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Solutions of all problems have to be complete and all arguments well motivated. When known  
theorems are used it has to be shown that the assumptions are fulfilled. Each problem is worth  
3 points and 2 points are needed for having the problem approved. 3 passed problems and 8 points  
are needed for passing the examination. 
-----------  
1. Consider the following logistic type equation:         NrN K

N ])(1[ 2−=! where 0, >Kr . 
a) Show by using the method of separation of variables that the solution of the initial value  
problem 0)0( NtN ==  is given by rteNKNKNtN 22
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b) Find all equilibrium points and decide their stability. 
-------  
 
2. Find equilibrium points of the linear system of equations:  !u = 4u−3w+ 2 , !w = 3u+ 4w−11 
and decide their stability. Confirm your result by calculating a general solution of this linear  
system of equations. Draw an approximate phase portrait for this system. 
------  
 
3.  A linear 2-nd order nonhomogeneous ODE )()()()()()( xhxyxqxyxpxy =+ʹ+ʹ́  has a general  

solution y(x) = Ae−x +Bxex −1 . Find the equation and verify that the homogeneous solution  
and the particular solution satisfy the determined equation. Give a solution of IC:  y(0) = !y (0) = 0 . 
------ 
 
4.  For the dynamical system:              !x = 7x − x2 − 2xy ,        !y = 5y− y2 − xy      
find all equilibrium points and decide their linear stability. Draw all nullclines and direction of the 
vectorfield on the nullclines.  
------ 
 
5.  Formulate the Liapunov theorem on asymptotic stability of an equilibrium point of an 
autonomous dynamical system. Find, by taking the ansatz V = ax2 + by2 , a,b > 0  for a Liapunov 
function, that the equilibrium point (0,0) is asymptotically stable for the system  

                !x = xy2 − 1
2 x

3 ,    !y = 1
5 x

2y− 1
2 y

3                          
and, therefore all solutions go to (0,0) when ∞→t . Can you confirm this result by using the 
linear criterion of stability? 
------- 
6.  Formulate the theorem about existence and uniqueness of solutions for the initial value  
problem(IVP):       
                         ),()( yxf

dx
xdy
= , by =)0( ,            where x, y, f (x, y)∈ R     

Show that both functions 0)(,)( 2
3

1 == xyxxy  satisfy the same IVP: 0)0(,)(3)( 3/2 == yxy
dx
xdy .  

Explain which assumption of the theorem is not satisfied. 
 



Solutions Tentamen i ODE´s TATA71   2017-04-19  
1. a) Separation of variables gives 22
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By solving for N we get rtrtC
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 where RD∈≠0  is an arbitrary nonzero constant.  

The initial condition 0)0( NtN ==  gives )( 22
0

2
0 KNND −= and the required formula.  

b) 0 = r[1− ( NK )
2 ]N = f (N )  gives the equilibrium points N1 = 0,N± = ±K . !f (N ) = r −3r N 2

K 2
, and 

!f (N1 = 0) = r > 0, !f (N± = ±K ) = r −3r = −2r < 0 . This means that N1 = 0  is unstable and N± = ±K  
are stable. 
-------  
2.  Equations 0 = 4u−3w+ 2 , 0 = 3u+ 4w−11  have a single solution (u0 =1,w0 = 2) . The 
substitution (u = x +1,w = y+ 2)  turns the initial equations into a homogeneous system of linear 
equations !x = 4x −3y   !y = 3x + 4y  having equilibrium at (0,0). We can solve it either by reducing it 
to a single 2-nd order equation or by using a vector ansatz for a solution. By deriving !x = 4x −3y  
we get !!x = 4 !x −3 !y = 4 !x − 9x −12y = 4 !x − 9x − 4(4x − !x) = 8 !x − 25x and !!x −8 !x + 25x = 0.   
0 = !!x −8 !x + 25x = [x = eλt ]= eλt (λ 2 −8λ + 25)  and λ± = 4±3i . The general solution is 

x(t) = e4t (Acos3t +Bsin3t)  and y = 4
3 x − 1

3 !x = e
4t (Asin3t −Bcos3t) . The ansatz te
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e4t (cos3t − isin3t) . This 

gives two real-valued solutions x1(t) = e
4t cos3t

sin3t
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&) . The phase portrait has an equilibrium point (0,0) and trajectories 

are outgoing spirals emanating from (0,0). The phase portrait for (u(t),w(t)) has the same form with the 
equilibrium point moved to (1,2). As Reλ± = Re(4±3i) = 4 > 0  the equilibrium (0,0)  
is unstable. 
------ 
3. By substituting y1(x) = e

−x, y2 (x) = xe
x into the homogeneous equation !!y (x)+ p !y (x)+ qy(x) = 0   we 

obtain 2 algebraic equations for two unknown functions: p− q−1= 0, (1+ x)p+ xq+ 2+ x = 0  . They 
have solutions p(x) = − 2

1+2 x ,q(x) = − 3+2 x
1+2 x . The particular solution yp(x) = −1substituted into the l.h.s of 

the equation gives h(x) = 3+2 x
1+2 x . So the equation is ʹ́y (x)− 2

1+2 x ʹy (x)− 3+2 x
1+2 x y(x) = 3+2 x

1+2 x .  
A solution of the IC is y(x) = e−x + xex −1. 
------  
4.  Equations 0 = 7x − x2 − 2xy = f (x, y) , 0 = 5y− y2 − xy = g(x, y)     give 4 equilibrium points  
(x1 = 0, y1 = 0) , (x2 = 0, y2 = 5) , (x3 = 7, y3 = 0) and (x4 = 3, y4 = 2) . The Jacobian  

is  J(x, y) =
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. We list the points and their stability. 
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J(3, 2) = −3 −6
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The condition  0 = f (x, y) = x(7− x − 2y)  gives 2 nullclines x = 0, y = 1
2 (7− x)  with the vectofield  

parallel to y-axis. The condition 0 = g(x, y) = y(5− x − y)  defines 2 straight lines y = 0, y = 5− x   
where the vectorfield is parallel to x-axis. Intersections of these nullclines give 4 equilibrium points. 
------ 
5.  Equations !x = xy2 − 1

2 x
3 = 0 , !y = 1

5 x
2y− 1

2 y
3 = 0    have only one real valued solution (0,0). 

The directional derivative !V = d
dt (ax

2 + by2 ) = 2ax2 (y2 − 1
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2 )+ 2by2 (15 x
2 − 1

2 y
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−ax4 + (2a+ 2
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2y2 − by4 . A choice a =1,b = 5  gives 
!V
a=1,b=5

= −ax4 + (2a+ 2
5 b)x

2y2 − by4
a=1,b=5

= −x4 + 4x2y2 − 5y4 = (−x4 + 4x2y2 − 4y4 )− y4 =   

= −(x4 − 2y2 )2 − y4 < 0  being negative definite. The function V = x2 + 5y4 ≥ 0  is a positive 
definite Liapunov function taking value 0)0,0( =V  only at the equilibrium point. By the 
Liapunov theorem (0,0) is asymptotically stable. The Jacobian 

J(0, 0) =
y2 − 3

2 x
2 2xy

2
5 xy 1

5 x
2 − 3

2 y
2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
(0,0)

= 0 0
0 0

⎡

⎣
⎢

⎤

⎦
⎥ , has only zero eigenvalues and the linear  

criterion is unconclusive.  
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6. For theorem see the textbook. 
By separating variables we get 13/2

3
1 =ʹ− yy  and the solution is 3

1 )()( Cxxy += . From the IC 
3

1 )()0(0 Cy ==  the constant is 0=C . So 3)( xxy =  is a solution and obviously 0)( =xy  
satisfies the equation. But the Lipschitz condition guaranteeing uniqueness of solutions is not 
satisfied here. Here f (y) = 3y2/3 .By the mean value theorem there is a value )(yξ  between 0  

and y  such that f (y)− f (0) = ∂f (ξ (y))
∂y

y− 0 .  But ∂f (ξ (y))
∂y

= 2ξ (y)−1/3 y→0⎯ →⎯⎯ ∞  is 

unbounded as 0→y , since )(yξ  stays between 0  and y . So there is no Lipshitz constant  L so 
that f (y)− f (0) ≤ L y− 0  in a certain neighborhood of 0=y  . 
 
 
 


