Hand-in Exercises TATA74 1 Fall 2025: Curves

First of all the exercises are to be solved individually: it is your examination!

The exercises to be done by each of you are parametrised by $(M_1 - M_2, D_1 - D_2, Y_1 - Y_2)$, which are the moth, day and year of your birthday, but if someone is born year 2000, for this course the student is born 1998. Mine is (1-2, 1-5, 6-3). Some one born March 3 1990 has coordinates (0-3, 0-3, 9-0).

How to get the exercises to be solved by you?: If one Exercise contains exercises of different types, where the types are denoted by letters a, b, c and d parts you must solve one exercise from each of its parts.

When one Exercise contains more than one exercise of a given type (Exercises 1, 2, 5, 6, 7 and 8) you solve the exercise of the type given by the number 1, 2 or 3 obtained as follows:

$$M_1 + M_2 + D_1 + D_2 + Y_1 + Y_2 + \text{ No. of the Exercise } + l \text{ mod}3$$

where l = 1 for an exercise type **a**), l = -1 for an exercise type **b**), and l = 0 for type **c**).

So I should solve exercises a.3 and b.1 in Exercise 2, and 1 and 2 in Exercise 6.

Of course you may use your favourite program to do calculations: MATLAB, Maple, Mathematica, Alpha Wolfram, etc.

Recall that you can always calculate numerically the length of an arc using, for instance, MATLAB. Below you find the command

Integration in MATLAB

q = integral(fun,xmin,xmax) numerically integrates function fun from xmin to xmax using global adaptive quadrature and default error tolerances.

But remember to integrate numerically we must tell MATLAB that a function is taken numerically by writing before the expression of the function "((x))".

Example:

fun = @(x)sin(x); q = integral(fun,0,pi/2)

>implicitplot([seq(x*cos(Pi*s/20) + y*sin(Pi*s/20) = sin(Pi*s/20)*cos(Pi*s/20), s = [0, 1, 1])

Exercise 1 Calculate the curvature, and torsion if applicable, at a generic point of the parametrised curves as well as the length of the following arcs of curves (for plane curves the curvature is signed):

 $a.1 \ \gamma(t) = (a \frac{\cos(t)}{(\sin(t))^2 + 1}, a \frac{\cos(t)\sin(t)}{(\sin(t))^2 + 1}), \ with \ t \in [0, 2\pi]. \ a > 0 \ constant: \ The lemniscata.$

- a.2 $\gamma(t) = (a \frac{t^2 1}{t^2 + 1}, a \frac{t(t^2 1)}{t^2 + 1})$, with $t \in [-2, 2]$. a > 0 constant: the strophoid.
- a.3 $\gamma(t)=(at-a\sin(t),a-a\cos(t)), \ with \ t\in[0,2\pi], \ a>0 \ constant.$ An arc of cycloid.
- b.1 The plane curve $\gamma(\phi)$ defined by the polar equation $r(\phi) = 2a(\cos \phi + 1)$, $\phi \in [0, 2\pi]$. Remember if (r, ϕ) are the polar coordinates of a point on the plane, its Cartesian coordinates are $(x = r\cos(\phi), y = r\sin(\phi))$. This curve is called the cardioid.
- b.2 The plane curve $\gamma(\phi)$ defined by the polar equation $r(\phi) = 2a\cos(3\phi) + 2$ with $\phi \in [0, 2\pi]$: a limacon (notice that the cardioid is a particular limacon).
- $b.3 \ \gamma(t) = (\frac{(1+t)^{3/2}}{3}, \frac{(1-t)^{3/2}}{3}, \frac{t}{\sqrt{2}}), \text{ with } t \in [-1, 1]..$
- $c.1 \ \gamma(t) = (a\cosh(t)), a\sinh(t), bt), \ t \in [-5, 5], \ with \ a,b \ positive \ constants.$
- c.2 $\gamma(t) = (a(1+\cos(t)), a\sin(t), 2a\sin(t/2)), t \in [-2\pi, 2\pi]$ with a a positive constant. This is Viviani's curve: the intersection of the sphere $x^2 + y^2 + z^2 = 4a^2$ with the cylinder $(x-a)^2 + y^2 = a^2$.
- $c.3 \ \gamma(t) = (3t t^3, 3t^2, 3t + t^3), \text{ with } t \in [-2, 2].$
- $d.1 \ \gamma(t) = (\sqrt{3}t \sin t, 2\cos t, t + \sqrt{3}\sin t), \ t \in [-\pi, \pi]$
- d.2 The graph of the function $x = a \cosh(t/a)$, $t \in [-5, 5]$ with a > 0 constant: a catenary.
- $d.3 \ \gamma(t) = (a\sin(t), a\cos(t) + \log(\tan(\frac{t}{2}))), \ t \in (0, \pi). \ A \ tractrix.$

Exercise 2 Consider the unit-speed curve $\gamma(s)$ with Frenet-trihedron t, n and b, curvature $\kappa \neq 0$ and torsion τ . Show that

- $a.1 \frac{[\mathbf{n},\mathbf{n}',\mathbf{n}'']}{|\mathbf{n}'|^2} = \frac{(\frac{\kappa}{\tau})'}{(\frac{\kappa}{\tau})^2 + 1}$
- a.2 $[\mathbf{b}', \mathbf{b}'', \mathbf{b}'''] = \tau^5(\frac{\kappa}{\tau})'$. Notation: $(\frac{\kappa}{\tau})'$ is the derivative of $(\frac{\kappa}{\tau})$.
- a.3 $[\mathbf{t}', \mathbf{t}'', \mathbf{t}'''] = \kappa^5(\frac{\tau}{\kappa})'$. Notation: $(\frac{\tau}{\kappa})'$ s the derivative of $\frac{\tau}{\kappa}$.
- b.1 Show that if $\hat{\kappa}$ and $\hat{\tau}$ are the curvature and torsion of the spherical curve $\hat{\gamma}(s) = \mathbf{t}(s)$ then

$$\widehat{\kappa} = \sqrt{1 + (\frac{\tau}{\kappa})^2} \quad \widehat{\tau} = \frac{(\frac{\tau}{\kappa})'}{\kappa (1 + (\frac{\tau}{\kappa})^2)}$$

b.2 Let $\gamma: I \to \mathbb{R}^3$ be a unit-speed curve with nowhere vanishing torsion τ . Consider the curve $\overline{\gamma} = \int_{s_0}^s \mathbf{b}(s) ds$, called the adjoint curve of γ . (**b** is the binormal vector to γ). Show that if γ has constant curvature (resp. torsion), then $\overline{\gamma}$ has constant torsion (resp. curvature).

- b.3 Let $\gamma: I \to \mathbb{R}^3$ be a unit-speed curve with nowhere vanishing constant torsion τ . Calculate the curvature of $\widehat{\gamma}(s) = \frac{-\mathbf{n}}{\tau} + \int_{s_0}^{s} \mathbf{b}(s) ds$.
- **Exercise 3** Consider $X = \{(x, y, z) \in \mathbb{R}^3, x^2 x + z^3 = 0, x^3 y^2 + z^3 = 0\}$. By considering a map $F : \mathbb{R}^3 \to \mathbb{R}^2$ given by $F(x, y, z) = (F_1 = x^2 x + z^3, F_2 = x^3 y^2 + z^3)$ (notice that (0,0) is a regular value of F) show that there exists an open neighbourhood U of P(1,1,0) such that the geometric locus $C = X \cap U$ admits a regular parametrisation $\gamma : (1/2,3/2) \to \mathbb{R}^3$ with $\gamma(1) = P$. Determine the tangent line and the torsion of γ at P.
- Exercise 4 Consider the vector $\mathbf{u} = (0,0,1)$ and the plane H with equation $x_3 = 0$. Given a plane regular parametrised curve $\beta : I \to \mathbb{R}^3$ given by $\beta(t) = (x(t), y(t), 0)$ consider the parametrisation $\gamma : I \to \mathbb{R}^3$ given by $\gamma(t) = \beta(t) + t\mathbf{u}$. Show that $\gamma(t)$ is a regular parametrisation. Determine the curvature and torsion of γ at a point $P = \gamma(t)$ in terms of the curvature of β at the corresponding point $Q = \beta(t)$.
- Exercise 5 a.1 Let $\gamma(s)$ a unit-speed curve s.t. $\tau(s) \neq 0$, for any value of s. The curve $\beta(s) = \int_{s_0}^s \mathbf{b} d\sigma$ is called the adjoint curve to γ . Show that if γ has constant curvature (resp. torsion), so has β constant torsion (resp. curvature).
 - a.2 Determine the points on $\gamma(t)=(2/t,\ln(t),-t^2),\,t>0$, such that the binormal line to the curve at $\gamma(t)$ is parallel to the plane x-y+8z+2=0
 - a.3 Let $\gamma(s)$ be a unit-speed parametrised curve. Let $\mathbf{u}(s)$ be a unitary vector on the plane generated by \mathbf{n} and \mathbf{b} . Let $\sigma(s)$ be the angle between $\mathbf{u}(s)$ and $\mathbf{n}(s)$. Consider the curve $\beta(s) = \gamma(s) + \lambda(s)\mathbf{u}$.
 - Show that if $\frac{d\sigma}{ds} = -\tau$, so the straight line between $\gamma(s_0)$ and $\beta(s_0)$ is in fact the tangent line to $\beta(s)$ at $\beta(s_0)$. For which $\lambda(s)$ does it occur $\frac{d\sigma}{ds} = -\tau$?
 - b.1 Consider a unit-speed parametrised curve $\gamma:I\to\mathbb{R}^3$ with no inflexion points. Show that if $\gamma^{''},\gamma^{'''}$ and $\gamma^{(iv)}$ are linearly independent then $\frac{\kappa(s)}{\tau(s)}$ is a constant.
 - b.2 Show that the curve $\gamma(t)$ with parametrisation $(16\cos(t)/9 32\sin(t)/9 t/3, 16\cos(t)/9 + 4\sin(t)/9 + 8t/3, 28\cos(t)/9 + 16\sin(t)/9 4t/3)$ is a helix and determine its axis.
 - b.3 Let $\gamma(s)$ be a circular helix. Consider $\beta(s) = \gamma(s) + \mathbf{b}(s)$. Show that $\beta(s)$ is a helix. Notice that s is not the arc-length of $\beta(s)$
- **Exercise 6** a.1 Determine a plane curve with $\overline{\kappa} = \frac{1}{bs}$, s arc-length, b > 0 a constant. Can you see that this curve is the logarithmic spiral?
 - a.2 Determine a plane curve swith $\overline{\kappa} = -s$, s arc-length. This curve is called the clothoid.

- a.3 Determine a plane curve such that $\overline{\kappa} = \sin(s)$, s arc-length.
- **Exercise 7** b.1 Let $\mathbf{F}: I \to \mathbb{R}^3$, $I = (-\pi, \pi)$ be defined by $\mathbf{F}(t) = (\sin t, \sin t \cos t, \cos^2 t)$. Determine the unitary tangent vector \mathbf{t} to a parametrization $\gamma: I \to \mathbb{R}^3$ whose torsion function τ is constant of value 2 and whose binormal vector $\mathbf{b}(t) = \mathbf{F}(t)$. (Observe that \mathbf{b} determines κ and $|\tau|$. Is this true?).
 - b.2 Integrate the Frenet-Serret equations to show that, if the curvature and the torsion of a regular curve $\gamma(t)$ are $\kappa \neq 0$ and $\tau = 1/a$ (a a constant), then $\gamma(t) = a \int g(t) \times g'(t) dt$, where g(t) is a vectorial function satisfying that |g(t)| = 1 and $[g, g', g''] \neq 0$.
 - b.3 Using Exercise 2.a.1 show that the normal vector **n** of a unit-speed curve without inflexion points determine the curvature and torsion of the curve.

Exercise 8 Consider the family of curves defined by F(x,y) = a. We will consider that $F_y = \frac{\partial F}{\partial y} \neq 0$

- a.1 Consider the family of curves given by G(x,y) = b (again $G_y = \frac{\partial G}{\partial y} \neq 0$). Show that if the condition $\frac{\partial F}{\partial x} \frac{\partial G}{\partial x} + \frac{\partial F}{\partial y} \frac{\partial G}{\partial y} = 0$ is satisfied, then each curve in the first family is orthogonal to each curve of the second family at the intersection point.
- a.2 Give the differential equation for the family of curves formed by those curves that intersect to each curve in the family F(x,y) = a orthogonally.
- a.3 Determine the family of lines orthogonal to the circles tangent to the x_1 -axis at the origin O.

For the Exercises type b the curves are plane ones.

- b.1 Show that $\kappa = \frac{|\frac{d^2y}{dx^2}|}{(1+(\frac{dy}{dx})^2)^{3/2}}$, for a curve y = y(x).
- b.2 Show that $\kappa = \frac{|F_{xx}F_y^2 2F_{xy}F_xF_y + F_{yy}F_x^2|}{(F_x + F_y)^{3/2}}$. Give the equation for the inflexion points
- $b.3 \kappa = \frac{r^2 + 2(\frac{dr}{d\varphi})^2 r\frac{d^2r}{d\varphi^2}}{(r^2 + (\frac{dr}{d\varphi})^2)^{3/2}}, \text{ for a curve in polar form } r = r(\varphi).$

Exercise 9 Determine the cubic Bézier curve $B(t), 0 \le t \le 1$ joining $A(M_1.M_2, D_1.D_2)$ and $B(1.9, Y_1.Y_2)$ with tangent at A = B(0) making a $\frac{\pi}{4}$ -angle with the x_1 -axis and horizontal tangent at B = B(1). We know also that $B(1/2) = P(Y_1, Y_2)$. Determine the curve B(t).

Exercise 10 a) Let $\gamma:[a,b] \to \mathbb{R}^2$ be a parametrisation of a unit-speed simple closed, convex curve on the plane. Show that \mathbf{t}'' is parallel to \mathbf{t} at at least four points of the curve.

b) Consider the cardioid with parametrisation $r(\phi) = 1 - 2\sin(t)$, $t \in [0, 2\pi]$. Show that the curve has only two vertices. The condition of the curve to be convex is necessary.

Exercise 11 Consider the family of segments $[A_t, B_t] = \{(1-t)A_t + tB_t, 0 \le t \le 1\}$ of fixed length Y_2 with end points $A_t(x_1(t), 0), B_t(0, x_2(t))$ obtained by sliding the segment $[A_0(Y_2, 0), B_0(0, 0)]$. Consider the family of straight lines $\{l_t\}_{t \in [0,2\pi]}$ containing the segments above. Determine the envelope of the family of lines. Is it the envelope a regular curve? Calculate the length of the curve (you may use symmetries in the calculations) and the signed curvature at a regular point. Finally show that a rotation around the origin of angle $\pi/2$ is a symmetry of the curve.

The picture of some segments has been made with MAPLE:

>implicitplot([seq(x*cos(Pi*s/20) + y*sin(Pi*s/20) = sin(Pi*s/20)*cos(Pi*s/20), s = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9])], x = 0...1, y = 1...0);

Exercise 12 a) Show that the equations for the envelope of the **uniparametric** family of plane curves given by F(x, y, a, b) = 0, where the parameters a, b satisfy the condition $\varphi(a, b) = 0$ are

$$F(x,y,a,b)=0, \quad \varphi(a,b)=0, \quad \det(\frac{\partial (F,\varphi)}{\partial (a,b)})=0$$

 $(\frac{\partial(F,\varphi)}{\partial(a,b)}$ is the Jacobian of the function $(F(\cdot,\cdot,a,b),\varphi(a,b))$

- b) We know that the envelope of the family of straight lines ax + y + b = 0 is the circle with equation $x^2 + y^2 = c^2$, with a, b parameters and c a constant. Give the condition satisfied by a and b (the function $\varphi(a,b) = 0$).
- c) Let $\mathbf{x}(s)$, $s \in [0, l]$, be a plane simple closed curve such that its curvature satisfies $0 < \kappa(s) \le c$, with c a constant. Prove that $l \ge \frac{2\pi}{c}$.
- **d)** Let $\mathbf{x}(s)$ be a plane closed curve with rotation index I such that its curvature satisfies $0 < \kappa(s) \le c$, with c a constant. Prove that $l \ge \frac{2\pi I}{c}$, where l is the length of $\mathbf{x}(s)$.