
Hand-in Exercises TATA74 1 Fall 2025: Curves

First of all the exercises are to be solved individually: it is your examina-
tion!

The exercises to be done by each of you are parametrised by (M1−M2, D1−
D2, Y1−Y2), which are the moth, day and year of your birthday, but if someone
is born year 2000, for this course the student is born 1998. Mine is (1-2, 1-5,
6-3). Some one born March 3 1990 has coordinates (0-3, 0-3, 9-0).

How to get the exercises to be solved by you?: If one Exercise contains
exercises of different types, where the types are denoted by letters a, b, c and d
parts you must solve one exercise from each of its parts.

When one Exercise contains more than one exercise of a given type (Exercises
1, 2, 5, 6, 7 and 8) you solve the exercise of the type given by the number 1, 2
or 3 obtained as follows:

M1 +M2 +D1 +D2 + Y1 + Y2 + No. of the Exercise + l mod3

where l = 1 for an exercise type a), l = −1 for an exercise type b), and l = 0
for type c).

So I should solve exercises a.3 and b.1 in Exercise 2, and 1 and 2 in Exercise
6.

Of course you may use your favourite program to do calculations: MATLAB,
Maple, Mathematica, Alpha Wolfram, etc.

Recall that you can always calculate numerically the length of an arc using,
for instance, MATLAB. Below you find the command

Integration in MATLAB  

q = integral(fun,xmin,xmax) numerically integrates function fun from xmin to xmax using 
global adaptive quadrature and default error tolerances. 

But remember to integrate numerically we must tell MATLAB that a function is taken numerically by writing before 
th eexpression of the function “@(x)”. 

Example: 

fun = @(x)sin(x); 
q = integral(fun,0,pi/2) 

 

>implicitplot([seq(x*cos(Pi*s/20) + y*sin(Pi*s/20) = sin(Pi*s/20)*cos(Pi*s/20), s = [0, 1, 
2, 3, 4, 5, 6, 7, 8, 9])], x = 0 .. 1, y = 1 .. 0); 

 

 

Exercise 1 Calculate the curvature ,and torsion if applicable, at a generic point
of the parametrised curves as well as the length of the following arcs of curves
(for plane curves the curvature is signed):

a.1 γ(t) = (a cos(t)
(sin(t))2+1 , a

cos(t) sin(t)
(sin(t))2+1 ), with t ∈ [0, 2π]. a > 0 constant: The

lemniscata.
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a.2 γ(t) = (a t2−1
t2+1 , a

t(t2−1)
t2+1 ), with t ∈ [−2, 2]. a > 0 constant: the strophoid.

a.3 γ(t) = (at− a sin(t), a− a cos(t)), with t ∈ [0, 2π], a > 0 constant. An arc
of cycloid.

b.1 The plane curve γ(ϕ) defined by the polar equation r(ϕ) = 2a(cosϕ + 1),
ϕ ∈ [0, 2π]. Remember if (r, ϕ) are the polar coordinates of a point on
the plane, its Cartesian coordinates are (x = r cos(ϕ), y = r sin(ϕ)). This
curve is called the cardioid.

b.2 The plane curve γ(ϕ) defined by the polar equation r(ϕ) = 2a cos(3ϕ) +
2 with ϕ ∈ [0, 2π]: a limacon (notice that the cardioid is a particular
limacon).

b.3 γ(t) = ( (1+t)3/2

3 , (1−t)3/2

3 , t√
2
), with t ∈ [−1, 1]..

c.1 γ(t) = (a cosh(t)), a sinh(t), bt), t ∈ [−5, 5], with a, b positive constants.

c.2 γ(t) = (a(1 + cos(t)), a sin(t), 2a sin(t/2)), t ∈ [−2π, 2π] with a a positive
constant. This is Viviani’s curve: the intersection of the sphere x2 + y2 +
z2 = 4a2 with the cylinder (x− a)2 + y2 = a2.

c.3 γ(t) = (3t− t3, 3t2, 3t+ t3), with t ∈ [−2, 2].

d.1 γ(t) = (
√
3t− sin t, 2 cos t, t+

√
3 sin t), t ∈ [−π, π]

d.2 The graph of the function x = a cosh(t/a), t ∈ [−5, 5] with a > 0 constant:
a catenary.

d.3 γ(t) = (a sin(t), a cos(t) + log(tan( t2 ))), t ∈ (0, π). A tractrix.

Exercise 2 Consider the unit-speed curve γ(s) with Frenet-trihedron t, n and
b, curvature κ ̸= 0 and torsion τ . Show that

a.1 [n,n′,n′′]
|n′|2 =

(κ
τ )′

(κ
τ )2+1

a.2 [b′,b′′,b′′′] = τ5(κτ )
′. Notation: (κτ )

′ is the derivative of (κτ ).

a.3 [t′, t′′, t′′′] = κ5( τκ )
′. Notation: ( τκ )

′ s the derivative of τ
κ .

b.1 Show that if κ̂ and τ̂ are the curvature and torsion of the spherical curve
γ̂(s) = t(s) then

κ̂ =

√
1 + (

τ

κ
)2 τ̂ =

( τκ )
′

κ(1 + ( τκ )
2)

b.2 Let γ : I → R3 be a unit-speed curve with nowhere vanishing torsion τ .
Consider the curve γ =

∫ s

s0
b(s)ds, called the adjoint curve of γ. (b is

the binormal vector to γ). Show that if γ has constant curvature (resp.
torsion), then γ has constant torsion (resp. curvature).
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b.3 Let γ : I → R3 be a unit-speed curve with nowhere vanishing constant
torsion τ . Calculate the curvature of γ̂(s) = −n

τ +
∫ s

s0
b(s)ds.

Exercise 3 Consider X = {(x, y, z) ∈ R3, x2 − x+ z3 = 0, x3 − y2 + z3 = 0}.
By considering a map F : R3 → R2 given by F (x, y, z) = (F1 = x2−x+z3, F2 =
x3 − y2 + z3) (notice that (0, 0) is a regular value of F ) show that there exists
an open neighbourhood U of P (1, 1, 0) such that the geometric locus C = X ∩ U
admits a regular parametrisation γ : (1/2, 3/2) → R3 with γ(1) = P . Determine
the tangent line and the torsion of γ at P .

Exercise 4 Consider the vector u = (0, 0, 1) and the plane H with equation
x3 = 0. Given a plane regular parametrised curve β : I → R3 given by β(t) =
(x(t), y(t), 0) consider the parametrisation γ : I → R3 given by γ(t) = β(t)+ tu.
Show that γ(t) is a regular parametrisation. Determine the curvature and tor-
sion of γ at a point P = γ(t) in terms of the curvature of β at the corresponding
point Q = β(t).

Exercise 5 a.1 Let γ(s) a unit-speed curve s.t. τ(s) ̸= 0, for any value of s.
The curve β(s) =

∫ s

s0
bdσ is called the adjoint curve to γ. Show that if

γ has constant curvature (resp. torsion), so has β constant torsion (resp.
curvature).

a.2 Determine the points on γ(t) = (2/t, ln(t),−t2), t > 0, such that the bi-
normal line to the curve at γ(t) is parallel to the plane x− y+8z+2 = 0

a.3 Let γ(s) be a unit-speed parametrised curve. Let u(s) be a unitary vector
on the plane generated by n and b. Let σ(s) be the angle between u(s)
and n(s). Consider the curve β(s) = γ(s) + λ(s)u.

Show that if dσ
ds = −τ , so the straight line between γ(s0) and β(s0) is

in fact the tangent line to β(s) at β(s0). For which λ(s) does it occur
dσ
ds = −τ?

b.1 Consider a unit-speed parametrised curve γ : I → R3 with no inflexion

points. Show that if γ
′′
, γ

′′′
and γ(iv) are linearly independent then κ(s)

τ(s) is
a constant.

b.2 Show that the curve γ(t) with parametrisation (16 cos(t)/9− 32 sin(t)/9−
t/3, 16 cos(t)/9+4 sin(t)/9+8t/3, 28 cos(t)/9+16 sin(t)/9−4t/3) is a helix
and determine its axis.

b.3 Let γ(s) be a circular helix. Consider β(s) = γ(s) + b(s). Show that β(s)
is a helix. Notice that s is not the arc-length of β(s)

Exercise 6 a.1 Determine a plane curve with κ = 1
bs , s arc-length, b > 0 a

constant. Can you see that this curve is the logarithmic spiral?

a.2 Determine a plane curve swith κ = −s, s arc-length. This curve is called
the clothoid.
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a.3 Determine a plane curve such that κ = sin(s), s arc-length.

Exercise 7 b.1 Let F : I → R3, I = (−π, π) be defined by F(t) = (sin t, sin t cos t, cos2 t).
Determine the unitary tangent vector t to a parametrization γ : I → R3

whose torsion function τ is constant of value 2 and whose binormal vector
b(t) = F(t). (Observe that b determines κ and |τ |. Is this true?).

b.2 Integrate the Frenet-Serret equations to show that, if the curvature and the
torsion of a regular curve γ(t) are κ ̸= 0 and τ = 1/a (a a constant) ,
then γ(t) = a

∫
g(t)× g′(t)dt, where g(t) is a vectorial function satisfying

that |g(t)| = 1 and [g, g′, g′′] ̸= 0.

b.3 Using Exercise 2.a.1 show that the normal vector n of a unit-speed curve
without inflexion points determine the curvature and torsion of the curve.

Exercise 8 Consider the family of curves defined by F (x, y) = a. We will
consider that Fy = ∂F

∂y ̸= 0

a.1 Consider the family of curves given by G(x, y) = b (again Gy = ∂G
∂y ̸= 0).

Show that if the condition ∂F
∂x

∂G
∂x + ∂F

∂y
∂G
∂y = 0 is satisfied, then each curve

in the first family is orthogonal to each curve of the second family at the
intersection point.

a.2 Give the differential equation for the family of curves formed by those
curves that intersect to each curve in the family F (x, y) = a orthogonally.

a.3 Deterrmine the family of lines orthogonal to the circles tangent to the
x1-axis at the origin O.

For the Exercises type b the curves are plane ones.

b.1 Show that κ =
| d

2y

dx2 |
(1+( dy

dx )2)3/2
, for a curve y = y(x).

b.2 Show that κ =
|FxxF

2
y−2FxyFxFy+FyyF

2
x |

(Fx+Fy)3/2
. Give the equation for the inflexion

points

b.3 κ =
r2+2( dr

dφ )2−r d2r
dφ2

(r2+( dr
dφ )2)3/2

, for a curve in polar form r = r(φ).

Exercise 9 Determine the cubic Bézier curve B(t), 0 ≤ t ≤ 1 joining A(M1.M2, D1.D2)
and B(1.9, Y1.Y2) with tangent at A = B(0) making a π

4 -angle with the x1-axis
and horizontal tangent at B = B(1). We know also that B(1/2) = P (Y1, Y2).
Determine the curve B(t).

Exercise 10 a) Let γ : [a, b] → R2 be a parametrisation of a unit-speed simple
closed, convex curve on the plane. Show that t

′′
is parallel to t at at least four

points of the curve.

b) Consider the cardioid with parametrisation r(ϕ) = 1−2 sin(t), t ∈ []0, 2π.
Show that the curve has only two vertices. The condition of the curve to be
convex is necessary.
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Exercise 11 Consider the family of segments [At, Bt] = {(1 − t)At + tBt, 0 ≤
t ≤ 1} of fixed length Y2 with end points At(x1(t), 0), Bt(0, x2(t)) obtained by
sliding the segment [A0(Y2, 0), B0(0, 0)]. Consider the family of straight lines
{lt}t∈[0,2π] containing the segments above. Determine the envelope of the family
of lines. Is it the envelope a regular curve? Calculate the length of the curve
(you may use symmetries in the calculations) and the signed curvature at a
regular point. Finally show that a rotation around the origin of angle π/2 is a
symmetry of the curve.

The picture of some segments has been made with MAPLE:

Integration in MATLAB  

q = integral(fun,xmin,xmax) numerically integrates function fun from xmin to xmax using 
global adaptive quadrature and default error tolerances. 

But remember to integrate numerically we must tell MATLAB that a function is taken numerically by writing before 
th eexpression of the function “@(x)”. 

Example: 

fun = @(x)sin(x); 
q = integral(fun,0,pi/2) 

 

>implicitplot([seq(x*cos(Pi*s/20) + y*sin(Pi*s/20) = sin(Pi*s/20)*cos(Pi*s/20), s = [0, 1, 
2, 3, 4, 5, 6, 7, 8, 9])], x = 0 .. 1, y = 1 .. 0); 

 

 Exercise 12 a) Show that the equations for the envelope of the uniparametric
family of plane curves given by F (x, y, a, b) = 0, where the parameters a, b satisfy
the condition φ(a, b) = 0 are

F (x, y, a, b) = 0, φ(a, b) = 0, det(
∂(F,φ)

∂(a, b)
) = 0

(∂(F,φ)
∂(a,b) is the Jacobian of the function (F (·, ·, a, b), φ(a, b)))
b) We know that the envelope of the family of straight lines ax+ y + b = 0

is the circle with equation x2 + y2 = c2, with a, b parameters and c a constant.
Give the condition satisfied by a and b (the function φ(a, b) = 0).

c) Let x(s), s ∈ [0, l], be a plane simple closed curve such that its curvature
satisfies 0 < κ(s) ≤ c, with c a constant. Prove that l ≥ 2π

c .
d) Let x(s) be a plane closed curve with rotation index I such that its cur-

vature satisfies 0 < κ(s) ≤ c, with c a constant. Prove that l ≥ 2πI
c , where l is

the length of x(s).

5


