needed for having the problem approved. 3 passed problems and 8 points  
are needed for passing the examination. 
-------------------------------------  
1.  Find a general solution for the first order differential equation:    dydx = y+ y

2 . 
a)  Through the method of separation of variables      b) By solving it as a Bernoulli equation. 
Show that it is the same general solution meaning that domains of the integration constant are the same.  
c) Give a solution for the following initial conditions:   (i) y(0) = −1 ,  (ii) y(−1) = 2 . 
 
----------- 
2.  Use the method of variation of parameters to find a general solution for the equations  

 !x = −3x + 2y+ t ,    !y = −3x + 4y+ t  
Control the solution. 
 
---------  
3.  For a linear, inhomogeneous 2nd order differential equation:   x2 !!y + p(x) !y + 6y = h(x)  , x > 0  
there is known one solution y1(x) = x

2  of the homogeneous equation and a particular solution yp(x) = ln x             

of the inhomogeneous equation. Find the unknown coefficients p(x),h(x)  of the inhomogeneous equation.    
Give a general solution of this inhomogeneous equation. You may confirm your result by reducing  
the homogeneous equation to an equation with constant coefficient by making change of the  
independent variable t = ln x  and by solving this homogeneous equation. 
 
----------  
4.  Find all equilibrium points and decide their linear stability for the dynamical system  

                   !x = 3x − x2 − xy ,        !y = y−3xy+ y2      
Draw all nullclines and direction of the vectorfield on the nullclines. 
  
----------  
5.  Formulate the Liapunov theorem on asymptotic stability of an equilibrium point of an autonomous 
dynamical system. Show by taking the ansatz V = ax2m + by2n , m,n ∈ N  for a Liapunov function that 

(0,0) is an asymptotically stable equilibrium point for the system !x = −2y3 ,    !y = x −3y3   and therefore 
all solutions go to (0,0) when ∞→t . Can you confirm this result by using the linear criterion of 
stability? 
 
--------- 
6. Consider the linear inhomogeneous equation with constant coefficients of problem 2 denoted as: 
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condition and therefore the initial value problem !z = Az(t)+ f (t), z(t = 0) = [x(0) = 0, y(0) = 0]  has a 
unique solution. Find this solution. 

 
 



TATA71 2017-01 1. To separate variables rewrite the equation as 1
y(y+1) !y =1  when y+1≠ 0  and y ≠ 0  .  By 

integrating both sides we get 1dx = 1
y(y+1) !y dx∫∫ = ( 1y − 1

(y+1) )dy∫  and ln y
y+1 = x +C . Then 

y
y+1 = ±e

Cex = Dex with ±eC = D ≠ 0  and the solution is y = Dex

1−Dex
. The conditions y+1≠ 0  and y ≠ 0  exclude 

two constant solutions y = −1  and y = 0 . So in the general solution y = Dex

1−Dex
 the constantD ∈ R  is allowed to 

take an arbitrary real value. The Bernoulli equation dydx − y = y
2  can be rewritten y−2 dy

dx − y
−1 =1 , when 

y ≠ 0 . The substitution z = y−1  gives the linear equation ʹz + z = −1  having an integrating factor ex .  

Thus (exz !) = −ex,  z = −1+Ce−x  and y =1/ (Ce−x −1)  with C ∈ R . By rewriting 

y =1/ (Ce−x −1) =C−1ex / (1−C−1ex )  we obtain the same form of the solution when C ≠ 0 . C = 0  gives  
the constant solution y(x) = −1 and the limit C→∞  gives y(x) = 0  . Thus we have the same set of  
solutions coming from both methods.  (i) the solution y(x) = −1 satisfies y(0) = −1  and  

(ii) 2 = y(−1) =1/ (Ce−1) gives C = 3
2e  and the solution y =1/ ( 32 e

−x−1 −1)  
-----------  
2.  By deriving !!x = −3 !x + 2(−3x + 4y+ t)+1= !x + 6x − 2t +1 we get the inhomogeneous equation 
!!x − !x − 6x = −2t +1 . The the characteristic equation is λ 2 −λ + 6 = (λ −3)(λ + 2)  and the general solution 

xh (t) = Ae
3t +Be−2t . The ansatz xp(t) = at + b   gives a particular solution xp(t) = 1

3 t − 2
9  and the general 

solution xg(t) = Ae
3t +Be−2t + 1

3 t − 2
9 . From the first equation y = 1

2 ( !x +3x − t) = 3Ae
3t + 1

2 Be
−2t − 1

6 .  

To use the variation  of parameters formula denote x1(t) = e
3t, x2 (t) = e

−2t  then 

W (t) = x1(t) !x2 (t)− x2 (t) !x1(t) = −5e
t  and with h(t) = −2t +1  

xp(t) = −x1(t) x2 (t) h(t )W (t ) dt∫ + x2 (t) x1(t) h(t )W (t ) dt∫ = 1
3 t − 2

9 . It is the same particular solution as above. 
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w  corresponding to the eigenvalues 2,3 −== −+ λλ  . The general solution of the 

homogeneous system is x(t)
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---------  

3. By substituting y1(x) = x
2  into the homogeneous equation 0 = x2y1́́ + p(x)y1́ + 6y1 = [y1 = x

2 ]=   

2x2 + p(x)2x + 6x2  we get p(x) = −4x . From the equation h(x) = x2yp!! − 4x !yp + 6yp = −5+ 6 ln x  

and the equation reads: x2 ʹ́y − 4x ʹy + 6y = −5+ 6 ln x . For 2nd solution the ansatz y2 (x) = z(x)x
2  gives 

0 = x2y2́́ − 4xy2́+ 6y2 = [y2 = z(x)x
2 ]= x4 ʹ́z  and z(x) = Ax +B . This gives y2 (x) = x

3 and the general 

solution is ygen (x) = Ay1(x)+By2 (x)+ yp(x) = Ax
2 +Bx3 + ln x .  

----------  
4.  Equations 0 = 3x − x2 − xy = x(3− x − y) = f (x, y) , 0 = y−3xy+ y2 = y(1−3x + y) = g(x, y)  give  
4 equilibrium points (x1 = 0, y1 = 0) , (x2 = 0, y2 = −1) , (x3 = 3, y3 = 0) and (x4 =1, y4 = 2) . The  

Jacobian is  J(x, y) =
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. We list the points and their stability. 



J(0, 0) = 3 0
0 1
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λ2 = −1< 0 , unstable. J(3, 0) = −3 −3
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0 = Det[J(1, 2)−λ]= λ 2 −λ −8  gives the eigenvalues λ± = 1
2 ±

1
2 33  and the point (1,2) is unstable since 

λ+ = 1
2 +

1
2 33 > 0 . The condition 0 = f (x, y) = x(3− x − y) gives 2 nullclines x = 0, y = 3− x  with the 

vectofield parallel to y-axis. The condition 0 = g(x, y) = y(1−3x + y)  defines 2 straight lines y = 0, y = 3x −1 
where the vectorfield is parallel to x-axis. Intersections of these nullclines give 4 equilibrium points. 
----------   
5.  Equations !x = −2y3 = 0 ,   !y = x −3y3 = 0   have only one real valued solution (0,0). The directional 

derivative !V = d
dt (ax

2m + by2n ) = 2max2m−1 !x + 2nby2n−1 !y = 2max2m−1(−2y3)+ 2nby2n−1(x −3y3) = .               

−4max2m−1y3 + 2nby2n−1x − 6nby2n−1y3 = [m =1,n = 2]= −4axy3 + 4by3x −12by3y3  

For m =1,n = 2  and a = b =1 ,  !V = −12by6 ≤ 0  is negative semidefinite. The function V = x2 + y4 ≥ 0  
is a positive definite Liapunov function taking value 0)0,0( =V  only at the equilibrium point. By the 
Liapunov theorem (0,0) is stable. 
For showing asymptotic stability study the set M = {(x, y) : 0 = !V = −12ay6} = {(x, y = 0)} . 
It consits of whole x-axis. If a solution satisfies y(t) = 0  then 0 = !y = x(t)−3y(t)3 = x(t)  and  
therefore also x(t) = 0 . So only the constant solution )0)(,0)(( == tytx  belongs to M and by  
the Liapunov theorem the point )0,0( is also asymptotically stable. 
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criterion of stability is unconclusive.  
--------- 
6. A differential equation !z = F(t, z),  z ∈ Rn,F(t, z)∈ Rn satisfies the Lipschitz condition when there is 
a constant L  such that F(t, z)−F(t,w) ≤ L z−w  for z,w belonging to a certain open convex region 

of Rn .Here F(t, z)−F(t,w) = A(z−w) ≤ A z−w where  for a constant matrix the Lipschitz 

constant L = A =max(λm )  is equal to maximal value of one of the eigenvalues λm  of the matrix A . 

Here the matrix −3 2
−3 4
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 has eigenvalues -2, 3 so  L = 3 . Since the function Ay + f (x) is continuous and 

satisfies the Lipschitz property the assumptions of the existence and uniqueness theorem are satisfied and 
the initial value problem has a unique solution that is defined for all values of x. The ansatz  
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imply that also !x(0) = 0  and the solution is x(t) = 1
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9 . From the equation 

!x = −3x + 2y+ t  we gets  y(t) = 1
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