Linkopings universitet Kurskod: TATAS2
Matematiska institutionen Modul: TEN1
Algebra, geometri och diskret matematik

Tentamen i TATAS82 Diskret matematik
20YY-MM-DD kil X.OOf(X—l—5).OO

Inga hjalpmedel. Ej rdknedosa.

Pa del A (uppgift 1-3) ska endast svar ges. De ska limnas pa ett gemensamt papper. Varje
uppgift pa del A ger hégst 1 podng. Uppgifterna pa del B (uppgift 4-8) ger higst 3 poéng per uppgift.
Till dessa kréavs fullstdndiga 16sningar.

Godként pa alla tre kontrollskrivningar KTR1-3 ar 2024 adderar 1 bonuspoéng till totalpodngen.
Markera detta genom att skriva "G” i rutan for uppgift 9 pa skrivningsomslaget.

For betyg 3/4/5 kréivs 9/12/15 poéng totalt.

Losningsforslag finns efter skrivtidens slut pa kursens hemsida.

DEL A

1. Hur manga injektiva funktioner f : {1,2,3,4,5} — {1,2,3,4,5,6,7} uppfyller att f(5)
ar udda?

2. Hur manga icke-reflexiva relationer pa {1,2,3,4} finns?

3. Finn tva icke-isomorfa grafer som har samma sekvens av gradtal pa hornen.

DEL B
4. Vilket dr det minsta = € N som uppfyller bade x =4 (mod 13) och z =3 (mod 17).

5. (a) Visa att bland 17 heltal finns det tva vars differens &r delbar med 16.
(b) Antag att n dr ett jaimnt heltal. Visa att n3 + 6n2 + 8n dr delbart med 16.
(c) Hur manga element i {1,2,...,4800} dr delbara med 16 men inte med 247

6. Betrakta rekursionen ant2 = 3ap4+1 — 2a, — 6n2 + 6n + 10, n € N.

(a) Visa med induktion att den 16sning som uppfyller ag = 0 och a; = 2 #r a,, = 2n3.

(b) Finn alla 16sningar.

7. (a) Vad &r definitionen av att en poméngd &r ett lattice?

(b) Antag att P &r en icketom, &ndlig poméngd i vilken varje par av element har en
storsta undre begrinsning. Visa att P &r ett lattice om och endast om P har ett
maximum (= storsta element).

8. Lat n > 2 vara ett heltal. Hur manga (n — 2)-reguljira delgrafer har den kompletta
grafen K,,?
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Linkopings universitet Course code: TATAS2
Matematiska institutionen Module: TEN1
Algebra, geometri och diskret matematik

Examination in TATAS82 Discrete mathematics
20YY-MM-DD at X.OOf(X—l—S).OO

No aid. No calculator.

In part A (problems 1-3), only answers shall be given. They are to be handed in on a
single sheet of paper. Each problem in part A is worth 1 point. The problems in part B (problems
4-8) are worth 3 points each. For them, complete solutions are required.

Having passed all three digital tests KTRI1-3 in 2024 adds 1 bonus point to the total score.
Indicate this by typing “G” in the box representing problem 9 on the exam cover.

For grade 3/4/5 is required a total of 9/12/15 points.

After the exam, solutions are available from the course webpage.

PART A

1. How many injective functions f : {1,2,3,4,5} — {1,2,3,4,5,6,7} satisfy that f(5) is
odd?

2. How many non-reflexive relations on {1,2, 3,4} exist?

3. Find two non-isomorphic graphs with the same vertex degree sequence.

PART B
4. Which is the smallest € N that satisfies both x =4 (mod 13) and x = 3 (mod 17)?
5. (a) Show that among 17 integers, there are two whose difference is divisible by 16.

(b) Assume that n is an even integer. Show that n® + 6n2 4 8n is divisible by 16.
(c) How many elements of {1,2,...,4800} are divisible by 16 but not by 247

6. Consider the recurrence an42 = 3an+1 — 2an — 6n% 4+ 6n+ 10, n € N.
(a) Use induction to show that the solution which satisfies a9 = 0 and a; = 2 is
a, = 2n3.

(b) Find all solutions.

7. (a) What is the definition of a poset being a lattice?

(b) Suppose P is a nonempty, finite poset in which every pair of elements has a greatest
lower bound. Show that P is a lattice if and only if P has a maximum (= greatest
element).

8. Let n > 2 be an integer. How many (n — 2)-regular subgraphs does the complete graph
K, have?
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Solutions to practice exam 2

. Construct such a function by choosing f(5) among 4 possibilities, then f(4) among 6,
f(3) among 5, f(2) among 4 and, finally, f(1) among 3 possibilities.

Answer: 4-6-5-4-3 = 1440.

. Let X = {1,2,3,4}. Since X x X has 16 elements, there are 2'® relations on X. Such
a relation R is reflexive if and only if R D {(1,1),(2,2),(3,3),(4,4)}. Hence there are
2164 reflexive relations. Answer: 216 — 212 (= 61440).

. There are many possibilities. One is to let the first graph be a 6-cycle and the second
consist of two disjoint 3-cycles. Both have vertex degree sequence 2,2,2,2,2, 2.

. Since —3-17+4-13 = 1 (which can be discovered using Euclid’s algorithm if one does
not happen to observe it), —3 is the inverse of 17 modulo 13 and 4 is the inverse of 13
modulo 17. By the Chinese remainder theorem, the simultaneous solutions to the two
congruences are ¢ =4-(—3)-17+3-4-13+4 13- 17k = —48 4+ 221k, k € Z. The smallest
nonnegative solution is given by k = 1. Answer: z = 173.

(a) Since every integer is congruent modulo 16 to a nonnegative integer strictly smaller
than 16, the pigeonhole principle guarantees that two of the integers are congruent
modulo 16. Their difference is then divisible by 16. O

(b) Factor the polynomial to find n® + 6n? + 8n = n(n + 2)(n + 4). This is a product
of three consecutive even integers. They are all divisible by 2, and at least one of
them is divisible by 4. Hence, their product is divisible by 2-2 -4 = 16. O

(c) The elements that are divisible by 16 are those of the form 16k, k € {1,...,300}.
Since lem(16,24) = 48, the elements that are both divisible by 16 and by 24 are
those of the form 48¢, ¢ € {1,...,100}. Answer: 200.

(a) The base cases n = 0 and n = 1 hold since 2:0° = 0 = ag and 2-13 = 2 = a;. Choose
n € N and assume in order to use induction that a; = 2k3 for all 0 < k < n + 1.
We must show that a, 2 = 2(n + 2)3. By the induction assumption,

o =3-2(n+1)% —2-2n% — 6n® 4 6n 4 10
= 6n° + 18n% + 18n + 6 — 4n> — 6n* + 6n + 10
=2n% +12n% + 24n + 16
=2(n+2)%,

as desired. n

(b) The characteristic polynomial is 22 —3z+2 = (z—1)(x—2). Hence, the homogeneous
part of the solution is a™ = A-1" 4+ B-2" = A+ B - 2", for arbitrary A and B.
By (a), a particular solution is 2n3.  Answer: a, = A+ B-2"+2n® A, B € R.

(a) A poset P is a lattice if every pair of elements a,b € P has a greatest lower bound
and a least upper bound.

(b) First, assume P is a lattice. Since P is finite and nonempty, it has at least one
maximal element. If it has more than one, two such elements cannot have a least
upper bound, which contradicts that P is a lattice. This shows the “only if” part.
For the “if” direction, assume that P has a maximum, 1. In order to show that P
is a lattice, it remains to verify that two arbitrary elements a,b € P have a least



upper bound. Since 1 > a, b, they have some upper bound. Let 2 and y be arbitrary
minimal elements among all upper bounds of a and b. Then x and y have a greatest
lower bound z which, by definition of greatest lower bounds, satisfies a,b < z. Since
x and y were minimal and z < z,y it follows that x = y = z, so this element is the
least upper bound of a and b. ]

8. An (n — 2)-regular simple graph must have at least n — 1 vertices. Moreover, if it has
exactly n — 1 vertices, it is isomorphic to the complete graph K,,_1. The complete graph
K, has n different subgraphs that are isomorphic to K,,_1 (construct one by deleting an
arbitrary vertex (n choices) and all its incident edges from K,,).

It remains to count all (n — 2)-regular subgraphs of K, that contain all n vertices.
Such a subgraph G is precisely the complement G = M of a perfect matching M,
i.e. a graph in which every vertex has exactly one neighbour. A perfect matching is
constructed by partitioning the vertex set into pairs, a pair consisting of two vertices,
where each is the other’s unique neighbour. If n is odd, no such partition exists. If n is
even, we construct one by first choosing the neighbour of 1 (n — 1 possibilities), then
the neighbour of the smallest remaining vertex (n — 3 possibilities), and so on. In total
there are (n — 1)(n — 3)(n —5) - --3 - 1 such partitions.

Answer: n, if nisodd; n+ (n —1)(n — 3)---3, if n is even.



