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TATA71 Ordinära differentialekvationer och dynamiska system
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No aids allowed, except drawing tools (rulers and such). You may write your
answers in English or in Swedish, or some mixture thereof.

Each problem will be marked pass (3 or 2 points) or fail (1 or 0 points). For grade
n ∈ {3,4,5} you need at least n passed problems and at least 3n −1 points.

Solutions will be posted on the course webpage afterwards. Good luck!

1. Draw the phase portrait for the one-dimensional dynamical system ẋ =
x2 −1, and compute explicitly the solution x(t ) satisfying the initial condi-
tion x(0) =−2. (Also state the maximal time interval where this solution is
defined.)

2. Calculate the general solution to the linear system ẋ = x + y , ẏ = 2x, and
draw the phase portrait.

3. Use linearization to classify the equilibrium points of the system

ẋ = 2(y −x), ẏ = y −2x +x2,

and sketch the phase portrait.

4. (a) Define what it means for an equilibrium point x∗ of a dynamical
system ẋ = X(x) to be stable (in the sense of Liapunov).

(b) For the system (ẋ, ẏ) = (−x y2−y3, x y2−y3), show that (0,0) is a stable
equilibrium. (Hint: Try a commonly used Liapunov function.)

(c) For the same system, determine whether or not (0,0) is asymptotically
stable.

5. Find the general solution of the second-order ODE

ẍ −3ẋ +2x = e2t

1+e t
.

6. Consider the system (ẋ, ẏ) = (y, x2), with flow ϕt . For which points (x, y) is
it true that ϕt (x, y) → (0,0) as t →+∞?



Solutions for TATA71 2026-01-15

1. Phase portrait: x
−1 1

To compute x(t), we can for example use separation of variables and
partial fractions. Since x(0) = −2, the solution must stay in the interval
x <−1 for as long as it is defined. (We can see already in the phase portrait
that it must be defined for all t > 0, and approach the equilibrium −1
as t → +∞. However, the solution formula below shows that actually
x(t ) →−∞ in finite negative time, namely when e2t reaches the value 1

3 .)
In the interval x < 1, both x −1 and x +1 are negative, so x−1

x+1 is positive:
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and from this we can solve for x(t ).

Answer. x(t ) = −1−3e2t

−1+3e2t
, for t >−1

2 ln3.

2. Using the eigenvalues and eigenvectors of the system’s matrix
(

1 1
2 0

)
, we

can write down the general solution immediately.

Answer.
(

x(t )
y(t )

)
= Ae2t

(
1
1

)
+Be−t

(−1
2

)
(A,B ∈ R arbitrary).

The phase portrait is a saddle, drawn here with the nullclines in purple
(y =−x, for x) and orange (x = 0, for y), and with the principal directions
indicated by black line segments:



3. The equilibrium points are (0,0) and (1,1). Jacobian matrix:

J (x, y) =
( −2 2
2x −2 1

)
, J(1,1) =

(−2 2
0 1

)
, J(0,0) =

(−2 2
−2 1

)
.

So (1,1) is a saddle; the eigenvalues −2 and 1 can be read off from the
diagonal of the triangular matrix J(1,1), and the corresponding eigenvec-
tors are

(
1
0

)
and

(
2
3

)
. And (0,0) is a stable focus, by the trace–determinant

criterion, since β= tr J(0,0) =−1 and γ= det J(0,0) = 2 satisfy β< 0 and
(β/2)2 < γ. The phase portrait is shown below, including the nullclines
and the principal directions at the saddle:



4. (a) By definition, the equilibrium point x∗ is stable iff for every neigh-
bourhood U of x∗ there is some neighbourhood V of x∗ such that all
solutions starting in V remain in U for all later times.

(b) V (x, y) = x2 + y2 is a weak Liapunov function for this system (in the
whole plane R2), since V is positive definite and V̇ = 2xẋ +2y ẏ =
2x(−x y2 − y3)+ 2y(x y2 − y3) = −2y2(x2 + y2) satisfies V̇ ≤ 0 every-
where. So (0,0) is stable, by the weak version of Liapunov’s theorem.

(c) No, (0,0) is not asymptotically stable, for the simple reason that every
point on the x-axis is an equilibrium point, causing every neighbour-
hood of (0,0) to contain solutions which don’t converge to (0,0) as
t →∞.

5. The characteristic polynomial is p(λ) =λ2 −3λ+2 = (λ−1)(λ−2), so the
general solution of the homogeneous equation is xhom(t) = Ae t +Be2t .
With (x1, x2) = (x, ẋ) the ODE can be written as a system:(
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)
=
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.

Since e t and e2t form a basis for the solution space of the homogeneous
equation, we can obtain a fundamental matrix for the system as follows:

Φ(t ) =
(

e t e2t

d
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)
=
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)
.

Letting x(t ) =Φ(t )y(t ) leads in the usual way to(
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)
=Φ(t )−1
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=
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so that y1(t) = ∫ −e t dt
1+e t = − ln(1 + e t ) + A and y2(t) = ∫ dt

1+e t = ∫ e−t dt
e−t+1 =

− ln(1+e−t )+B . Finally we find the sought solution x(t ) = x1(t ) = e t y1(t )+
e2t y2(t ) from the first component in the matrix product x(t ) =Φ(t )y(t ).

Answer. The general solution is

x(t ) =−e t ln(1+e t )−e2t ln(1+e−t )+ Ae t +Be2t ,

where A and B are arbitrary constants.



6. The function H(x, y) = 1
2 y2 − 1

3 x3 is a constant of motion, as can be seen
by noticing that the system has the Hamiltonian form (ẋ, ẏ) = (Hy ,−Hx),
or via the usual procedure of eliminating the time variable: dy/dx = ẏ/ẋ =
x2/y , leading to

∫
y dy = ∫

x2dx. So the trajectories of the system follow
the level curves of H , and by considering the phase portrait we see that
the only solutions tending to the origin as t →∞ are those on the lower

half (drawn in black below) of the level curve H(x, y) = 0 ⇐⇒ y =±
√

2
3 x3,

including the equilibrium solution (x(t ), y(t )) = (0,0) itself:

Answer. The points on the curve y =−
√

2
3 x3, x ≥ 0.


