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Problems

P.1 Set notation

P.1.1 Define A = {{1, 2}, 2,♥} and B = {1, 2}. Compute
(a) A∪B (b) A∪ {B} (c) A×B (d) A× {B} (e) A \B (f) A \ {B}.

P.1.2 Define A and B as in P.1.1. Determine whether the following assertions are true or false:
(a) 1 ∈ A (b) 1 ∈ B (c) {1, 2} ∈ A (d) {1, 2} ∈ B (e) ∅ ∈ B.

P.1.3 Define A and B as in P.1.1. Determine whether the following assertions are true or false:
(a) B ⊆ A (b) A ⊆ B (c) {1, 2} ⊆ A (d) {1, 2} ⊆ B (e) ∅ ⊆ A.

P.1.4 Let A and B be as in P.1.1. Compute the power sets P(A), P(B), P(A ∩ B), and
P(A ∩ {B}).

P.1.5 Write down a list of all elements of the given set:

(a) {m ∈ Z : |m| < 3},

(b) {(x, y) ∈ N2 : y = 7− 3x},

(c) {(p, q) ∈ Z+ × Z : pq = −8}.

P.2 Induction and recurrence

P.2.1 Show that 1 + 3 + · · ·+ (2n+ 1) = (n+ 1)2 for all n ∈ N by induction on n.

P.2.2 Show that

n∑
j=0

j2 =
n(n+ 1)(2n+ 1)

6
for all n ∈ N by induction on n.

P.2.3 Use induction on n to prove the Bernoulli inequality which states that (1 +x)n ≥ 1 +nx
for all real x ≥ −1 and all n ∈ Z+.

P.2.4 Prove that 3n > 2n2 + 8 for all integers n ≥ 3 by induction on n.
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P.2.5 “3’s and 7’s” is a listenable song by Queens of the Stone Age. Prove that every integer
strictly larger than 11 can be written as a sum of 3’s and 7’s.

[hint] [walkthrough]

P.2.6 One cuts the plane into regions by drawing a finite number of straight lines. Two regions
are adjacent if they are separated by exactly one line. Prove, using induction on the number of
lines, that it is possible to assign to each region either the colour black or the colour white so
that no two adjacent regions receive the same colour.

[hint] [spoiler]

P.2.7 One cuts the plane into regions by drawing a finite number of straight lines. Use induction

on n to prove that the number of regions is at most
n(n+ 1)

2
+ 1, where n is the number of

lines.
[hint] [spoiler] [walkthrough]

P.2.8 You have 3n marbles that look identical. One of them, however, is fake and slightly
lighter than the others. Prove that you can find the fake marble using at most n weighings on
a balance.

[hint]

P.2.9 Let an be the number of subsets of {1, 2, . . . , n} that do not contain two successive
integers. Prove that an = an−1 + an−2 for n ≥ 3. What are the starting values a1 and a2?

[hint] [walkthrough]

P.2.10 Express the numbers an defined in P.2.9 in terms of the Fibonacci numbers Fn (denoted
fn in Rosen’s book).

P.2.11 Let a0 = 0 and an =
√

2an−1 + an−1 +
1

2
if n ∈ Z+. Compute an for a few values of n.

Then, guess a formula and prove your guess using induction.

P.2.12 Define an for n ∈ N by the recurrence an = 6an−1 − 9an−2 + 4n− 12 if n ≥ 2 and the
initial values a0 = 2, a1 = 4. Use induction to show that an = (2− n)3n + n for all n ∈ N.

P.2.13* Define dn for n ∈ N by the recurrence dn = (n − 1)(dn−1 + dn−2) if n ≥ 2 and the

initial values d0 = 1, d1 = 0. Use induction to show that dn = n!

n∑
k=0

(−1)k

k!
for all n ∈ N.

P.2.14 Solve the recurrence an+2 = 4(an+1 − an), n ∈ N.

P.2.15 Solve the initial value problem a0 = 4, a1 = 1, a2 = 2, an+3 = an+2 + an+1 − an,
n ∈ N.

P.2.16 Let an denote the number of ways to write n as a sum where every term is 2 or 4, and
the order of the terms matters. (For example, a6 = 3 since 6 = 2 + 2 + 2 = 2 + 4 = 4 + 2.) Find
a formula for an, n ∈ N, in terms of the Fibonacci numbers Fn.

[hint]
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P.2.17 How many “words” of length n ∈ N can be constructed using only the letters A, B, and
C, if an A is never allowed to be adjacent to another A?

[hint] [spoiler]

P.2.18 Let an =

n∑
j=0

j2 for n ∈ N. Find a recurrence relation for an and solve it using the

methods you have learnt for solving such relations, thereby reproving the formula from P.2.2.
[walkthrough]

P.2.19 Solve the recurrence an+1 = 3an + 3n + n, n ∈ N.

P.2.20 Solve the initial value problem a0 = a1 = 0, an+2 = an+1 + 2an + 2n, n ∈ N.

P.3 Combinatorics

P.3.1 A traditional Swedish car license plate has three letters followed by three digits, such
as ABC123. The possible combinations were running out, and in 2019 we started using a new
standard in which the last symbol is a letter instead of a digit, such as BAB22D. In both
standards, there are 23 letters allowed (I, Q, V, Å, Ä, and Ö are not), but the last letter in
the new standard is not allowed to be O (which is too similar to the digit 0). How many
additional license plates became possible by introducing the new standard? How many were
possible before?1

P.3.2 How many traditional license plates (see P.3.1) contain no symbol more than once?

P.3.3 In a tournament, m teams participate. Every team plays every other team once. How
many games are played?

P.3.4 Eight people form a single queue at the store. In how many ways can they do it?

P.3.5 Eight people split into two non-empty queues to different counters at the store. In how
many ways can they do it?

[spoiler]

P.3.6 Eight people split into two queues of equal size to different counters at the store. In how
many ways can they do it?

P.3.7 At a dinner, m women and m men are to be seated around a circular table in such a way
that men and women alternate. In how many ways can they be seated? (Two arrangements
that differ only by a rotation of the table are considered to be equal.)

P.3.8 How many four-letter “words” can be formed by using letters from HIGHLIGHT?
[hint]

1In reality, not all combinations are allowed. One example is LSD111. There are worse examples. Ignore
these restrictions.



4

P.3.9 In a two-person game of five-card poker (52-card deck, no wild cards), you are dealt four
of a kind: four jacks and the ace of spades. What is the probability that your opponent was
dealt a better hand?2

[hint]

P.3.10 How many surjective functions f : {1, 2, . . . , 8} → {1, 2, . . . , 7} exist?
[walkthrough]

P.3.11* How many surjective functions f : {1, 2, . . . , n+ 2} → {1, 2, . . . , n} exist?
[hint]

P.3.12 Use the binomial theorem to prove that 5n =

n∑
k=0

(
n

k

)
4k for all n ∈ N.

P.3.13 Prove that 5n =

n∑
k=0

(
n

k

)
4k for all n ∈ N by counting, in two different ways, the number

of ways to colour n objects using at most five colours.

P.3.14 Use the multinomial theorem to prove that 3n =

n∑
k=0

n−k∑
m=0

(
n

k,m, n−m− k

)
holds for

all n ∈ N. Can you also give a combinatorial proof, by counting something in two different
ways?

[hint]

P.3.15 How many “words” can be formed by using all letters from HIGHLIGHT?

P.3.16 How many “words” can be formed by using all letters from HIGHLIGHT if it is forbid-
den to have two adjacent “H”?

P.3.17 Fifteen different (but equally entertaining) toys are distributed fairly among five chil-
dren. In how many ways can it be done?

P.3.18 How many solutions to x1 + x2 + x3 + x4 = 14 satisfy xi ∈ N for all i?

P.3.19 How many solutions to x1 + x2 + x3 + x4 ≤ 14 satisfy xi ∈ N for all i?
[spoiler]

P.3.20 In how many ways can 20 identical objects be distributed into four different boxes in
such a way that no box remains empty and at least three objects are placed in box number
two?

P.3.21 How many 5-element subsets of {1, 2, . . . , n}, n ≥ 5, contain no pair of consecutive
elements?

[hint] [walkthrough]

2The only hands that beat you are a better four of a kind, or a straight flush. If you wonder what these words
mean, ask your teacher, your friend, or your favourite search engine.
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P.3.22 How many increasing3 surjective functions f : {1, 2, . . . , n} → {1, 2, 3, 4, 5} exist?

P.3.23* Prove that there are exactly (k + 1)n different k-tuples (S1, S2, . . . , Sk) of sets that
satisfy S1 ⊆ S2 ⊆ · · · ⊆ Sk ⊆ {1, 2, . . . , n}.

[hint] [walkthrough]

P.3.24 In a tournament, at least two teams participate. Every team plays every other team
once. Prove that at any given time, there are two teams that have played the same number of
games.

P.3.25 Prove that if 451 different three-digit numbers are selected, there are two among them
that sum to 1099.

[spoiler]

P.3.26 Show that among seven real numbers we can always find two, x1 and x2, such that

0 ≤ arctanx1 − arctanx2 <
π

6
.

[spoiler] [walkthrough]

P.3.27 In how many permutations of {1, 2, . . . , n} is 1 not adjacent to 2?

P.3.28 Use inclusion-exclusion to compute the number of permutations of {1, 2, . . . , n} in which

1 is neither adjacent to 2 nor to 3.4

P.3.29 There were 80 students enrolled in the Indiscreet mathematics course. The examination
was divided into three exams: TEN1, TEN2, and TEN3. In order to pass the course, one needed
to pass all three exams. A total of 59 students passed TEN1, 48 passed TEN2, and 60 passed
TEN3. Moreover, 40 passed both TEN1 and TEN2, 50 passed both TEN1 and TEN3, and 38
passed both TEN2 and TEN3. Six students failed every exam. How many passed the course?

P.3.30 How many permutations of the 26-letter alphabet {A,B, . . . ,Z} do not contain any of
the substrings BOWL, GARBO, or OWLET?

[hint]

P.3.31 How many positive integers N ≤ 6300 satisfy that at least one of
N

7
,
N

9
, and

N

10
is an

integer?

P.3.32 How many solutions to x1 + x2 + x3 + x4 ≤ 14 satisfy xi ∈ N and xi ≤ 5 for all i?
[walkthrough]

3Recall that f is increasing if a ≤ b⇒ f(a) ≤ f(b).
4Once you see the (simplified) result, it looks strikingly simple. Can you find a direct combinatorial proof?

(Alternatively, if you did see a direct proof immediately, you should now also prove it using inclusion-exclusion.)
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P.3.33* A permutation of {1, 2, . . . , n} is well-mixed if k is never immediately followed by k+1
for any k ∈ {1, 2, . . . , n− 1}. Prove that the number of well-mixed permutations of {1, 2, . . . , n}

is (n− 1)!

n−1∑
k=0

(−1)k
n− k
k!

.

[hint]

P.4 Number theory

P.4.1 List all divisors of 45.

P.4.2 List all primes p < 50.

P.4.3 Prove that 6|(n3 − n) for every n ∈ Z.

P.4.4 Prove that if p is a prime and p+ 1 is a square, then p = 3.

P.4.5 Use prime factorization to compute gcd(693, 990) and lcm(693, 990).

P.4.6 Suppose n = pk1
1 p

k2
2 · · · pkm

m , where the pi are pairwise distinct primes and the ki are
positive integers. How many divisors does n have? How many are positive?

P.4.7 How many positive integers N ≤ 2000 satisfy that at least one of
N

6
,
N

8
, and

N

15
is an

integer?
[walkthrough]

P.4.8 Use Euclid’s algorithm to compute gcd(444, 210).

P.4.9 Show that gcd(3n2 + n− 7, n2 − 2) = 1 for all n ∈ N.
[hint] [walkthrough]

P.4.10 Find α, β ∈ Z such that 444α+ 210β = gcd(444, 210).

P.4.11 Solve the diophantine equation 210x+ 444y = −18.

P.4.12 Solve the diophantine equation 210x+ 444y = −19.

P.4.13 Find all integer solutions to 51x+ 14y = 2 that satisfy x ≤ 10 and y ≤ 10.

P.4.14 Solve the diophantine equation 10x+ 7y + 14z = 13.

P.4.15 Solve the diophantine equation x2 − 4y2 = 13.
[hint] [spoiler]
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P.5 Relations and posets

P.5.1 Consider the relation R = {(1, 1), (1, 2), (1, 3), (2, 2), (3, 1), (3, 3), (4, 3), (4, 4)} on the set
{1,2,3,4}. Is R (i) reflexive? (ii) symmetric? (iii) antisymmetric? (iv) transitive?

P.5.2 Consider the relationR = {(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (3, 3), (4, 4)} on the set {1,2,3,4}.
Is R (i) reflexive? (ii) symmetric? (iii) antisymmetric? (iv) transitive?

P.5.3 How many relations on {a, b, c} are (i) reflexive? (ii) symmetric? (iii) antisymmetric?

P.5.4 Let ∼ mean “has the same colour as”. Prove that ∼ is an equivalence relation on the
set of your (single coloured) socks. What are the equivalence classes?

P.5.5 Define a relation ∼ on C by declaring x ∼ y if |x| = |y|. Show that ∼ is an equivalence
relation and describe the equivalence classes.

P.5.6 Let X = {1, 2, . . . , 9} and denote by P(X) the set of all subsets of X. Define a relation
R on P(X) by taking SRT to mean that |S| = |T |. Show that R is an equivalence relation.
Describe the equivalence classes. How many sets belong to the equivalence class [{1, 2, 3}]?

P.5.7 Let x ./ y mean that xy is a square. (For example, 8 ./ 18 since 8·18 = 144 = 122.) Show
that ./ is an equivalence relation on Z+. List a few of the smallest elements in the equivalence
class [3].

[walkthrough]

P.5.8 Show that ./ (as described in P.5.7) is not an equivalence relation on N.

P.5.9 Let ` be a line in R4 which contains the origin. Define a relation _ on R4 by taking
u _ v to mean that u− v ∈ `. Show that _ is an equivalence relation. Can you describe the
equivalence classes?

P.5.10 The following “proof” that a symmetric and transitive relation is necessarily reflexive
is incorrect. Find the flaw! “Proof”: Suppose R is symmetric and transitive on the set X. Pick
x ∈ X. We want to show that xRx. Choose y ∈ X such that xRy. Since R is symmetric, yRx.
Since xRy and yRx, transitivity shows xRx. Hence, R is reflexive.

P.5.11 How many relations on {1, 2, . . . , n} are both equivalence relations and partial orders?

P.5.12 Suppose X is a finite set. Let Peven(X) denote the set of all subsets of X that contain
an even number of elements. Prove that the subset relation ⊆ is a partial order on Peven(X).
Describe the maximal and minimal elements. Is there a maximum? a minimum?

P.5.13 Draw the Hasse diagram of the poset described in P.5.12 in the cases X = {1, 2, 3, 4}
and X = {1, 2, 3, 4, 5}.

P.5.14 Let n ∈ N. The set of all positive divisors of n is a poset when ordered by the divisibility
relation. Let us denote this poset Dn. Draw the Hasse diagram of D75.
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P.5.15 Let n ∈ N. Prove that the set of all divisors of n is not a poset under the divisibility
relation.

[walkthrough]

P.5.16 The lexicographic order on N×N is defined by letting (x1, x2) � (y1, y2) if either x1 < y1
or else x1 = y1 and x2 ≤ y2. Prove that � is a total order on N× N.

P.5.17 Suppose P and Q are two disjoint sets (i.e. P ∩Q = ∅) that are partially ordered with
order relations ≤P and ≤Q, respectively. Define the ordinal sum P⊕Q as the set P ∪Q equipped
with the relation ≤ given by x ≤ y if either (i) x, y ∈ P and x ≤P y, or (ii) x, y ∈ Q and x ≤Q y,
or (iii) x ∈ P and y ∈ Q. Show that P ⊕ Q is a poset. How would you construct the Hasse
diagram of P ⊕Q starting from the diagrams of P and Q, if P and Q are finite?

P.5.18 Prove that every finite, nonempty lattice has a minimum and a maximum. Also, give
an example of an infinite lattice which neither has a minimum nor a maximum.

[spoiler]

P.5.19 Order {1, 2, . . . , n} by divisibility. Prove that if n ≥ 3, then the resulting poset is not
a lattice.

[hint]

P.5.20 Use your solution to P.5.14 to verify that D75 is a lattice. More generally, prove that
Dn is a lattice for every n ∈ N.

[walkthrough]

P.5.21 Prove that P ⊕Q (as defined in P.5.17) is a lattice if P and Q are.

P.6 Modular arithmetic

P.6.1 Reduce 243 modulo 15.

P.6.2 Prove that 34n+1 ≡ 3 (mod 15) for all n ∈ N. Does it follow that 34n ≡ 1 (mod 15)?
Why, or why not?

P.6.3 Reduce 343 modulo 15, for example by glancing at P.6.2.

P.6.4 The method of casting out nines exploits that an integer n is divisible by 9 if and only
if the sum of digits of n (when represented in base 10) is divisible by 9. For example, 569754 is
divisible by 9 since 5 + 6 + 9 + 7 + 5 + 4 = 36 is divisible by 9. Prove that this method is valid.

P.6.5 Find the last two digits of the number 738.

P.6.6 Prove that there is no x ∈ Z such that x3 − 3x+ 1 is divisible by 7.
[walkthrough]

P.6.7 One of 14 and 15 is invertible modulo 51. Which one? Compute the inverse.
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P.6.8 Find all x ∈ Z that satisfy 14x ≡ 7 (mod 51).
[spoiler]

P.6.9 You want to plant your flowers in an array-shaped pattern. If you plant nine flowers in
each row, seven flowers are left over. If you plant eight flowers in each row, three flowers are left
over. The number of flowers is more than 100, but less than 150. How many do you have?

[spoiler]

P.6.10 Find all integer solutions to


x ≡ 0 (mod 15),

x ≡ 9 (mod 16),

x ≡ 7 (mod 49).

[hint]

P.6.11 Find all integer solutions to x4 + 2x− 8 ≡ 0 (mod 60).
[hint] [spoiler] [walkthrough]

P.6.12 Compute the remainder when 133002 is divided by 31.
[hint]

P.6.13 The universe is approximately 5 ·1012 days old. What day of the week will it be exactly

5 · 1012 days from now?

P.6.14 Reduce 110 + 2100 + 31000 + · · ·+ 1010
10

modulo 11.

P.6.15 Find all x ∈ Z that satisfy x67 ≡ 3 (mod 23).

P.6.16* Prove the version of Fermat’s little theorem which states that ap ≡ a (mod p) for any
prime p and a ∈ Z+ by expanding ap = (1 + 1 + · · · + 1)p using the multinomial theorem and
looking at the individual terms modulo p.

[spoiler]

P.6.17 In an RSA cipher, Bob has the public key (69, 5). Alice wants to encrypt the message
“7” and send it to Bob. What is the ciphertext?

P.6.18 In an RSA cipher, Bob’s private key is 7 and the public key is (55, 23). Bob receives
the encrypted message “8”. What is the plaintext?

P.6.19 In an RSA cipher, Bob’s public key is (91, 29). Eve intercepts the encrypted message
“7” which was sent to Bob. What is the plaintext?

[hint] [walkthrough]

P.7 Graphs

P.7.1 Draw a (simple) graph with the given degree sequence or prove that none exist:
(a) 0, 1, 3, 3, 4, 4 (b) 0, 1, 3, 3, 3, 4, 4 (c) 0, 1, 3, 3, 4, 5.
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P.7.2 How many edges does the complete graph Kn contain?

P.7.3 How many edges does a k-regular graph with n vertices contain?

P.7.4 How many vertices does a k-regular graph with ε edges contain?
[spoiler]

P.7.5 Prove that an (n− 2)-regular graph on n vertices exists if and only if n is even.

P.7.6 In a connected simple graph on six vertices, five of the vertices have pairwise different
degrees. Which degree does the sixth vertex have?

[walkthrough]

P.7.7 Find an isomorphism between the two graphs or prove that they are not isomorphic.

G1 = G2 =

P.7.8 Find an isomorphism between the two graphs or prove that they are not isomorphic.

G1 = G2 =

P.7.9 How many pairwise non-isomorphic simple graphs on eight vertices and three edges are
there?

P.7.10 Which of the graphs in P.7.7 and P.7.8 contain eulerian circuits? eulerian paths?
hamiltonian circuits? hamiltonian paths? (Either prove nonexistence or indicate an explicit
circuit or path.)

P.7.11 Consider the graph G = (V,E) which has vertex set V = {1, 2, 3, 4, 5, 6} and edge
set E = {{1, 2}, {1, 4}, {1, 6}, {2, 3}, {2, 4}, {2, 6}, {3, 4}, {3, 6}, {4, 5}, {5, 6}}. Prove that G is
hamiltonian, but that removing the edge {2, 3} would make it non-hamiltonian.

[spoiler]

P.7.12 Let G be as in P.7.11. Prove that G is not eulerian. How many (and which?) edges
would you need to add to G in order to make it eulerian?
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P.7.13 The n-cube is the graph whose vertices are all length n bit sequences (i.e., all sequences
a1a2 · · · an where ai ∈ {0, 1} for all i), and two such sequences form an edge if and only if they
differ in exactly one bit. For which n is the n-cube eulerian? (And, why is it called a “cube”?)

P.7.14 Suppose G is a regular simple graph on an even number, at least 4, of vertices. Prove

that either G or the complement graph G (or both) is hamiltonian.5

[hint] [walkthrough]

P.7.15* Prove that the n-cube (see P.7.13) is hamiltonian for all integers n ≥ 2.6

[hint] [spoiler]

P.7.16 How many 3-cycles are subgraphs of the complete graph Kn? How many 4-cycles?
[spoiler]

P.7.17 For each of the graphs appearing in P.7.7, P.7.8, and P.7.27, determine whether it is
bipartite.

P.7.18 How many 4-cycles are subgraphs of the complete bipartite graph Km,n? How many
6-cycles?

P.7.19 A collection of n straight lines cuts the plane into regions. Construct a graph whose
vertices are the regions, and let two regions form an edge if and only if they are separated by
exactly one line. P.2.6 shows that this graph is bipartite. Give a different proof, by arguing
directly that the graph does not contain odd cycles.

[hint] [walkthrough]

P.7.20 A forest on three trees has twelve edges. How many vertices are there?

P.7.21 In a certain tree, the non-leaves have the following degrees: 2, 3, 4, 4, 5. How many
leaves are there?

[hint]

P.7.22 Suppose T is an n-vertex tree. How many subgraphs of T are forests on exactly n
vertices and 3 trees?

P.7.23 Suppose T is an n-vertex tree. How many simple graphs contain T as a spanning tree?

P.7.24 Prove that a graph G is a tree if and only if the following two conditions hold:

(i) Adding an edge to G always results in a graph which contains a cycle that involves the
new edge.

(ii) Removing an edge from G always results in a disconnected graph.

[spoiler]

5The result is still true if G has an odd number of vertices, but that is harder to prove.
6Hamiltonian cycles in the n-cube are called Gray codes and have real-life applications. Some are indicated

in Rosen’s book. Use your favourite search engine to find more.
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P.7.25 How many regions can exist in a planar embedding of a simple planar graph with vertex
degree sequence 3, 3, 4, 4, 5, 5?

P.7.26 How many regions can exist in a planar embedding of a 2-regular simple graph on seven
vertices?

P.7.27 Show that the following graph is not planar:

[hint]

P.7.28 Suppose G is a simple graph in which every vertex degree is at least 6. Prove that G is
not planar.

[spoiler] [walkthrough]

P.7.29* Suppose G is a simple, planar graph on at least 11 vertices. Prove that the complement

graph G is not planar.
[hint] [spoiler]

P.7.30* Suppose n straight lines in the plane have the property that no two are parallel and no

three intersect in a point. Use Euler’s formula7 for planar graphs to prove that the number of

regions separated by the lines is
n(n+ 1)

2
+ 1. (Tip: It is convenient to “bend” the parts of the

lines that are “far away” so that they meet in a single point. Then consider the line segments
and intersection points as edges and vertices of a plane embedding of a graph.)

[spoiler]

P.7.31 Show that the following graph has chromatic number 4:

[spoiler]

P.7.32 Prove that if the maximum vertex degree of a graph G is k, then G has a proper
(k + 1)-colouring.

[walkthrough]

7You could also use induction directly, as in P.2.7, but that is illegal here.
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P.7.33 Prove that if G is a graph with chromatic number k, then G has at least

(
k

2

)
edges.

[spoiler]

P.7.34 Compute the chromatic numbers and polynomials of the graphs in P.7.7.

P.7.35 Compute the chromatic polynomial of a forest with n vertices and m trees.
[hint] [spoiler]

P.7.36 Use induction on n to prove that an n-cycle Cn, n ≥ 3, has chromatic polynomial
P (Cn, x) = (x− 1)n + (−1)n(x− 1).

[hint]

P.7.37 Let G be a graph. Define the cone C(G) to be the graph obtained from G by adding
one extra vertex v 6∈ V (G) and extra edges that connect v to every vertex of G. Prove that
P (C(G), x) = xP (G, x− 1).

P.7.38* Let G be a graph. Define the suspension S(G) to be the graph obtained from G
by adding two extra vertices v1, v2 6∈ V (G) and extra edges that connect v1 to every vertex
of G and v2 to every vertex of G. (Thus, v1 and v2 are not connected in S(G).) Prove that
P (S(G), x) = xP (G, x− 1) + x(x− 1)P (G, x− 2).

[walkthrough]

P.7.39 Use the results of P.7.36 and P.7.37 to compute the chromatic polynomial of the wheel
graph Wn which consists of n vertices that form an n-cycle and one extra vertex (the hub) which
is connected to all other vertices (the edges containing the hub are the spokes).



Hints

H.2.5 Verify the statement for 12, 13, 14. Then use strong induction.

H.2.6 Assume you have a colour assignment that works for a bunch of lines. Can you modify
it to work after another line is drawn?

H.2.7 How many new regions can appear when you draw a new line?

H.2.8 Divide the marbles into three piles of equal size and compare two of the piles on the
balance. What can you conclude?

H.2.9 Such a subset either contains n or it does not. How many do, and how many do not?

H.2.16 Considerations become simpler if you think of sums of 1’s and 2’s that sum to n/2 for
even n.

H.2.17 Find a recurrence and solve it.

H.3.8 It is probably easiest to split into four cases, depending on how letters repeat. Repre-
sentatives of each case would be HLHH, GIGI, HIGH, and HILT.

H.3.9 Remember that your opponent does not have any of your cards.

H.3.11 Either one element in the range is the value of three different inputs, or two elements
are the values of two each.

H.3.14 3 = 1 + 1 + 1

H.3.21 Reformulate as a “stars and bars” problem.

H.3.23 What could (k + 1)n count? Can you relate that to the k-tuples in the problem?

H.3.30 A permutation that contains both GARBO and OWLET automatically contains BOWL.

H.3.33 If you let Ai denote the set of permutations that have i immediately followed by i+ 1,
you want to consider n!− |A1 ∪A2 ∪ · · · ∪An−1|.

14
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H.4.9 Euclid

H.4.15 You could solve the diophantine linear equation a− 4b = 13 and look for solutions that
are squares. Then you would probably find the correct answer, but to argue that there are no
other solutions could be technical. A more straightforward approach exists.

H.5.19 You could use P.5.18.

H.6.10 CRT

H.6.11 CRT

H.6.12 31 is a prime.

H.6.19 Find Bob’s private key.

H.7.14 Use Dirac’s (or Ore’s) theorem.

H.7.15 Induct on n.

H.7.19 Walking along an edge in the graph corresponds to crossing a line in the plane.

H.7.21 Use the handshake lemma.

H.7.27 Use the “easy direction” of Kuratowski’s theorem.

H.7.29 You may assume that G has exactly 11 vertices. (Why is it enough to consider that
case?) Bound the number of edges.

H.7.35 Colour each tree separately. Colour the vertices of a tree in order so that each vertex
is adjacent to at most one already coloured vertex.

H.7.36 Use deletion-contraction.



Spoilers

S.2.6 What happens if you swap all colours on one side of the new line?

S.2.7 A line intersects other lines in at most n− 1 points. Thus, when line number n is drawn,
at most n new regions appear.

S.2.17 Prove that an+2 = 2an+1 + 2an if an is the number that you seek. For the initial
conditions, do not forget that the empty word is one word.

S.3.5 They could do it by first forming one queue and then cutting that queue at one of seven
possible positions.

S.3.19 Introduce the new variable x5 = 14− (x1 + x2 + x3 + x4).

S.3.25 1099 = 100 + 999 = 101 + 998 = · · ·

S.3.26 Cut the range of arctan into pigeonholes.

S.4.15 Factorize the left hand side. If the right hand side is a product of two integers, what
could they be?

S.5.18 Suppose there are two different maximal elements. Use the lattice property to obtain a
contradiction.

S.6.8 You could use P.6.7.

S.6.9 Use the Chinese remainder theorem to compute the number of flowers modulo 72.

S.6.11 Find the solutions modulo 3, 4 and 5. Then use CRT.

S.6.16 Argue that if p is a prime, then

(
p

k1, . . . , ka

)
is almost always divisible by p, the

exception being if some ki is equal to p. What is the value then, and how many such terms are
there?

S.7.4 Shake hands, or use P.7.3.

16
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S.7.11 Without {2, 3} you could remove two vertices to separate the graph into three compo-
nents.

S.7.15 For the induction step, think of the n-cube as having two layers, both being isomorphic
to the (n− 1)-cube: the bottom layer where the last bit of a vertex is always zero, and the top
layer where the last bit is always one. If the bottom layer has a hamiltonian circuit, follow it,
but skip its last edge. Then, move up and follow the same circuit backwards. Finally, go down
again.

S.7.16 The number of m-cycles is the number of m-subsets of {1, 2, . . . , n} times the number
of ways to arrange m elements in a cycle.

S.7.24 Prove that (i) is equivalent to G being connected and (ii) to G being acyclic or discon-
nected (or both).

S.7.28 Assume G = (V,E) is planar and derive a contradiction. Use the handshake lemma to
show |V | ≤ |E|/3. Count edge-region pairs to show 3f ≤ 2|E|, where f is the number of regions
of a planar embedding of G. Then apply Euler’s formula.

S.7.29 By counting edge-region pairs, deduce 3f ≤ 2|E|, where f is the number of regions of
a planar embedding of G = (V,E). With |V | = 11, what does Euler then tell you about |E|?
How may edges does G have?

S.7.30 Let G = (V,E) be the graph constructed by following the tip. Argue that |E| = n2 and

|V | = 1 +

(
n

2

)
.

S.7.31 There is no 3-colouring (why?). Find a 4-colouring.

S.7.33 Consider a vertex colouring with as few colours at possible. Then

(
k

2

)
is the number

of colour pairs.

S.7.35 If a tree has k vertices, use the hint to show that the chromatic polynomial of the tree

is x(x− 1)k−1.



Answers

A.1.1

(a) {{1, 2}, 1, 2,♥}

(b) {{1, 2}, 2,♥}

(c) {({1, 2}, 1), ({1, 2}, 2), (2, 1), (2, 2), (♥, 1), (♥, 2)}

(d) {({1, 2}, {1, 2}), (2, {1, 2}), (♥, {1, 2})}

(e) {{1, 2},♥}

(f) {2,♥}

A.1.2 (a) false (b) true (c) true (d) false (e) false

A.1.3 (a) false (b) false (c) false (d) true (e) true

A.1.4

P(A) = {∅, {{1, 2}}, {2}, {♥}, {{1, 2}, 2}, {{1, 2},♥}, {2,♥}, {{1, 2}, 2,♥}}
P(B) = {∅, {1}, {2}, {1, 2}}

P(A ∩B) = {∅, {2}}
P(A ∩ {B}) = {∅, {{1, 2}}}

A.1.5

(a) −2,−1, 0, 1, 2

(b) (0, 7), (1, 4), (2, 1)

(c) (1,−8), (2,−4), (4,−2), (8,−1)

A.2.9 a1 = 2, a2 = 3

A.2.10 an = Fn+2

A.2.11 an =
n2

2

18
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A.2.14 an = (An+B)2n, where A and B are arbitrary constants.

A.2.15 an = 3 + (−1)n − n

A.2.16 an =

{
0 if n is odd,

Fn/2+1 if n is even.

A.2.17

√
3 + 2

2
√

3
·
(

1 +
√

3
)n

+

√
3− 2

2
√

3
·
(

1−
√

3
)n

A.2.19 an = (c+ n) · 3n−1 − 2n+ 1

4
, where c is an arbitrary constant.

A.2.20 an =
2n+2 + (−1)n+1 − 3

6
− n

A.3.1 New: 233 · 102 · 22 (= 26767400). Old: 233 · 103 (= 12167000).

A.3.2 23 · 22 · 21 · 10 · 9 · 8 (= 7650720)

A.3.3

(
m

2

)

A.3.4 8! (= 40320)

A.3.5 7 · 8! (= 282240)

A.3.6 8! (= 40320)

A.3.7 (m− 1)!m!

A.3.8 370

A.3.9
109(
47
5

) (≈ 0.000071)

A.3.10

(
8

2

)
· 7! (= 141120)

A.3.11

(
n+ 2

3

)
· n! +

1

2

(
n+ 2

2

)(
n

2

)
· n! =

n(3n+ 1) · (n+ 2)!

24

A.3.15

(
9

3, 2, 2, 1, 1

)
= 3 · 7! (= 15120)
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A.3.16

(
6

2, 2, 1, 1

)
·
(

7

3

)
= 6300

A.3.17

(
15

3, 3, 3, 3, 3

)
(= 168168000)

A.3.18

(
17

3

)
= 680

A.3.19

(
18

4

)
= 3060

A.3.20

(
17

3

)
= 680

A.3.21

(
n− 4

5

)

A.3.22

(
n− 1

4

)

A.3.27 n!− 2(n− 1)! = (n− 2)(n− 1)!

A.3.28 n!− (2(n− 1)! + 2(n− 1)!− 2(n− 2)!) = (n− 2)(n− 3)(n− 2)!

A.3.29 35 students passed.

A.3.30 26!− 23!− 22!− 22! + 20! + 21! (≈ 4 · 1026)

A.3.31 1980

A.3.32

(
18

4

)
− 4

(
12

4

)
+

(
4

2

)(
6

4

)
= 1170

A.4.1 ±1,±3,±5,±9,±15,±45

A.4.2 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47

A.4.5 gcd(693, 990) = 99, lcm(693, 990) = 6930

A.4.6 2(k1 + 1)(k2 + 1) · · · (km + 1) divisors, (k1 + 1)(k2 + 1) · · · (km + 1) positive divisors

A.4.7 567

A.4.8 6
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A.4.10 α = 9, β = −19, for example

A.4.11 x = −17 + 74k, y = 8− 35k, k ∈ Z

A.4.12 There are no solutions.

A.4.13 x = 8, y = −29 is the only one.

A.4.14 x = 2 + 7k, y = −1 + 2`, z = −5k − `, k, ` ∈ Z

A.4.15 x = ±7, y = ±3

A.5.1 (i) yes (ii) no (iii) no (iv) no

A.5.2 (i) no (ii) no (iii) yes (iv) yes

A.5.3 (i) 26 = 64 (ii) 26 = 64 (iii) 23 · 33 = 216

A.5.4 An equivalence class consists of all socks of any fixed colour that occurs among your
(single coloured) socks.

A.5.5 The equivalence classes are the circles with 0 as centre in the complex plane (including
the radius zero “circle” which only contains 0 itself).

A.5.6 An equivalence class is the set of all subsets of {1, 2, . . . , 9} that have a fixed number

(between 0 and 9) of elements. |[{1, 2, 3}]| =
(

9

3

)
= 84.

A.5.7 [3] = {3, 12, 27, 48, . . .}

A.5.9 The equivalence classes are the lines that are parallel to `.

A.5.11 1

A.5.12 The empty set ∅ is the only minimal element. If |X| is even, X is the only maximal
element. If |X| is odd, the sets of the form X \ {x} for x ∈ X are the maximal elements. Thus,
Peven(X) always has a minimum. It has a maximum if and only if |X| is even or |X| = 1.
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A.5.13

A.5.14

A.5.17 The Hasse diagram of P ⊕ Q is constructed by placing the diagram of Q above the
diagram of P and connecting all minimal Q-elements with all maximal P -elements.

A.5.18 One of many examples is Z ordered by ≤.

A.6.1 8

A.6.2 No, 34 6≡ 1, for example. 3 is not invertible modulo 15.

A.6.3 12

A.6.5 4, 9

A.6.7 14 is invertible. The inverse is 11.

A.6.8 x = 26 + 51k, k ∈ Z

A.6.9 115

A.6.10 x = 105 + 11760k, k ∈ Z

A.6.11 x = −4 + 30k, k ∈ Z

A.6.12 14

A.6.13 The same weekday that it was the day before yesterday.
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A.6.14 10

A.6.15 x = 3 + 23k, k ∈ Z

A.6.17 40

A.6.18 2

A.6.19 63

A.7.1 Neither (a) nor (c) exist. (b):

A.7.2

(
n

2

)

A.7.3
nk

2
(Why is this an integer?)

A.7.4
2ε

k

A.7.6 3

A.7.7 They are not isomorphic. (Many properties that are preserved by isomorphisms differ.
For example, only the left graph contains a 3-cycle.)

A.7.8 One isomorphism is 1 7→ 10, 2 7→ 11, 3 7→ 7, 4 7→ 8, 5 7→ 9, 6 7→ 12.

A.7.9 5

A.7.10 The graphs in P.7.7 both contain eulerian paths but not eulerian circuits. The graphs
in P.7.8 contain neither. The rightmost graph in P.7.7 contains a hamiltonian path, but no
hamiltonian circuit. The other graphs contain hamiltonian circuits (hence also hamiltonian
paths).

A.7.12 It suffices to add one edge, namely {1, 3}.

A.7.13 For even n. (If you consider the vertices as points in Rn with coordinates 0 or 1, then
they are the corners of the n-dimensional unit cube, and the edges of the graph become, well,
the edges of that cube.)
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A.7.16 3-cycles:

(
n

3

)
, 4-cycles:

(
n

4

)
· 3

A.7.17 The rightmost graph in P.7.7 is the only one which is bipartite.

A.7.18 4-cycles:

(
m

2

)(
n

2

)
, 6-cycles:

(
m

3

)(
n

3

)
· 6

A.7.20 15

A.7.21 10

A.7.22

(
n− 1

2

)

A.7.23 2
(n−1)(n−2)

2

A.7.25 Necessarily eight.

A.7.26 Two or three.

A.7.34 Left: χ(G) = 3, P (G, x) = x(x− 1)(x− 2)(x2 − 3x+ 3).

Right: χ(G) = 2, P (G, x) = x(x− 1)(x3 − 5x2 + 10x− 7).

A.7.35 xm(x− 1)n−m

A.7.39 P (Wn, x) = x(x− 2)n + (−1)nx(x− 2)



Walkthroughs

W.2.5 Note that 12 = 3 + 3 + 3 + 3, 13 = 7 + 3 + 3, and 14 = 7 + 7. Fix an integer n ≥ 14 and
assume, in order to use strong induction, that k is a sum of 3’s and 7’s for all integers k satisfying
12 ≤ k ≤ n. We want to prove that n + 1 is also a sum of 3’s and 7’s. Since 12 ≤ n − 2 ≤ n,
n− 2 is a sum of 3’s and 7’s by the induction assumption. Hence, so is n+ 1 = (n− 2) + 3.

W.2.7 In the base case n = 0, there are no lines and just one region. The assertion is true in

this case since
0(0 + 1)

2
+ 1 = 1.

In order to use induction, fix k ∈ N and assume that every drawing of k straight lines

cuts the plane into at most
k(k + 1)

2
+ 1 regions. Consider now a drawing of k + 1 lines. We

need to prove that the number of regions is at most
(k + 1)(k + 2)

2
+ 1. Let L be the last of

the k + 1 lines that we draw. Before L is drawn, there are at most
k(k + 1)

2
+ 1 regions by

the induction assumption. The line L splits every such region that it passes through into two
new regions. Since L intersects other lines in at most k points, at most k + 1 old regions are
split into two new in this way. Therefore, the number of regions after L is drawn is at most
k(k + 1)

2
+ 1 + k + 1 =

(k + 1)(k + 2)

2
+ 1, as desired.

W.2.9 Call a set valid if it does not contain two successive integers. Suppose n ≥ 3 is an
integer. Some of the valid subsets of {1, . . . , n} contain n and some do not. Those that do not
are precisely the valid subsets of {1, . . . , n − 1}, and there are an−1 of them. Those that do
contain n are precisely the valid subsets of {1, . . . , n − 2} with n appended. Hence, there are
an−2 of them. Summing up, we obtain an = an−1 + an−2.

W.2.18 If n ∈ Z+,

n∑
j=0

j2 =

n−1∑
j=0

j2 + n2. Thus, an = an−1 + n2 for such n. The homogeneous

part of the general solution to this recurrence equation is

ahomn = A · 1n = A,

an arbitrary constant. To find a particular solution, we make the ansatz

apartn = Bn3 + Cn2 +Dn.

(Näıvely trying a polynomial of degree 2 won’t work because its constant term is a homogeneous
solution.) Plugging it into the recurrence equation, we get

Bn3 + Cn2 +Dn = B(n− 1)3 + C(n− 1)2 +D(n− 1) + n2,

25
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which (as is seen after some shuffling) is equivalent to

(3B − 1)n2 + (−3B + 2C)n+B − C +D = 0,

which has as only solution B =
1

3
, C =

1

2
, D =

1

6
. Thus,

an = A+
n3

3
+
n2

2
+
n

6
= A+

n(n+ 1)(2n+ 1)

6
.

Using that a0 = 0, we conclude A = 0 and arrive at the formula we hoped for.

W.3.10 Construct such a function by first choosing the two elements in the domain that should

have the same function value; there are

(
8

2

)
possibilities. After that, choose their common value

(7 possibilities). Finally, choose the unique values for the remaining six elements in the domain

(6! possibilities). Hence, there are

(
8

2

)
· 7! such functions.

W.3.21 In such a subset, think of the five selected elements as bars and the n− 5 not selected
elements as stars. (For example, if n = 13, “∗ ∗ | ∗ | ∗ ∗ ∗ | ∗ | ∗ |” would represent {3, 5, 9, 11, 13}).

Construct such a sequence by starting with a sequence of n− 5 stars and then selecting five
of the spaces between (or before, or after) the stars; the selected spaces are where the bars are

placed. There are n− 4 spaces, hence

(
n− 4

5

)
sequences of this form.

W.3.23 For notational convenience, let us say that S0 = ∅ and Sk+1 = {1, 2, . . . , n}. A k-tuple
of the described form is determined by choosing, for each integer j, 1 ≤ j ≤ n, which of the sets
S1, . . . , Sk+1 is the first that j appears in. (In other words, choosing the m for which it holds
that j 6∈ Sm−1 and j ∈ Sm.) Since there are k + 1 choices for each such j, the desired assertion
follows.

W.3.26 Cut the range of arctan, i.e. the interval
]
−π

2
,
π

2

[
, into six subintervals of equal length:

I1 =
]
−π

2
,−π

3

]
,

I2 =
]
−π

3
,−π

6

]
,

I3 =
]
−π

6
, 0
]
,

I4 =
]
0,
π

6

]
,

I5 =
]π

6
,
π

3

]
,

I6 =
]π

3
,
π

2

[
.

By the pigeonhole principle, at least two of the seven numbers, x1 and x2, have arctan values
in the same interval Ij . Assign the names so that x1 ≥ x2. Then, 0 ≤ arctanx1 − arctanx2.

Since the length of Ij is
π

6
, arctanx1 − arctanx2 <

π

6
. (The inequality is strict since Ij does

not contain both endpoints.)
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W.3.32 Let U denote the set of all nonnegative integer solutions (x1, x2, x3, x4) to the given
inequality. For i ∈ {1, 2, 3, 4}, let Ai ⊆ U be the subset which consists of those solutions
that satisfy xi ≥ 6. We seek |U \ (A1 ∪ A2 ∪ A3 ∪ A4)|. Aiming to apply PIE, we consider
intersections of the sets Ai. Note that any intersection of three (or all four) of them is empty,
since if three variables exceed 5, their sum will definitely exceed 14. Moreover, the symmetry of
the restrictions on the variables implies

|A1| = |A2| = |A3| = |A4|

and
|A1 ∩A2| = |A1 ∩A3| = |A1 ∩A4| = |A2 ∩A3| = |A2 ∩A4| = |A3 ∩A4|.

It therefore follows by PIE that

|U \ (A1 ∪A2 ∪A3 ∪A4)| = |U| − 4|A1|+ 6|A1 ∩A2|.

Considering the slack variable x5 = 14 − (x1 + x2 + x3 + x4) yields that |U| is the number of
nonnegative integer solutions to x1 + x2 + x3 + x4 + x5 = 14. By a “stars and bars”-argument

(or a known formula) this number is

(
14 + 4

4

)
.

Introducing y1 = x1 − 6, we find that |A1| is the number of nonnegative integer solutions to

y1 + x2 + x3 + x4 + x5 = 8. Thus, |A1| =
(

8 + 4

4

)
.

Finally, setting y2 = x2 − 6, |A1 ∩ A2| is the number of nonnegative integer solutions to

y1 + y2 + x3 + x4 + x5 = 2, namely

(
2 + 4

4

)
.

Hence, the given inequality has

(
18

4

)
− 4

(
12

4

)
+ 6

(
6

4

)
= 1170 solutions of the specified

form.

W.4.7 For k ∈ Z+, define Ak = {N ∈ {1, . . . , 2000} : k|N}. We wish to compute |A6∪A8∪A15|.
By the principle of inclusion-exclusion, this number is equal to

|A6|+ |A8|+ |A15| − |A6 ∩A8| − |A6 ∩A15| − |A8 ∩A15|+ |A6 ∩A8 ∩A15|.

Several integers simultaneously divide N if and only if their least common multiple does. Hence,

|A6 ∪A8 ∪A15| = |A6|+ |A8|+ |A15| − |A24| − |A30| − |A120|+ |A120|

=

⌊
2000

6

⌋
+

⌊
2000

8

⌋
+

⌊
2000

15

⌋
−
⌊

2000

24

⌋
−
⌊

2000

30

⌋
=

1998

6
+

2000

8
+

399

3
− 249

3
− 198

3
= 333 + 250 + 133− 83− 66

= 567.

(Here, b·c denotes the floor function that rounds it input down to the nearest weakly smaller
integer.)
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W.4.9 We use Euclid and compute

3n2 + n− 7 = 3 · (n2 − 2) + n− 1,

n2 − 2 = n · (n− 1) + n− 2,

n− 1 = 1 · (n− 2) + 1.

Hence, gcd(3n2 + n− 7, n2 − 2) = gcd(n2 − 2, n− 1) = gcd(n− 1, n− 2) = gcd(n− 2, 1) = 1, as
desired.

(Remark. Technically speaking, if n ∈ {0, 1, 2, 3}, we are not quite using the division algorithm
for integers in the usual fashion here, because not all the “remainders” n− 1, n− 2, and 1 are
both nonnegative and smaller than the corresponding denominators. However, the equations
are still true, and they still imply the conclusion. The purist could consider those four cases
separately.)

W.5.7 The relation ./ is reflexive since xx is a square for all x ∈ Z+. It is symmetric since

xy = n2 ⇔ yx = n2. Finally, it is transitive because if xy = m2 and yz = n2 for m,n ∈ Z, then

xz =

(
mn

y

)2

, and
mn

y
∈ Z since xz ∈ Z.

We have [3] = {3m2 : m ∈ Z+} = {3 · 12, 3 · 22, 3 · 32, 3 · 42, . . .}.

W.5.15 Both −1 and 1 are divisors of n for every n ∈ N. Since −1|1 and 1| − 1, but −1 6= 1,
the divisibility relation is not antisymmetric.

W.5.20 Pick a, b ∈ Dn. Then, gcd(a, b) divides a and b (hence also n). Moreover, if c divides
a and b, then c divides gcd(a, b). Hence gcd(a, b) is the meet (= unique greatest lower bound)
of a and b in Dn. Completely analogously, one verifies that lcm(a, b) is the join (= unique least
upper bound) of a and b in Dn.

W.6.6 We compute all possible values modulo 7:

03 − 3 · 0 + 1 = 1 6≡ 0,

13 − 3 · 1 + 1 = −1 ≡ 6 6≡ 0,

23 − 3 · 2 + 1 = 3 6≡ 0,

33 − 3 · 3 + 1 = 19 ≡ 5 6≡ 0,

43 − 3 · 4 + 1 = 53 ≡ 4 6≡ 0,

53 − 3 · 5 + 1 ≡ −8 + 6 + 1 ≡ 6 6≡ 0,

63 − 3 · 6 + 1 ≡ −1 + 3 + 1 = 3 6≡ 0.
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W.6.11 For an integer x, p(x) = x4 + 2x − 8 is divisible by 60 if and only if p(x) is divisible
by 3, 4, and 5. We compute all values modulo these three moduli:

p(0) = −8 6≡ 0 (mod 3),

p(1) = −5 6≡ 0 (mod 3),

p(2) = 12 ≡ 0 (mod 3),

p(0) = −8 ≡ 0 (mod 4),

p(1) = −5 6≡ 0 (mod 4),

p(2) = 12 ≡ 0 (mod 4),

p(3) = 79 6≡ 0 (mod 4),

p(0) = −8 6≡ 0 (mod 5),

p(1) = −5 ≡ 0 (mod 5),

p(2) = 12 6≡ 0 (mod 5),

p(3) = 79 6≡ 0 (mod 5),

p(4) = 256 6≡ 0 (mod 5).

Hence, we want all solutions to the system of congruences x ≡ 2 (mod 3), x ≡ 0 or 2 (mod 4),
and x ≡ 1 (mod 5). The Chinese remainder theorem tells us that the solutions modulo 60 are

x = 2 · (−1) · 4 · 5 + (0 or 2) · (−1) · 3 · 5 + 1 · 3 · 3 · 4 = (−4 or − 34).

Finally, we observe that x ≡ (−4 or − 34) (mod 60)⇔ x = −4 + 30k, k ∈ Z.

(Remark. We could have cut some corners by noticing that x ≡ (0 or 2) (mod 4) is in fact
equivalent to x ≡ 0 (mod 2). We could then have applied CRT for the solutions modulo 30
directly.)

W.6.19 Since 91 = 7 · 13, the private key d is the inverse of 29 modulo 6 · 12 = 72. Using
Euclid (or trial-and-error), we find 5 · 29 = 2 · 72 + 1. Hence, d = 5. Thus, the plaintext is
75 = 343 · 49 ≡ −21 · 49 = −3 · 343 ≡ −3 · (−21) = 63 (mod 91).

W.7.6 Since the graph is connected, no vertex has degree 0. Therefore, the degrees of the first
five vertices are 1, 2, 3, 4, 5. Let xi denote the vertex of degree i for i ∈ {1, 2, 3, 4, 5}, and let y
denote the sixth vertex. Since x5 is connected to all vertices, x1 is only connected to x5. Hence,
x4 is connected to every vertex except x1. Thus, x2 is only connected to x4 and x5. Therefore,
x3 is connected to every vertex except x1 and x2. Thus, y is connected to x3, x4, and x5, but
neither to x1 nor to x2. We conclude that the degree of y is 3.

W.7.14 Suppose G has 2m vertices and let d denote their common degree. Since K2m is

(2m− 1)-regular, G is (2m− 1− d)-regular. If d ≥ m, G is hamiltonian by Dirac’s theorem and
we are done. If not, d ≤ m− 1. This implies that 2m− 1− d ≥ 2m− 1− (m− 1) = m, so that,
again by Dirac’s theorem, G is hamiltonian.

W.7.19 Let G be the graph described in the statement of the problem. Consider a cycle in
G. It is a sequence of regions R1, R2, . . . , Rm, Rm+1 = R1 where Ri and Ri+1 are separated
by exactly one of the lines. Let Li be the line separating Ri from Ri+1. Since Ri and Ri+1
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are on different sides of Li for every i, each line must appear an even number of times in the
list L1, . . . , Lm since the walk comes back to R1, i.e. to the same side of every line. Thus, m is
even.

W.7.28 Suppose, in order to obtain a contradiction, that G is planar. We may assume G is
connected (otherwise, just consider one connected component of G). Let v, e, and f be the
number of vertices, edges and regions, respectively, of a planar embedding of G. Every region
is incident to at least three edges, and every edge is incident to at most two regions. Hence,
counting edge-region incidences, we obtain 3f ≤ 2e. By the handshake lemma, and the fact
that every vertex degree is at least 6, 6v ≤ 2e. Thus, Euler’s formula gives

2 = v − e+ f ≤ e

3
− e+

2e

3
= 0,

which is the contradiction we wanted.

W.7.32 Let C = {1, 2, . . . , k + 1} be our set of colours. Order the vertices v1, v2, . . . , vn. Let
us colour them one by one in this order. When it is time to colour vi, assign to it the smallest
colour in C which has not already been assigned to one of the neighbours of vi. Since the degree
of every vertex is less than |C|, there is always a colour available.

W.7.38 Let x ∈ Z+. A proper x-colouring of S(G) either assigns the same colour to v1 and v2,
or they get different colours. A colouring where they receive the same colour can be constructed
by first choosing their common colour (x choices) and then choosing a proper colouring of G
using the remaining x− 1 colours (P (G, x− 1) possibilities). Thus, xP (G, x− 1) is the number
of colourings where v1 and v2 have the same colour. A colouring where they have different
colours can be produced by first choosing the colour of v1 (x possibilities), then that of v2 (x−1
possibilities) and finally a colouring of G using the remaing x − 2 colours. Hence, there are
x(x− 1)P (G, x− 2) colourings of this form. Adding the two yields the desired total number of
proper x-colourings of S(G).
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