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Let G = (V,E) be a (finite, simple, undirected) graph and k ∈ N. Recall that a proper k-colouring of
G is a function f : V → {1, 2, . . . , k} such that {v1, v2} ∈ E ⇒ f(v1) 6= f(v2). In other words, a proper
k-colouring is a colouring of the vertices of G that uses some of (maybe all, but not necessarily so) k
specified colours such that every edge gets different colours on its vertices.

Somewhat surprisingly, the proper k-colourings of G are counted by a polynomial function.

Theorem 1. Given G, there is a unique polynomial P (G, x) such that P (G, k) is equal to the
number of proper k-colourings of G for every k ∈ N.

The uniqueness part of Theorem 1 is not deep, for if two polynomials have the same values on an
infinite set of inputs, they must coincide.1 Existence follows from Corollary 10 below.

Definition 2. The chromatic polynomial of G is the polynomial P (G, x) whose existence and
uniqueness is guaranteed by Theorem 1.

For some graphs G, P (G, x) can be computed directly using the combinatorial multiplication principle
by considering the vertices one at a time, sometimes in an appropriately chosen order.

Example 3. We may construct any proper k-colouring of the complete graph Kn by first choosing
the colour of vertex 1 (k choices), then the colour of vertex 2 (k− 1) choices, and so on. In total,
Kn has k(k−1)(k−2) · · · (k−n+ 1) proper k-colourings. Hence, the chromatic polynomial of Kn

is P (Kn, x) = x(x− 1)(x− 2) · · · (x− n+ 1).

Figure 1: Illustration for Example 4.

Example 4. Consider the graph G depicted in Figure 1. If we try to count its proper k-colourings
by colouring the vertices in numerical order, as in Example 3, we run into trouble when reaching
vertex 4, since the number of choices we have for its colour depends on whether the vertices 1
and 3 have received different colours or not. We could look at the two different cases separately.
However, an easier way out is to consider the vertices in the order 1, 2, 4, 3. Then, we have k
choices for vertex 1, k−1 for 2, k−2 for 4, and k−2 also for 3. Hence, P (G, x) = x(x−1)(x−2)2.

1Proof: The difference between the two polynomials will have an infinite number of roots. By the factor theorem, that
can only happen if this difference is the zero polynomial.
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Remark 5. What made it possible to argue directly “one vertex at a time” in Examples 3 and 4 was
that it was possible to order the vertices of G in such a way that for every vertex v, those neighbours
of v that came before v in this order formed a complete subgraph of G (i.e., they were all neighbours of
each other). This allowed us to conclude that the colours chosen for those neighbours were all different.
Graphs that admit such a vertex order are called chordal. Alas, many graphs are not chordal.

Observe that the chromatic polynomial P (G, x) contains much more information than the chromatic
number χ(G). Indeed, it follows immediately from the definitions that χ(G) is the smallest nonnegative
integer which is not a root of P (G, x). For example, with G as in Figure 1, the result of Example 4 shows
P (G, 0) = P (G, 1) = P (G, 2) = 0 but P (G, 3) 6= 0. Hence, χ(G) = 3. This just tells us that it is possible
to properly colour G using 3 (but not 2) colours. More informatively, P (G, 3) = 3 · 2 · 12 = 6 reveals that
G has precisely six different proper 3-colourings.

Remark 6. It is perfectly possible for (non-chordal) graphs to have chromatic polynomials with some
non-integer roots. Such roots bear no obvious relation to colourings. Example 11 below, for example, will
reveal that the chromatic polynomial of the graph shown in Figure 3 has an irrational, real root as well
as two complex, non-real roots.

Our next goal is to develop a recursive formula for the chromatic polynomial of (almost) any graph
in terms of the chromatic polynomials of smaller graphs. This formula is the key to most properties of
chromatic polynomials; in particular it will help us attack non-chordal graphs.

Definition 7. Let G = (V,E) be a graph with E 6= ∅ and let e = {v1, v2} ∈ E be any edge. We
define two new graphs as follows:

• The deletion of e is the graph G− e obtained from G by removing the edge e. That is,

G− e = (V,E \ {e}).

• The contraction of e is the graph G · e obtained from G by identifying v2 with v1 (and
removing e and any double edges that appear in the process).

Figure 2: Deletion and contraction of the edge {1, 4}.

Example 8. If G is the leftmost graph in Figure 2 and e = {1, 4}, then G− e is the graph in the
middle and G · e is the one on the right.

The point of all this is the following theorem which provides a recursive formula for the chromatic
polynomial of any graph that has at least one edge.

Theorem 9 (Deletion-contraction). If e is an edge of the graph G, then

P (G, x) = P (G− e, x)− P (G · e, x).

Proof. A proper k-colouring of G−e either gives the same colour to the vertices of e, or else they receive
different colours. The colourings of the former kind are precisely the proper k-colourings of G·e, whereas
those of the latter kind are the proper k-colourings of G. Hence, P (G−e, k) = P (G ·e, k)+P (G, k).
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An immediate corollary is that chromatic polynomials are well-defined, proving Theorem 1.

Corollary 10. The number of proper k-colourings of G is a polynomial function of k.

Proof. We induct on the number of edges of G. In the base case, when there are n vertices and no
edges, the number of k-colourings of G is kn which is a polynomial in k. The induction step is provided
by Theorem 9, since the difference of two polynomials is a polynomial. (Note that G− e and G · e have
strictly fewer edges than G, so we may apply the (strong) induction assumption to them.)

Figure 3: Illustration for Example 11.

Example 11. We compute the chromatic polynomial of the graph in Figure 3 by repeated appli-
cation of Theorem 9:

P

 , x

 = P

 , x

− P
 , x


=

P
 , x

− P
 , x

− P
 , x

 .

We are left with the task of computing chromatic polynomials of three smaller graphs. They are
all chordal, hence can be coloured one vertex at a time in the spirit of Examples 3 and 4. This
yields

P

 , x

 = x(x− 1)4,

P

 , x

 = x(x− 1)2(x− 2),

P

 , x

 = x(x− 1)(x− 2)2,

as the reader should pause to convince her/himself of. Therefore,

P

 , x

 = x(x− 1)4 − x(x− 1)2(x− 2)− x(x− 1)(x− 2)2

= x(x− 1)
(
(x− 1)3 − (x− 1)(x− 2)− (x− 2)2

)
= x(x− 1)(x3 − 5x2 + 10x− 7).
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Example 12. It is sometimes convenient to use Theorem 9 “backwards”. For example, let Gn

be the graph obtained from the complete graph Kn by removing one edge.a Let us compute its
chromatic polynomial.
Since Gn = Kn − e, for some edge e, Theorem 9 yields

P (Gn, x) = P (Kn, x) + P (Kn · e, x)

= P (Kn, x) + P (Kn−1, x)

= x(x− 1) · · · (x− n+ 1) + x(x− 1) · · · (x− n+ 2)

= x(x− 1) · · · (x− n+ 2)(x− n+ 1 + 1)

= x(x− 1) · · · (x− n+ 3)(x− n+ 2)2.

This result could also have been obtained by a direct vertex-by-vertex argument, because Gn is
chordal. Note also that the case n = 4 appeared already in Example 4.

aIt does not matter which edge since all such graphs are isomorphic, hence have the same chromatic polynomial.
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