TATA71 Ordinära differentialekvationer och dynamiska system Tentamen 2025-08-29 kl. 8.00–13.00

Utbildningskod: TATA71

Modul: TEN1

No aids allowed, except drawing tools (rulers and such). You may write your answers in English or in Swedish, or some mixture thereof.

Each problem will be marked *pass* (3 or 2 points) or *fail* (1 or 0 points). For grade $n \in \{3,4,5\}$ you need at least n passed problems and at least 3n-1 points. Solutions will be posted on the course webpage afterwards. Good luck!

1. Consider the following model of a fish population x(t) subjected to fishing:

$$\frac{dx}{dt} = rx\left(1 - \frac{x}{K}\right) - \frac{ax}{h+x} \qquad (r, K, a, b > 0).$$

Interpret the terms and parameters on the right-hand side, and show how to rescale the variables *x* and *t* to obtain an ODE of the form

$$\frac{dy}{d\tau} = y(1 - y) + \begin{bmatrix} \text{something involving two} \\ \text{dimensionless parameters} \end{bmatrix}.$$

Please state clearly how the new variables and parameters are defined in terms of the original ones.

2. Find the general solution to the linear system

$$\dot{x} = -x - 2y, \qquad \dot{y} = 2x - y,$$

and draw the phase portrait.

3. Use linearization to classify the equilibrium points of the system

$$\dot{x} = y^3 - x, \qquad \dot{y} = y(x - 1),$$

and sketch the phase portrait.

4. Show that the origin is an asymptotically stable equilibrium of the system

$$\dot{x} = -y, \qquad \dot{y} = x - (1 - x^2) y^3,$$

and determine a domain of stability. (Hint: Try a very common Liapunov function.)

5. Given that $x(t) = e^t$ is a solution, use reduction of order to find the general solution to the ODE

$$\ddot{x}(t) - e^{-2t}\dot{x}(t) + \left(e^{-2t} - 1\right)x(t) = 0.$$

6. For a dynamical system with flow φ_t , define what it means for a point **y** to be an ω -limit point of a point **x**.

Solutions for TATA71 2025-08-29

1. In the absence of fishing, the fish population would grow according to the well-known logistic equation $\dot{x} = rx\left(1 - \frac{x}{K}\right)$, where r is the intrinsic growth rate per capita and K is the carrying capacity of the environment. The term $\frac{ax}{b+x}$ represents the rate of removal of fish (due to fishing). This fishing rate increases with the fish population size x, but not without bounds; instead there is a *saturation* effect, where the fishing rate tends to a as $x \to \infty$. So the parameter a is the maximal fishing rate, while b is the value of x where the fishing rate equals a/2 (half the maximal rate).

Changing to dimensionless variables y = x/K and $\tau = rt$ turns the ODE into

$$\frac{dy}{d\tau} = y(1-y) - \frac{a}{rK} \cdot \frac{y}{\frac{b}{K} + y} = y(1-y) - \frac{\alpha y}{\beta + y},$$

where $\alpha = \frac{a}{rK}$ and $\beta = \frac{b}{K}$ are dimensionless parameters.

2. There are several ways of solving this system. For example, we can eliminate y to get the single second-order ODE $\ddot{x} + 2\dot{x} + 5x = 0$, with the general solution $x(t) = e^{-t}(A\cos 2t + B\sin 2t)$, and from that compute $y(t) = -\frac{1}{2}(x + \dot{x}) = e^{-t}(A\sin 2t - B\cos 2t)$.

Answer.
$$\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = Ae^{-t} \begin{pmatrix} \cos 2t \\ \sin 2t \end{pmatrix} + Be^{-t} \begin{pmatrix} \sin 2t \\ -\cos 2t \end{pmatrix}$$
 $(A, B \in \mathbf{R} \text{ arbitrary}).$

The phase portrait is a stable focus, drawn here with the nullclines in purple (x + 2y = 0, for x) and orange (2x - y = 0, for y):

3. The equilibrium points are (0,0) and (1,1). Jacobian matrix:

$$J(x,y) = \begin{pmatrix} -1 & 3y^2 \\ y & x-1 \end{pmatrix}, \qquad J(0,0) = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \qquad J(1,1) = \begin{pmatrix} -1 & 3 \\ 1 & 0 \end{pmatrix}.$$

So (0,0) is a stable star node, since the Jacobian there is a negative multiple of the identity matrix, and (1,1) is a saddle, since the Jacobian there has negative determinant.

The phase portrait is shown below, including the nullclines and also indicating the principal directions at the saddle, given by the eigenvectors $(\lambda_1,1)$ and $(\lambda_2,1)$ corresponding to the eigenvalues $\lambda_1=\frac{1}{2}\left(-1-\sqrt{13}\right)<0$ and $\lambda_2=\frac{1}{2}\left(-1+\sqrt{13}\right)>0$, respectively.

4. $V(x,y)=x^2+y^2$ is a weak Liapunov function for this system in the open strip $\Omega=\left\{(x,y):-1< x<1\right\}$, since V is positive definite and $\dot{V}=2x\dot{x}+2y\dot{y}=2x(-y)+2y(x-(1-x^2)y^3)=-2(1-x^2)y^4$ satisfies $\dot{V}\leq 0$ in Ω . The set of points in Ω where $\dot{V}=0$ is the segment $C=\left\{(x,0):-1< x<1\right\}$. At those points, the vector field on the right-hand side of the system equals (0,x), so it's transversal to C except at the origin. According to LaSalle's theorem, the origin is therefore asymptotically stable. The usual arguments (not repeated here this time) show that the unit disk $x^2+y^2<1$ is a domain of stability.

Remark. A computer-drawn phase portrait (with Ω in gray and the unit disk in blue) shows that this is not the best possible domain of stability, but it's what we get from this Liapunov function:

5. With $x(t) = e^t Y(t)$ we have $\dot{x} = e^t (\dot{Y} + Y)$ and $\ddot{x} = e^t (\ddot{Y} + 2\dot{Y} + Y)$, so that the ODE becomes $0 = \ddot{x} - e^{-2t}\dot{x} + \left(e^{-2t} - 1\right)x = e^t \left[(\ddot{Y} + 2\dot{Y} + Y) - e^{-2t} (\dot{Y} + Y) + \left(e^{-2t} - 1\right)Y\right] = e^t \left[\ddot{Y} + \left(2 - e^{-2t}\right)\dot{Y}\right] = e^t \left[\dot{y} + \left(2 - e^{-2t}\right)y\right]$ where $y(t) = \dot{Y}(t)$. Using the integrating factor $\exp\left(\int \left(2 - e^{-2t}\right)dt\right) = \exp\left(2t + \frac{1}{2}e^{-2t}\right)$ we find $y(t) = A\exp\left(-2t - \frac{1}{2}e^{-2t}\right) = Ae^{-2t}\exp\left(-\frac{1}{2}e^{-2t}\right)$, so that $Y(t) = \int y(t)\,dt = A\exp\left(-\frac{1}{2}e^{-2t}\right) + B$, from which we get the general solution $x(t) = e^t Y(t)$. **Answer.** $x(t) = A\exp\left(t - \frac{1}{2}e^{-2t}\right) + Be^t$.

6. It maps that there is a sequence of times t

6. It means that there is a sequence of times $t_n \to +\infty$ such that $\varphi_{t_n}(\mathbf{x}) \to \mathbf{y}$ as $n \to \infty$.