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TATA71 Ordinära differentialekvationer och dynamiska system

Tentamen 2025-01-16 kl. 14.00–19.00

No aids allowed, except drawing tools (rulers and such). You may write your
answers in English or in Swedish, or some mixture thereof.

Each problem will be marked pass (3 or 2 points) or fail (1 or 0 points). For grade
n ∈ {3,4,5} you need at least n passed problems and at least 3n −1 points.

Solutions will be posted on the course webpage afterwards. Good luck!

1. Consider the population model

dx

dt
= r x

(
1− x

K

)( x

A
−1

)
, where 0 < r and 0 < A < K .

(a) Draw the phase portrait (for x ≥ 0).

(b) Show how to rescale the variables x and t in order to obtain the
dimensionless system dy

dτ = y(1−y)
( y
α−1

)
. How is the new parameter

α defined in terms of the original parameters (r,K , A)?

2. Determine the general solution of the linear system

ẋ = 3y, ẏ = x −2y,

and draw the phase portrait as carefully as you can.

3. Use linearization to classify the equilibrium points of the system

ẋ = x − y, ẏ = (x −1)y,

and sketch the phase portrait.

4. Sketch the phase portrait of the system(
ẋ
ẏ

)
= 5

(
y
−x

)
+ (4−x2 − y2)

(
x
y

)
by expressing it in polar coordinates.

5. Show that the origin is an asymptotically stable equilibrium for the system

ẋ =−y +x y4, ẏ = x − y3,

and determine a domain of stability. (Hint: Try a very commonly used
Liapunov function!)

6. Solve the linear ODE

ẍ(t )−2ẋ(t )+x(t ) = e2t

(1+e t )2
.



Solutions for TATA71 2025-01-16

1. (a) Phase portrait for x ≥ 0 :

x
0 A K

Remark. This model features an underpopulation effect, where the per-
capita growth rate ẋ/x becomes smaller (in this case even negative) at low
population levels. For instance, it may be difficult to find mates.

(b) With τ= r t and y = x/K the ODE becomes

dy

dτ
= y

(
1− y

)( y

A/K
−1

)
,

which has the desired form with α= A/K (so that 0 <α< 1).

(The alternative choice τ= r t , y = x/A and α= K /A > 1 also works.)

2. The system’s matrix A = (
0 3
1 −2

)
has eigenvaluesλ1 = 1 andλ2 =−3 with cor-

responding eigenvectors
(

3
1

)
and

(
1−1

)
, and from this information we can

write down the solution immediately. Since λ2 < 0 <λ1, the equilibrium at
the origin is a saddle, with principal directions given by the eigenvectors.

Answer. The general solution is

(
x(t )
y(t )

)
= A

(
3
1

)
e t +B

(
1
−1

)
e−3t , where A

and B are arbitrary constants. Phase portrait (nullclines ẋ = 3y = 0 in
purple and ẏ = x −2y = 0 in orange, principal directions in black):



3. The equilibrium points are (x, y) = (0,0) and (x, y) = (1,1). The Jacobian
matrix is J(x, y) = ( 1 −1

y x−1
)
. Since J(0,0) = (

1 −1
0 −1

)
has eigenvalues ±1 of

opposite signs, there is a saddle at the origin, with principal directions
given by the eigenvectors

(
1
0

)
and

(
1
2

)
. At (1,1) there is an unstable focus

according to the trace–determinant criterion, since J(1,1) = (
1 −1
1 0

)
gives

β= tr J = 1 > 0 and γ= det J = 1 > (β/2)2. Phase portrait:

4. For r > 0 we have, according to the usual formulas,

ṙ = xẋ + y ẏ

r
= (4−x2 − y2)(x2 + y2)

r
= (4− r 2)r,

θ̇ = x ẏ − y ẋ

r 2
= −5(x2 + y2)

r 2
=−5,

so the solution curves go clockwise around the equilibrium point at the
origin, with r increasing for 0 < r < 2 and decreasing for 2 < r . Hence, the
circle x2 + y2 = 22 is a stable limit cycle. Phase portrait:



5. With V (x, y) = x2 + y2 (which of course is positive definite) we have V̇ =
2xẋ + 2y ẏ = 2x(−y + x y4)+ 2y(x − y3) = 2(x2 − 1)y4, which is negative
semidefinite in the open stripΩ= (−1,1)×R (drawn in gray in the figure
below). So V is a weak Liapunov function on Ω. The set of points in Ω
where V̇ = 0 is the line segment C = {(x,0) : −1 < x < 1}. The only complete
trajectory contained in C is the equilibrium solution at the origin, since the
vector field reduces to (ẋ, ẏ) = (0, x) when y = 0 and hence is transversal
to C away from the origin. Thus LaSalle’s theorem shows that the origin is
asymptotically stable.

The usual arguments show that the disk x2+ y2 < k is a domain of stability
for any 0 < k < 1, and therefore so is the union of all these disks, namely
the open unit disk x2 + y2 < 1 (drawn in blue below).

As the following computer-draws phase portrait shows, the unit disk is
not the largest possible domain of attraction, but it’s what we get with this
choice of Liapunov function:



6. The characteristic polynomial is p(λ) =λ2−2λ+1 = (λ−1)2, so the general
solution of the homogeneous equation is xhom(t ) = (At +B)e t .

We can use variation of constants to find a particular solution xpart(t).
With (x1, x2) = (x, ẋ) the ODE can be written as a system:(

ẋ1

ẋ2

)
=

(
0 1
−1 2

)(
x1

x2

)
+

(
0

e2t (1+e t )−2

)
.

Since we found above that te t and e t form a basis of the solution space of
the homogeneous equation, we can obtain a fundamental matrix for the
system as follows:

Φ(t ) =
(

te t e t

d
dt (te t ) d

dt (e t )

)
= e t

(
t 1

t +1 1

)
.

Letting x(t ) =Φ(t )y(t ) leads in the usual way to(
ẏ1

ẏ2

)
=Φ(t )−1

(
0

e2t (1+e t )−2

)
= e−t

( −1 1
t +1 −t

)(
0

e2t (1+e t )−2

)
= e t

(1+e t )2

(
1
−t

)
,

which gives y1 =
∫ e t dt

(1+e t )2 =− 1
1+e t + A and (using integration by parts) y2 =∫

t · −e t

(1+e t )2 dt = t · 1
1+e t −

∫
1· 1

1+e t dt = t
1+e t +

∫ −e−t

e−t+1 dt = t
1+e t +ln(e−t +1)+B .

Here we can take A = B = 0 and obtain xpart(t) = e t
(
t · y1(t)+1 · y2(t)

) =
e t ln(e−t +1) from the first component in the matrix productΦ(t )y(t ).

Answer. The general solution is

x(t ) = xpart(t )+xhom(t ) = e t ln(e−t +1)+ (At +B)e t ,

where A and B are arbitrary constants.

Alternative method of solution. Actually, the quickest way of solving this ODE is
probably to let x(t ) = z(t )e t and use the exponential shift rule,

p(D)
(
z(t )eat )= eat p(D +a)z(t ), where D = d

dt .

Like this:

ẍ(t )−2ẋ(t )+x(t ) = e2t (1+e t )−2

⇐⇒ (D2 −2D +1)x = e2t (1+e t )−2 (express the LHS using the operator D)

⇐⇒ (D −1)2x = e2t (1+e t )−2

⇐⇒ (D −1)2(ze t ) = e2t (1+e t )−2 (let x = ze t )

⇐⇒ e t (D +1−1
)2z = e2t (1+e t )−2 (use the shift rule, with a = 1)

⇐⇒ D2z = e t (1+e t )−2 (cancel e t on both sides)

⇐⇒ Dz =−(1+e t )−1 + A =−e−t (e−t +1)−1 + A (integrate)

⇐⇒ z = ln(e−t +1)+ At +B (integrate again)

⇐⇒ x = ze t = (
ln(e−t +1)+ At +B

)
e t (go back to x).


