Tentamen i TATA82 Diskret matematik

2024-06-01 kl 14.00-19.00

Inga hjälpmedel. Ej räknedosa.

På del A (uppgift 1–3) ska endast svar ges. De ska lämnas på ett gemensamt papper. Varje uppgift på del A ger högst 1 poäng. Uppgifterna på del B (uppgift 4–8) ger högst 3 poäng per uppgift. Till dessa krävs fullständiga lösningar.

Godkänt på alla tre kontrollskrivningar KTR1–3 år 2024 adderar 1 bonuspoäng till totalpoängen. Markera detta genom att skriva "G" i rutan för uppgift 9 på skrivningsomslaget.

För betyg 3/4/5 krävs 9/12/15 poäng totalt.

Lösningsförslag finns efter skrivtidens slut på kursens hemsida.

DEL A

- 1. Hur många "ord" kan bildas av alla bokstäver i ordet CRUYFF om de båda F:en inte får stå intill varandra?
- 2. Hur många relationer på $\{1, 2, 3, 4, 5\}$ är både reflexiva och symmetriska?
- 3. Rita en graf G som har kromatiskt polynom $P(G, x) = x(x-1)^2(x-2)(x-3)$.

DEL B

- 4. Betrakta den diofantiska ekvationen 96x + 78y = c, där c är en konstant.
 - (a) Vilket är det minsta $c \in \mathbb{Z}_+$ för vilket ekvationen har heltalslösningar?
 - (b) Bestäm alla heltalslösningar då c = -30.
- 5. Fyra personer ska fördela 18 identiska objekt mellan sig. På hur många sätt kan det göras om...
 - (a) ...varje person ska få minst tre objekt?
 - (b) ...varje person ska få minst ett och högst sju objekt?
- 6. (a) Låt $a, b \in \mathbb{Z}, n \in \mathbb{Z}_+$. Vad är definitionen av att a är en *invers* till b modulo n?
 - (b) Visa att 23^{35} är en invers till 23 modulo 37.
 - (c) Hur många positiva delare till $2^3 \cdot 3^4 \cdot 7^5 \cdot 13^6$ har inverser modulo 52?
- 7. Definiera a_n för $n \in \mathbb{N}$ genom rekursionen $a_n = 2a_{n-1} + a_{n-2} + 5a_{n-3}$ om $n \ge 3$ och begynnelsevärdena $a_0 = 1, a_1 = 2, a_2 = 8$. Visa att $2^n \le a_n \le 3^n$ för alla $n \in \mathbb{N}$.
- 8. Antag att G är en (enkel) planär graf i vilken varje hörn har gradtal minst 4. Visa att G innehåller minst en 3-cykel (= delgraf isomorf med K_3).

(ENGLISH VERSION ON OPPOSITE PAGE)

Examination in TATA82 Discrete mathematics 2024-06-01 at 14.00–19.00

No aid. No calculator.

In part A (problems 1–3), only answers shall be given. They are to be handed in on a single sheet of paper. Each problem in part A is worth 1 point. The problems in part B (problems 4-8) are worth 3 points each. For them, complete solutions are required.

Having passed all three digital tests KTR1–3 in 2024 adds 1 bonus point to the total score. Indicate this by typing "G" in the box representing problem 9 on the exam cover.

For grade 3/4/5 is required a total of 9/12/15 points.

After the exam, solutions are available from the course webpage.

PART A

- 1. How many "words" can be formed using all letters of the word CRUYFF if the two F's are not allowed to be adjacent?
- 2. How many relations on $\{1, 2, 3, 4, 5\}$ are both reflexive and symmetric?
- 3. Draw a graph G whose chromatic polynomial is $P(G, x) = x(x-1)^2(x-2)(x-3)$.

PART B

- 4. Consider the diophantine equation 96x + 78y = c, where c is a constant.
 - (a) Which is the smallest $c \in \mathbb{Z}_+$ for which the equation has integer solutions?
 - (b) Find all integer solutions when c = -30.
- 5. Four people are to distribute 18 identical objects among themselves. In how many ways can it be done if...
 - (a) ...each person must receive at least three objects?
 - (b) ...each person must receive at least one and at most seven objects?
- 6. (a) Let $a, b \in \mathbb{Z}, n \in \mathbb{Z}_+$. What is the definition of a being an *inverse* of b modulo n?
 - (b) Show that 23^{35} is an inverse of 23 modulo 37.
 - (c) How many positive divisors of $2^3 \cdot 3^4 \cdot 7^5 \cdot 13^6$ have inverses modulo 52?
- 7. Define a_n for $n \in \mathbb{N}$ by the recurrence $a_n = 2a_{n-1} + a_{n-2} + 5a_{n-3}$ if $n \ge 3$ and the initial values $a_0 = 1$, $a_1 = 2$, $a_2 = 8$. Show that $2^n \le a_n \le 3^n$ for all $n \in \mathbb{N}$.
- 8. Suppose G is a (simple) planar graph in which every vertex has degree at least 4. Show that G contains at least one 3-cycle (= subgraph isomorphic to K_3).

(SVENSK VERSION PÅ OMSTÅENDE SIDA)

Solutions

- 1. The number of "words" altogether is the multinomial coefficient $\binom{6}{2,1,1,1,1} = 3 \cdot 5!$. The words that contain FF can be thought of as the permutations of the five-letter alphabet $\{C, R, U, Y, FF\}$. There are 5! of those. **Answer:** $(3-1) \cdot 5! = 240$.
- 2. Let $X = \{1, 2, 3, 4, 5\}$. A relation $\mathcal{R} \subseteq X \times X$ is reflexive if and only if $(i, i) \in \mathcal{R}$ for all $i \in X$. It is symmetric if and only if it either contains both of (i, j) and (j, i) or else neither of them, for all $i, j \in X$, $i \neq j$. There are $\binom{5}{2} = 10$ pairs of such i and j. Hence, there are $2^{10} = 1024$ different reflexive and symmetric relations on X. Answer: 1024.
- 3. A graph obtained by adding one edge connecting one vertex of the complete graph K_4 to a fifth vertex has the desired chromatic polynomial. Indeed, we may construct a k-colouring of it by first colouring the vertices of K_4 using different colours in k(k-1)(k-2)(k-3) ways, and finally colouring the fifth vertex in any colour except that of its neighbour: (k-1) choices. **Answer:**

- 4. (a) The equation has integer solutions if and only if gcd(96, 78) divides c. The smallest positive such c is $gcd(96, 78) = gcd(3 \cdot 2^5, 2 \cdot 3 \cdot 13) = 2 \cdot 3 = 6$. Answer: c = 6.
 - (b) Divide by gcd(96, 78) = 6 to obtain 16x+13y = -5. Since $16 \cdot (-4)+13 \cdot 5 = 1$, which can be found using Euclid if necessary, $x = (-4) \cdot (-5) = 20$, $y = 5 \cdot (-5) = -25$ is one solution. Since gcd(16, 13) = 1, this means that all solutions are given by $x = 20 + 13\ell$, $y = -25 16\ell$, $\ell \in \mathbb{Z}$. Using $k = \ell + 2$ looks a little nicer.

Answer: $x = -6 + 13k, y = 7 - 16k, k \in \mathbb{Z}$.

5. First, let us observe that the number of nonnegative integer solutions (N-solutions, for brevity) to $x_1 + x_2 + x_3 + x_4 = k$ is $\binom{k+3}{3}$ for any constant $k \in \mathbb{N}$, because such a solution can be represented as a sequence of k stars and 4 - 1 = 3 bars. Denote this observation by (*).

Now to the problem. Say that person number *i* receives x_i objects. Then we want to count \mathbb{N} -solutions to the equation $x_1 + x_2 + x_3 + x_4 = 18$ subject to various extra restrictions on the variables:

- (a) Here, $x_i \ge 3$ for all *i*. Setting $y_i = x_i 3$, we look for the number of N-solutions to $y_1 + y_2 + y_3 + y_4 = 6$, which by (*) is $\binom{6+3}{3} = \frac{9\cdot 8\cdot 7}{3\cdot 2} = 3\cdot 4\cdot 7 = 84$. Answer: 84.
- (b) Now, $1 \le x_i \le 7$ for all *i*. With $y_i = x_i 1$, this means that we want to count those of the $\binom{14+3}{3}$ N-solutions to $y_1 + y_2 + y_3 + y_4 = 14$ that satisfy $y_i \le 6$ for all *i*. Let A_i be the set of N-solutions in which y_i violates this condition, i.e. in which $y_i \ge 7$. By symmetry, $|A_1| = |A_2| = |A_3| = |A_4|$. Setting $z_1 = y_1 7$, A_1 is the set of N-solutions to $z_1 + y_2 + y_3 + y_4 = 7$. By (*), there are $\binom{7+3}{3}$ of those. Similarly, all intersections $A_i \cap A_j$, $i \ne j$, have the same cardinality. More precisely,

 $|A_i \cap A_j| = 1$ if $i \neq j$ since if $y_i \geq 7$, $y_j \geq 7$ they must both be equal to 7 and the other two variables vanish since their sum is 14. This also implies that all intersections of more than two of the A_i are empty.

The principle of inclusion-exclusion now shows that the number of \mathbb{N} -solutions that

do not violate any of the conditions is

$$\binom{17}{3} - 4|A_1| + \binom{4}{2}|A_1 \cap A_2| = \binom{17}{3} - 4 \cdot \binom{10}{3} + 6 \cdot 1$$

= $\frac{17 \cdot 16 \cdot 15}{3 \cdot 2} - \frac{4 \cdot 10 \cdot 9 \cdot 8}{3 \cdot 2} + 6$
= $17 \cdot 40 - 40 \cdot 12 + 6$
= $40 \cdot (17 - 12) + 6$
= $206.$

Answer: 206.

- 6. (a) That $ab \equiv 1 \pmod{n}$.
 - (b) Since 37 is a prime and $37 \nmid 23$, Fermat implies $23^{35} \cdot 23 = 23^{36} \equiv 1 \pmod{37}$. \Box
 - (c) An integer d has an inverse modulo $52 = 2^2 \cdot 13$ if and only if gcd(d, 52) = 1. The positive divisors d of $2^3 \cdot 3^4 \cdot 7^5 \cdot 13^6$ that satisfy $gcd(d, 2^2 \cdot 13) = 1$ are those that have the form $d = 3^{\alpha} \cdot 7^{\beta}$ for $\alpha \in \{0, 1, 2, 3, 4\}, \beta \in \{0, 1, 2, 3, 4, 5\}$. There are $5 \cdot 6$ such numbers. Answer: 30.
- 7. Let us use (strong) induction on n. The base cases $n \in \{0, 1, 2\}$ hold since $2^0 \le 1 \le 3^0$, $2^1 \le 2 \le 3^1$, and $2^2 \le 8 \le 3^2$. For the induction step, fix $n \ge 3$ and assume that $2^k \le a_k \le 3^k$ for all $0 \le k < n$. We shall prove that $2^n \le a_n \le 3^n$ by applying the assumption for k = n 1, k = n 2, and k = n 3. First, look at the lower bound:

$$a_n = 2a_{n-1} + a_{n-2} + 5a_{n-3}$$

$$\geq 2 \cdot 2^{n-1} + 2^{n-2} + 5 \cdot 2^{n-3}$$

$$\geq 2 \cdot 2^{n-1}$$

$$= 2^n,$$

as desired. Now for the upper bound:

$$a_n = 2a_{n-1} + a_{n-2} + 5a_{n-3}$$

$$\leq 2 \cdot 3^{n-1} + 3^{n-2} + 5 \cdot 3^{n-3}$$

$$= 3^{n-3}(18 + 3 + 5)$$

$$\leq 3^{n-3} \cdot 27$$

$$= 3^n,$$

concluding the proof.

8. Let c be the number of connected components, v the number of vertices, e the number of edges, and f the number of faces (regions) of a plane embedding of G. Suppose, in order to obtain a contradiction, that G does not contain a 3-cycle. Then, every face of the embedding is incident to at least 4 edges. Hence, the number of edge-face incidences is at least 4f. On the other hand, since every edge is incident to at most 2 faces, the number of such incidences is at most 2e. Thus, $4f \leq 2e$. Finally, by the handshake lemma, $4v \leq 2e$. Combining these two inequalities with Euler's formula yields

$$1 + c = v - e + f \le \frac{2e}{4} - e + \frac{2e}{4} = 0,$$

which is absurd. This is the desired contradiction.