

TATA71 Ordinära differentialekvationer och dynamiska system

Tentamen 2026-01-15 kl. 8.00–13.00

No aids allowed, except drawing tools (rulers and such). You may write your answers in English or in Swedish, or some mixture thereof.

Each problem will be marked *pass* (3 or 2 points) or *fail* (1 or 0 points). For grade $n \in \{3, 4, 5\}$ you need at least n passed problems and at least $3n - 1$ points.

Solutions will be posted on the course webpage afterwards. Good luck!

1. Draw the phase portrait for the one-dimensional dynamical system $\dot{x} = x^2 - 1$, and compute explicitly the solution $x(t)$ satisfying the initial condition $x(0) = -2$. (Also state the maximal time interval where this solution is defined.)
2. Calculate the general solution to the linear system $\dot{x} = x + y$, $\dot{y} = 2x$, and draw the phase portrait.
3. Use linearization to classify the equilibrium points of the system

$$\dot{x} = 2(y - x), \quad \dot{y} = y - 2x + x^2,$$

and sketch the phase portrait.

4. (a) Define what it means for an equilibrium point \mathbf{x}^* of a dynamical system $\dot{\mathbf{x}} = \mathbf{X}(\mathbf{x})$ to be **stable** (in the sense of Liapunov).
(b) For the system $(\dot{x}, \dot{y}) = (-xy^2 - y^3, xy^2 - y^3)$, show that $(0, 0)$ is a stable equilibrium. (Hint: Try a commonly used Liapunov function.)
(c) For the same system, determine whether or not $(0, 0)$ is *asymptotically* stable.
5. Find the general solution of the second-order ODE

$$\ddot{x} - 3\dot{x} + 2x = \frac{e^{2t}}{1 + e^t}.$$

6. Consider the system $(\dot{x}, \dot{y}) = (y, x^2)$, with flow φ_t . For which points (x, y) is it true that $\varphi_t(x, y) \rightarrow (0, 0)$ as $t \rightarrow +\infty$?

Solutions for TATA71 2026-01-15

1. Phase portrait:

To compute $x(t)$, we can for example use separation of variables and partial fractions. Since $x(0) = -2$, the solution must stay in the interval $x < -1$ for as long as it is defined. (We can see already in the phase portrait that it must be defined for all $t > 0$, and approach the equilibrium -1 as $t \rightarrow +\infty$. However, the solution formula below shows that actually $x(t) \rightarrow -\infty$ in finite negative time, namely when e^{2t} reaches the value $\frac{1}{3}$.) In the interval $x < 1$, both $x-1$ and $x+1$ are negative, so $\frac{x-1}{x+1}$ is positive:

$$\begin{aligned} t &= \int_0^t dt = \int_{-2}^{x(t)} \frac{dx}{x^2 - 1} = \int_{-2}^{x(t)} \frac{1}{2} \left(\frac{1}{x-1} - \frac{1}{x+1} \right) dx \\ &= \left[\frac{1}{2} \ln \left| \frac{x-1}{x+1} \right| \right]_{-2}^{x(t)} = \frac{1}{2} \ln \left| \frac{x(t)-1}{x(t)+1} \right| - \frac{1}{2} \ln \left| \frac{-2-1}{-2+1} \right| \\ &= \frac{1}{2} \ln \frac{x(t)-1}{x(t)+1} - \frac{1}{2} \ln 3, \end{aligned}$$

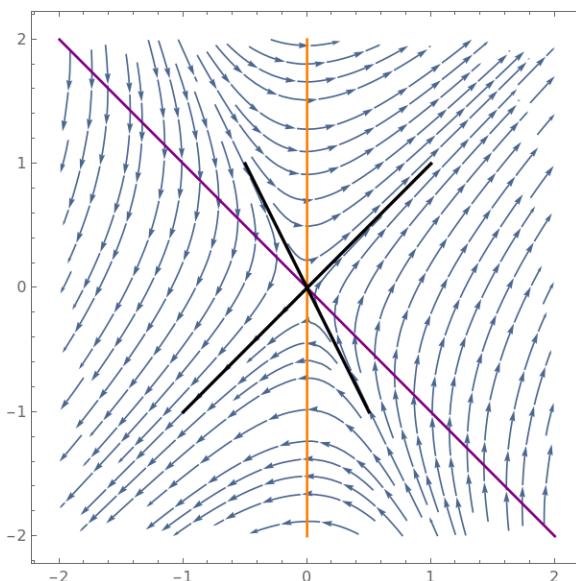
and from this we can solve for $x(t)$.

Answer. $x(t) = \frac{-1 - 3e^{2t}}{-1 + 3e^{2t}}$, for $t > -\frac{1}{2} \ln 3$.

2. Using the eigenvalues and eigenvectors of the system's matrix $\begin{pmatrix} 1 & 1 \\ 2 & 0 \end{pmatrix}$, we can write down the general solution immediately.

Answer. $\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = Ae^{2t} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + Be^{-t} \begin{pmatrix} -1 \\ 2 \end{pmatrix}$ ($A, B \in \mathbf{R}$ arbitrary).

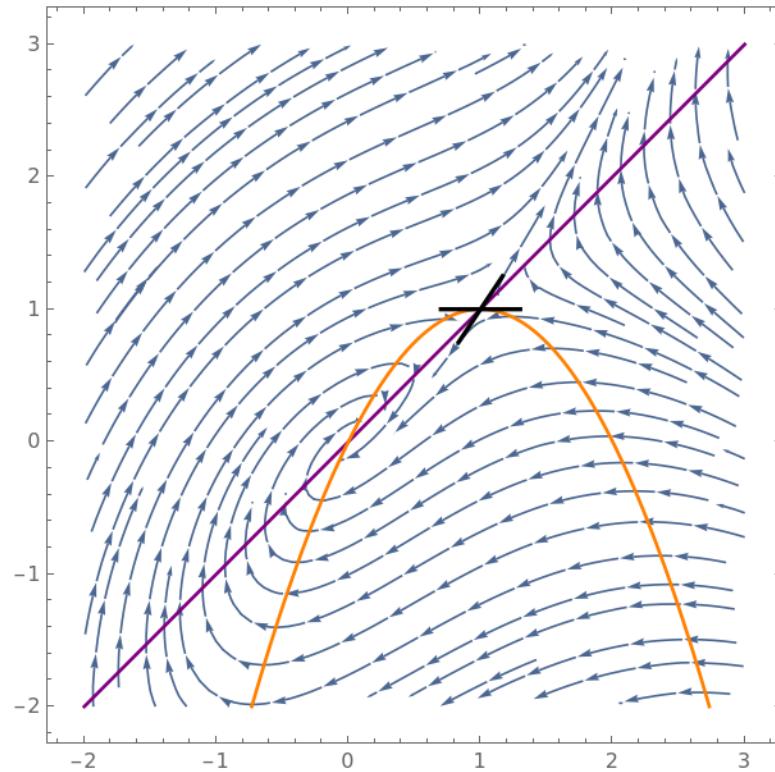
The phase portrait is a saddle, drawn here with the nullclines in purple ($y = -x$, for x) and orange ($x = 0$, for y), and with the principal directions indicated by black line segments:



3. The equilibrium points are $(0, 0)$ and $(1, 1)$. Jacobian matrix:

$$J(x, y) = \begin{pmatrix} -2 & 2 \\ 2x-2 & 1 \end{pmatrix}, \quad J(1, 1) = \begin{pmatrix} -2 & 2 \\ 0 & 1 \end{pmatrix}, \quad J(0, 0) = \begin{pmatrix} -2 & 2 \\ -2 & 1 \end{pmatrix}.$$

So $(1, 1)$ is a saddle; the eigenvalues -2 and 1 can be read off from the diagonal of the triangular matrix $J(1, 1)$, and the corresponding eigenvectors are $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 2 \\ 3 \end{pmatrix}$. And $(0, 0)$ is a stable focus, by the trace–determinant criterion, since $\beta = \text{tr } J(0, 0) = -1$ and $\gamma = \det J(0, 0) = 2$ satisfy $\beta < 0$ and $(\beta/2)^2 < \gamma$. The phase portrait is shown below, including the nullclines and the principal directions at the saddle:



4. (a) By definition, the equilibrium point \mathbf{x}^* is stable iff for every neighbourhood U of \mathbf{x}^* there is some neighbourhood V of \mathbf{x}^* such that all solutions starting in V remain in U for all later times.

(b) $V(x, y) = x^2 + y^2$ is a weak Liapunov function for this system (in the whole plane \mathbf{R}^2), since V is positive definite and $\dot{V} = 2x\dot{x} + 2y\dot{y} = 2x(-xy^2 - y^3) + 2y(xy^2 - y^3) = -2y^2(x^2 + y^2)$ satisfies $\dot{V} \leq 0$ everywhere. So $(0, 0)$ is stable, by the weak version of Liapunov's theorem.

(c) No, $(0, 0)$ is not asymptotically stable, for the simple reason that every point on the x -axis is an equilibrium point, causing every neighbourhood of $(0, 0)$ to contain solutions which don't converge to $(0, 0)$ as $t \rightarrow \infty$.

5. The characteristic polynomial is $p(\lambda) = \lambda^2 - 3\lambda + 2 = (\lambda - 1)(\lambda - 2)$, so the general solution of the homogeneous equation is $x_{\text{hom}}(t) = Ae^t + Be^{2t}$. With $(x_1, x_2) = (x, \dot{x})$ the ODE can be written as a system:

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -2 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ e^{2t}(1 + e^t)^{-1} \end{pmatrix}.$$

Since e^t and e^{2t} form a basis for the solution space of the homogeneous equation, we can obtain a fundamental matrix for the system as follows:

$$\Phi(t) = \begin{pmatrix} e^t & e^{2t} \\ \frac{d}{dt}(e^t) & \frac{d}{dt}(e^{2t}) \end{pmatrix} = \begin{pmatrix} e^t & e^{2t} \\ e^t & 2e^{2t} \end{pmatrix}.$$

Letting $\mathbf{x}(t) = \Phi(t)\mathbf{y}(t)$ leads in the usual way to

$$\begin{pmatrix} \dot{y}_1 \\ \dot{y}_2 \end{pmatrix} = \Phi(t)^{-1} \begin{pmatrix} 0 \\ e^{2t}(1 + e^t)^{-1} \end{pmatrix} = \begin{pmatrix} 2e^{-t} & -e^{-t} \\ -e^{-2t} & e^{-2t} \end{pmatrix} \begin{pmatrix} 0 \\ e^{2t}(1 + e^t)^{-1} \end{pmatrix} = \frac{1}{1 + e^t} \begin{pmatrix} -e^t \\ 1 \end{pmatrix},$$

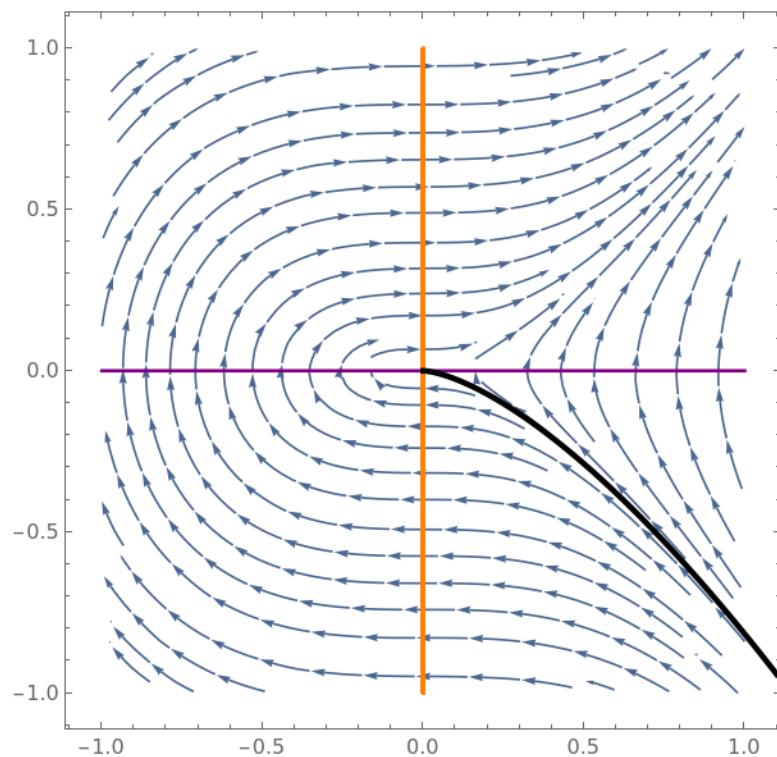
so that $y_1(t) = \int \frac{-e^t dt}{1 + e^t} = -\ln(1 + e^t) + A$ and $y_2(t) = \int \frac{dt}{1 + e^t} = \int \frac{e^{-t} dt}{e^{-t} + 1} = -\ln(1 + e^{-t}) + B$. Finally we find the sought solution $x(t) = x_1(t) = e^t y_1(t) + e^{2t} y_2(t)$ from the first component in the matrix product $\mathbf{x}(t) = \Phi(t)\mathbf{y}(t)$.

Answer. The general solution is

$$x(t) = -e^t \ln(1 + e^t) - e^{2t} \ln(1 + e^{-t}) + Ae^t + Be^{2t},$$

where A and B are arbitrary constants.

6. The function $H(x, y) = \frac{1}{2}y^2 - \frac{1}{3}x^3$ is a constant of motion, as can be seen by noticing that the system has the Hamiltonian form $(\dot{x}, \dot{y}) = (H_y, -H_x)$, or via the usual procedure of eliminating the time variable: $dy/dx = \dot{y}/\dot{x} = x^2/y$, leading to $\int y \, dy = \int x^2 \, dx$. So the trajectories of the system follow the level curves of H , and by considering the phase portrait we see that the only solutions tending to the origin as $t \rightarrow \infty$ are those on the lower half (drawn in black below) of the level curve $H(x, y) = 0 \iff y = \pm\sqrt{\frac{2}{3}x^3}$, including the equilibrium solution $(x(t), y(t)) = (0, 0)$ itself:



Answer. The points on the curve $y = -\sqrt{\frac{2}{3}x^3}$, $x \geq 0$.