
Chapter 3

Lebesgue Integration

3.1 Introduction

The concept of integration as a technique that both acts as an inverse to the
operation of differentiation and also computes areas under curves goes back
to the origin of the calculus and the work of Isaac Newton (1643-1727) and
Gottfried Leibniz (1646-1716). It was Leibniz who introduced the

∫
· · · dx

notation. The first rigorous attempt to understand integration as a limiting
operation within the spirit of analysis was due to Bernhard Riemann (1826-
1866). The approach to Riemann integration that is usually taught (as in
MAS221) was developed by Jean-Gaston Darboux (1842-1917). At the time
it was developed, this theory seemed to be all that was needed but as the
19th century drew to a close, some problems appeared:

• One of the main tasks of integration is to recover a function f from
its derivative f ′. But some functions were discovered for which f ′ was
bounded but not Riemann integrable.

• Suppose (fn) is a sequence of functions converging pointwise to f . The
Riemann integral could not be used to find conditions for which∫

f(x)dx = lim
n→∞

∫
fn(x)dx.

• Riemann integration was limited to computing integrals over Rn with
respect to Lebesgue measure. Although it was not yet apparent, the
emerging theory of probability would require the calculation of expec-
tations of random variables X: E(X) =

∫
Ω
X(ω)dP (ω).

In this chapter, we’ll study Lebesgue’s powerful techniques which allow
us to investigate

∫
S
f(x)dm(x) where f : S → R is a “suitable” measurable
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function defined on a measure space (S,Σ,m).1 If we take m to be Lebesgue
measure on (R,B(R)) we recover the familiar integral

∫
R f(x)dx but we will

now be able to integrate many more functions (at least in principle) than
Riemann and Darboux. If we take X to be a random variable on a probability
space, we get its expectation E(X).

Notation. For simplicity we usually write
∫
S
fdm instead of

∫
S
f(x)dm(x).

Note that many authors use
∫
S
f(x)m(dx). To simplify even further we’ll

sometimes write I(f) =
∫
S
fdm.

We’ll present the construction of the Lebesgue integral in four steps: Step
1: Indicator functions, Step 2: Simple Functions, Step 3: Non-negative mea-
surable functions, Step 4: Integrable functions.

3.2 The Lebesgue Integral for Simple Func-

tions

Step 1. Indicator Functions

This is very easy and yet it is very important:
If f = 1A where A ∈ Σ ∫

S

1Adm = m(A). (3.2.1)

e.g. In a probability space we get E(1A) = P (A).

Step 2. Simple Functions

Let f =
∑n

i=1 ci1Ai
be a non-negative simple function so that ci ≥ 0 for

all 1 ≤ i ≤ n. We extend (3.2.1) by linearity, i.e. we define∫
S

fdm =
n∑
i=1

cim(Ai), (3.2.2)

and note that
∫
S
fdm ∈ [0,∞].

Theorem 3.2.1 If f and g are non-negative simple functions and α, β ≥ 0
then

1. (“Linearity”)
∫
S
(αf + βg)dm = α

∫
S
fdm+ β

∫
S
gdm,

2. (Monotonicity) If f ≤ g then
∫
S
fdm ≤

∫
S
gdm.

1We may also integrate extended measurable functions, but will not develop that here.
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Proof

1. Let f =
∑n

i=1 ci1Ai
, g =

∑m
j=1 dj1Bj

. Since
⋃n
i=1Ai =

⋃m
j=1Bj = S, by

the last part of Problem 10 we see that

f =
n∑
i=1

ci1Ai∩S =
n∑
i=1

ci1Ai∩
⋃m

j=1Bj
=

n∑
i=1

m∑
j=1

ci1Ai∩Bj
.

It follows that

αf + βg =
n∑
i=1

m∑
j=1

(αci + βdj)1Ai∩Bj
,

and so

I(αf + βg) =
n∑
i=1

m∑
j=1

(αci + βdj)m(Ai ∩Bj)

= α
n∑
i=1

cim

(
Ai ∩

m⋃
j=1

Bj

)
+ β

m∑
j=1

djm

(
n⋃
i=1

Ai ∩Bj

)

= α
n∑
i=1

cim(Ai) + β
m∑
j=1

djm(Bj)

= αI(f) + βI(g).

2. By (1), I(g) = I(f) + I(g − f) but g − f is a non-negative simple
function and so I(g − f) ≥ 0. The result follows. �

Notation. If A ∈ Σ, whenever
∫
S
fdm makes sense for some “reason-

able” measurable function f : S → R we define:

IA(f) =

∫
A

fdm =

∫
S

1Afdm.

Of course there is no guarantee that IA(f) makes sense and this needs check-
ing at each stage. In Problem 23, you can check that it makes sense when f
is non-negative and simple.

3.3 The Lebesgue Integral for Non-negative

Measurable Functions

We haven’t done any analysis yet and at some stage we surely need to take
some sort of limit! If f is measurable and non-negative, it may seem at-
tractive to try to take advantage of Theorem 2.4.1 and define “

∫
S
fdm =
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limn→∞
∫
S
sndm”. But there are many different choices of simple functions

that we could take to make an approximating sequence, and this would make
the limiting integral depend on that choice, which is undesirable. Instead
Lebesgue used the weaker notion of the supremum to “approximate f from
below” as follows:

Step 3. Non-negative measurable functions∫
S

fdm = sup

{∫
S

sdm, s simple, 0 ≤ s ≤ f

}
. (3.3.3)

With this definition,
∫
S
fdm ∈ [0,∞].

The use of the sup makes it harder to prove key properties and we’ll
have to postpone a full proof of linearity until the next section when we
have some more powerful tools. Here are some simple properties that can be
proved fairly easily.

Theorem 3.3.1 If f, g : S → R are non-negative measurable functions,

1. (Monotonicity) If f ≤ g then
∫
S
fdm ≤

∫
S
gdm.

2. I(αf) = αI(f) for all α > 0,

3. If A,B ∈ Σ with A ⊆ B then IA(f) ≤ IB(f),

4. If A ∈ Σ with m(A) = 0 then IA(f) = 0.

Proof.

(1)

∫
S

fdm = sup

{∫
S

sdm, s simple, 0 ≤ s ≤ f

}
≤ sup

{∫
S

sdm, s simple, 0 ≤ s ≤ g

}
=

∫
S

gdm

(2) to (4) are Problem 24. �

Lemma 3.3.1 [Markov’s inequality] If f : S → R is a non-negative measur-
able function and c > 0.

m({x ∈ S; f(x) ≥ c}) ≤ 1

c

∫
S

fdm
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Proof. Let E = {x ∈ S; f(x) ≥ c}. Note that E = f−1([c,∞)) ∈ Σ as f
is measurable (see Theorem 2.2.1 (ii)). By Theorem 3.3.1 (3) and (2),∫

S

fdm ≥
∫
E

fdm

≥
∫
E

cdm =

∫
S

c1Edm

= cm(E),

and the result follows. �

Definition. Let f, g : S → R be measurable. We say that f = g almost
everywhere, and write this for short as f = g a.e., if

m({x ∈ S; f(x) 6= g(x)} = 0.

In Problem 31 you can show that this gives rise to an equivalence relation
on the set of all measurable functions. In probability theory, we use the
terminology almost surely for two random variables X and Y that agree
almost everywhere, and we write X = Y (a.s.)

Corollary 3.3.1 If f is a non-negative measurable function and
∫
S
fdm = 0

then f = 0 (a.e.)

Proof. Let A = {x ∈ S; f(x) 6= 0} and for each n ∈ N, An = {x ∈
S; f(x) ≥ 1/n}. Since A =

⋃∞
n=1An, we have m(A) ≤

∑∞
n=1m(An) by

Theorem 1.5.2, and its sufficient to show that m(An) = 0 for all n ∈ N. But
by Markov’s inequality m(An) ≤ n

∫
S
fdm = 0. �

In Chapter 1 we indicated that we would be able to use integration to
cook up new examples of measures. Let f : S → R be non-negative and
measurable and define IA(f) =

∫
A
fdm for A ∈ Σ. We have

∫
∅ fdm = 0 by

Theorem 3.3.1 (4). To prove that A→ IA(f) is a measure we then need only
prove that it is σ-additive, i.e. that IA(f) =

∑∞
n=1 IAn(f) whenever we have

a disjoint union A =
⋃∞
n=1An.

Theorem 3.3.2 If f : S → R is a non-negative measurable function, the
mapping from Σ to [0,∞] given by A→ IA(f) is σ-additive.

Proof. First assume that f = 1B for some B ∈ Σ. Then by (3.2.1)

IA(f) = m(B ∩ A) = m

(
B ∩

∞⋃
n=1

An

)

=
∞∑
n=1

m(B ∩ An) =
∞∑
n=1

IAn(f),
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so the result holds in this case. You can then use linearity to show that it is
true for non-negative simple functions.

Now let f be measurable and non-negative. Then by definition of the
supremum, for any ε > 0 there exists a simple function s with 0 ≤ s ≤ f
so that IA(f) ≤ IA(s) + ε. The result holds for simple functions and so by
monotonicity we have

IA(s) =
∞∑
n=1

IAn(s) ≤
∞∑
n=1

IAn(f).

Combining this with the earlier inequality we find that

IA(f) ≤
∞∑
n=1

IAn(f) + ε.

But ε was arbitrary and so we conclude that

IA(f) ≤
∞∑
n=1

IAn(f).

The second half of the proof will aim to establish the opposite inequality.
First let A1, A2 ∈ Σ be disjoint. Given any ε > 0 we can, as above, find
simple functions s1, s2 with 0 ≤ sj ≤ f , so that IAj

(sj) ≥ IAj
(f) − ε/2 for

j = 1, 2. Let s = s1 ∨ s2 = max{s1, s2}. Then s is simple (check this),
0 ≤ s ≤ f and s1 ≤ s, s2 ≤ s. So by monotonicity, IAj

(s) ≥ IAj
(f)− ε/2 for

j = 1, 2. Add these two inequalities to find that

IA1(s) + IA2(s) ≥ IA1(f) + IA2(f)− ε.

But the result is true for simple functions and so we have

IA1∪A2(s) ≥ IA1(f) + IA2(f)− ε.

By the definition (3.3.3), IA1∪A2(f) ≥ IA1∪A2(s) and so we have that

IA1∪A2(f) ≥ IA1(f) + IA2(f)− ε.

But ε was arbitrary and so we conclude that

IA1∪A2(f) ≥ IA1(f) + IA2(f),

which is the required inequality for unions of two disjoint sets. By induction
we have

IA1∪A2∪···∪An(f) ≥
n∑
i=1

IAi
(f),
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for any n ≥ 2. But as A1 ∪A2 ∪ · · · ∪An ⊆ A we can use Theorem 3.3.1 (3)
to find that

IA(f) ≥
n∑
i=1

IAi
(f).

Now take the limit as n→∞ to deduce that

IA(f) ≥
∞∑
i=1

IAi
(f),

as was required. �

Example. The famous Gaussian measure on R is obtained in this way
by taking

f(x) = 1√
2π
e−

x2

2 for x ∈ R,

with m being Lebesgue measure. In this case,
∫
R f(x)dx = 1. To connect

more explicitly with probability theory, let (Ω,F , P ) be a probability space
and X : Ω → R be a random variable. Equip (R,B(R)) with Lebesgue
measure. In Chapter 2, we introduced the probability law pX of X as a
probability measure on (R,B(R)). If for all A ∈ B(R),

pX(A) = IA(fX)(= I(fX1A))

for some non-negative measurable function fX : R → R, then fX is called
the probability density function or pdf of X. So for all A ∈ B(R),

P (X ∈ A) = pX(A) =

∫
A

fX(x)dx.

We say that X is a standard normal if pX is Gaussian measure.

We present two useful corollaries to Theorem 3.3.2:

Corollary 3.3.2 Let f : S → R be a non-negative measurable function and
(En) be a sequence of sets in Σ with En ⊆ En+1 for all n ∈ N. Set E =⋃∞
n=1En, Then ∫

E

fdm = lim
n→∞

∫
En

fdm.

Proof. This is in fact an immediate consequence of Theorems 3.3.2 and
1.5.1, but it might be helpful to spell out the proof in a little detail, so here
goes: We use the “disjoint union trick”, so write A1 = E1, A2 = E2−E1, A3 =
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E3−E2, . . .. Then the Ans are mutually disjoint,
⋃∞
n=1 An = E and

⋃n
i=1 Ai =

En for all n ∈ N . Then by Theorem 3.3.2∫
E

fdm =
∞∑
i=1

∫
Ai

fdm

= lim
n→∞

n∑
i=1

∫
Ai

fdm

= lim
n→∞

∫
A1∪A2∪···∪An

fdm

= lim
n→∞

∫
En

fdm. �

Corollary 3.3.3 If f and g are non-negative measurable functions and f =
g (a.e.) then I(f) = I(g).

Proof. Let A1 = {x ∈ S; f(x) = g(x)} and A2 = {x ∈ S; f(x) 6= g(x)}.
Then A1, A2 ∈ Σ with A1 ∪ A2 = S,A1 ∩ A2 = ∅ and m(A2) = 0. So by
Theorem 3.3.1 (4),

∫
A2
fdm =

∫
A2
gdm = 0. But

∫
A1
fdm =

∫
A1
gdm as

f = g on A1 and so by Theorem 3.3.2,∫
S

fdm =

∫
A1

fdm+

∫
A2

fdm

=

∫
A1

gdm+

∫
A2

gdm =

∫
S

gdm. �

3.4 The Monotone Convergence Theorem

We haven’t yet proved that
∫
S
(f + g)dm =

∫
S
fdm +

∫
S
gdm. Nor have

we extended the integral beyond non-negative measurable functions. Before
we can do either of these, we need to establish the monotone convergence
theorem. This is the first of two important results that address one of the
historical problems of integration that we mentioned in section 3.1

Let (fn) be a sequence of non-negative measurable functions with fn ≤
fn+1 for all n ∈ N (so the sequence is monotonic increasing). Note that
f = limn→∞ fn exists and is non-negative and measurable (see Theorem
2.3.5), but f may take values in [0,∞].

Theorem 3.4.1 [The Monotone Convergence Theorem] If (fn) is a mono-
tone increasing sequence of non-negative measurable functions from S to R
then ∫

S

fdm = lim
n→∞

∫
S

fndm.
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Proof. As f = supn∈N fn, by monotonicity (Theorem 3.3.1(1)), we have∫
S

f1dm ≤
∫
S

f2dm ≤ · · · ≤
∫
S

fdm.

Hence by monotonicity of the integrals, limn→∞
∫
S
fndm exists (as an ex-

tended real number) and

lim
n→∞

∫
S

fndm ≤
∫
S

fdm.

We must now prove the reverse inequality. To simplify notation, let a =
limn→∞

∫
S
fndm. So we need to show that a ≥

∫
S
fdm. Let s be a simple

function with 0 ≤ s ≤ f and choose c ∈ R with 0 < c < 1. For each n ∈ N,
let En = {x ∈ S; fn(x) ≥ cs(x)}, and note that En ∈ Σ for all n ∈ N by
Proposition 2.3.3. Since (fn) is increasing, it follows that En ⊆ En+1 for all
n ∈ N. Also we have

⋃∞
n=1En = S. To verify this last identity, note that if

x ∈ S with s(x) = 0 then x ∈ En for all n ∈ N and if x ∈ S with s(x) 6= 0
then f(x) ≥ s(x) > cs(x) and so for some n, fn(x) ≥ cs(x), as fn(x)→ f(x)
as n→∞, i.e. x ∈ En. By Theorem 3.3.1(3) and (1), we have

a = lim
n→∞

∫
S

fndm ≥
∫
S

fndm ≥
∫
En

fndm ≥
∫
En

csdm.

As this is true for all n ∈ N, we find that

a ≥ lim
n→∞

∫
En

csdm.

But by Corollary 3.3.2 (since (En) is increasing), and Theorem 3.3.1(2),

lim
n→∞

∫
En

csdm =

∫
S

csdm = c

∫
S

sdm,

and so we deduce that

a ≥ c

∫
S

sdm.

But 0 < c < 1 is arbitrary so taking e.g. c = 1− 1/k with k = 2, 3, 4, . . . and
letting k →∞, we find that

a ≥
∫
S

sdm.

But the simple function s for which 0 ≤ s ≤ f was also arbitrary, so now
take the supremum over all such s and apply (3.3.3) to get

a ≥
∫
S

fdm,

and the proof is complete. �.
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Corollary 3.4.1 Let f : S → R be measurable and non-negative. There
exists an increasing sequence of simple functions (sn) converging pointwise
to f so that

lim
n→∞

∫
S

sndm =

∫
S

fdm.

Proof. Apply the monotone convergence theorem to the sequence (sn)
constructed in Theorem 2.4.1 �

Theorem 3.4.2 Let f, g : S → R be measurable and non-negative. Then∫
S

(f + g)dm =

∫
S

fdm+

∫
S

gdm.

Proof. By Theorem 2.4.1 we can find an increasing sequence of simple
functions (sn) that converges pointwise to f and an increasing sequence of
simple functions (tn) that converges pointwise to g. Hence (sn + tn) is an
increasing sequence of simple functions that converges pointwise to f +g. So
by Theorem 3.4.1, Theorem 3.2.1(1) and then Corollary 3.4.1,∫

S

(f + g)dm = lim
n→∞

∫
S

(sn + tn)dm

= lim
n→∞

∫
S

sndm+ lim
n→∞

∫
S

tndm

=

∫
S

fdm+

∫
S

gdm. �

Another more delicate convergence result can be obtained as a conse-
quence of the monotone convergence theorem. We present this as a theorem,
although it is always called Fatou’s lemma in honour of the French astronomer
(and mathematician) Pierre Fatou (1878-1929). We will find an important
use for this result in the next section.

Theorem 3.4.3 [Fatou’s Lemma] If (fn) is a sequence of non-negative mea-
surable functions from S to R then

lim inf
n→∞

∫
S

fndm ≥
∫
S

lim inf
n→∞

fndm

Proof. Define gn = infk≥n fk. Then (gn) is an increasing sequence which
converges to lim infn→∞ fn. Now as fl ≥ infk≥n fk for all l ≥ n, by mono-
tonicity (Theorem 3.3.1(1)) we have that for all l ≥ n∫

S

fldm ≥
∫
S

inf
k≥n

fkdm,
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and so

inf
l≥n

∫
S

fldm ≥
∫
S

inf
k≥n

fkdm.

Now take limits on both sides of this last inequality and apply the monotone
convergence theorem to obtain

lim inf
n→∞

∫
S

fndm ≥ lim
n→∞

∫
S

inf
k≥n

fkdm

=

∫
S

lim
n→∞

inf
k≥n

fkdm

=

∫
S

lim inf
n→∞

fndm �

Note that we do not require (fn) to be a bounded sequence, so lim infn→∞ fn
should be interpreted as an extended measurable function, as discussed at
the end of Chapter 2.

3.5 Lebesgue Integration Completed: Inte-

grability and Dominated Convergence

At last we are ready for the final step in the construction of the Lebesgue
integral - the extension from non-negative measurable functions to a class of
measurable functions that are real-valued.

Step 4. For the final step we first take f to be an arbitrary measurable
function. We define the positive and negative parts of f , which we denote as
f+ and f− respectively by:

f+(x) = max{f(x), 0}, f−(x) = max{−f(x), 0},

so both f+ and f− are measurable (Corollary 2.3.2) and non-negative. We
have

f = f+ − f−,

and using Step 3, we see that we can construct both
∫
S
f+dm and

∫
S
f−dm.

Provided both of these are not infinite, we define∫
S

fdm =

∫
S

f+dm−
∫
S

f−dm.

With this definition,
∫
S
fdm ∈ [−∞,∞]. We say that f is integrable if∫

S
fdm ∈ (−∞,∞). Clearly f is integrable if and only if each of f+ and f−

33



are. Define |f |(x) = |f(x)| for all x ∈ S. As f is measurable, it follows from
Problem 17(c) that |f | also is. Since

|f | = f+ + f−,

it is not hard to see that f is integrable if and only if |f | is. Using this last
fact, the condition for integrability of f is often written∫

S

|f |dm <∞.

We also have the useful inequality (whose proof is Problem 30(a)):∣∣∣∣∫
S

fdm

∣∣∣∣ ≤ ∫
S

|f |dm, (3.5.4)

for all integrable f .

Theorem 3.5.1 Suppose that f and g are integrable functions from S to R.

1. If c ∈ R then cf is integrable and
∫
S
cfdm = c

∫
S
fdm,

2. f + g is integrable and
∫
S
(f + g)dm =

∫
S
fdm+

∫
S
gdm,

3. (Monotonicity) If f ≤ g then
∫
S
fdm ≤

∫
S
gdm.

Proof. (1) and (3) are Problem 29. For (2), we may assume that both f, g
are not identically 0. The fact that f + g is integrable if f and g are follows
from the triangle inequality (Problem 30 (b)). To show that the integral of
the sum is the sum of the integrals, we first need to consider six different
cases (writing h = f + g) (i) f ≥ 0, g ≥ 0, h ≥ 0, (ii) f ≤ 0, g ≤ 0, h ≤ 0, (iii)
f ≥ 0, g ≤ 0, h ≥ 0, (iv) f ≤ 0, g ≥ 0, h ≥ 0, (v) f ≥ 0, g ≤ 0, h ≤ 0, (vi)
f ≤ 0, g ≥ 0, h ≤ 0. Case (i) is Theorem 3.4.2. We’ll just prove (iii). The
others are similar. If h = f + g then f = h + (−g) and this reduces the
problem to case (i). Indeed we then have∫

S

fdm =

∫
S

(f + g)dm+

∫
S

(−g)dm,

and so by (1)∫
S

(f + g)dm =

∫
S

fdm−
∫
S

(−g)dm =

∫
S

fdm+

∫
S

gdm.
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Now write S = S1∪S2∪S3∪S4∪S5∪S6, where Si is the set of all x ∈ S for
which case (i) holds for i = 1, 2, . . . , 6. These sets are disjoint and measurable
and so by a slight extension of Theorem 3.3.2,2∫
S

(f+g)dm =
6∑
i=1

∫
Si

(f+g)dm =
6∑
i=1

∫
Si

fdm+
6∑
i=1

∫
Si

gdm =

∫
S

fdm+

∫
S

gdm,

as was required. �

We now present the last of our convergence theorems, the famous Lebesgue
dominated convergence theorem - an extremely powerful tool in both the
theory and applications of modern analysis:

Theorem 3.5.2 [Lebesgue dominated convergence theorem] Let (fn) be a se-
quence of measurable functions from S to R which converges pointwise to a
(measurable) function f . Suppose there is an integrable function g : S → R
so that |fn| ≤ g for all n ∈ N. Then f is integrable and∫

S

fdm = lim
n→∞

∫
S

fndm.

[Note that we don’t assume that fn is integrable. This follows immediately
from the assumptions since by monotonicity (Theorem 3.3.1(1)),

∫
S
|fn|dm ≤∫

S
gdm <∞.]

Proof. Since (fn) converges pointwise to f , (|fn|) converges pointwise
to |f |. By Fatou’s lemma (Theorem 3.4.3) and monotonicity (Theorem
3.5.1(3)), we have ∫

S

|f |dm =

∫
S

lim inf
n→∞

|fn|dm

≤ lim inf
n→∞

∫
S

|fn|dm

≤
∫
S

gdm <∞,

and so f is integrable.
Also for all n ∈ N, g + fn ≥ 0 so by Fatou’s lemma again,∫

S

lim inf
n→∞

(g + fn)dm ≤ lim inf
n→∞

∫
S

(g + fn)dm.

2This works since we only need finite additivity here.
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But lim infn→∞(g+fn) = g+limn→∞ fn = g+f and (using Theorem 3.5.1(2))
lim infn→∞

∫
S
(g + fn)dm =

∫
S
gdm+ lim infn→∞

∫
S
fndm. We then conclude

that ∫
S

fdm ≤ lim inf
n→∞

∫
S

fndm . . . (i).

Repeat this argument with g + fn replaced by g − fn which is also non-
negative for all n ∈ N. We then find that

−
∫
S

fdm ≤ lim inf
n→∞

(
−
∫
S

fndm

)
= − lim sup

n→∞

∫
S

fndm,

and so ∫
S

fdm ≥ lim sup
n→∞

∫
S

fndm . . . (ii).

Combining (i) and (ii) we see that

lim sup
n→∞

∫
S

fndm ≤
∫
S

fdm ≤ lim inf
n→∞

∫
S

fndm . . . (iii),

but we always have lim infn→∞
∫
S
fndm ≤ lim supn→∞

∫
S
fndm

and so lim infn→∞
∫
S
fndm = lim supn→∞

∫
S
fndm. Then by Theorem

2.1.1 limn→∞
∫
S
fndm exists and from (iii), we deduce that∫

S
fdm = limn→∞

∫
S
fndm. �

Example. Suppose that (S,Σ,m) is a finite measure space and (fn) is a
sequence of measurable functions from S to R which converge pointwise to
f , and are uniformly bounded, i.e. there exists K > 0 so that |fn(x)| ≤ K
for all x ∈ S, n ∈ N. Then f is integrable. To see this just take g = K in the
dominated convergence theorem and show that it is integrable, which follows
from the fact that

∫
S
gdm = Km(S) <∞.

For a concrete example, work in the measure space ([0, 1],B([0, 1]), λ)

and consider the sequence of functions (fn) where fn(x) =
nx2

nx+ 5
for all

x ∈ [0, 1], n ∈ N. Each fn is continuous, hence measurable by Corollary
2.3.1. It is straightforward to check that limn→∞ fn(x) = x for all x ∈ [0, 1]
and that |fn(x)| ≤ 1 for all n ∈ N, x ∈ [0, 1]. So in this case, we can take
K = 1, and apply Lebesgue’s dominated convergence theorem to deduce that
f(x) = x is integrable, and (writing dx as is traditional, rather than λ(dx),
in the integrals)

lim
n→∞

∫
[0,1]

nx2

nx+ 5
dx =

∫
[0,1]

xdx.
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You may want to go further and write∫
[0,1]

xdx =

[
x2

2

]1

0

=
1

2
,

but we can’t at this stage, as that is a consequence of integration in the
Riemann sense, not the Lebesgue one. It is true though, and follows from
the next result.

We will not prove the next theorem, which shows that the Lebesgue
integral on R is at least as powerful as the Riemann one (at least when we
integrate over finite intervals.) You can find a proof on the module website.

Theorem 3.5.3 Let f : [a, b] → R be bounded and Riemann integrable.
Then it is also Lebesgue integrable and the two integrals have the same value.

But we can integrate many more functions using Lebesgue integration
that are not Riemann integrable, e.g.

∫
[a,b]

1R−Q(x)dx = (b − a). Note that

Theorem 3.5.3 only applies to finite closed intervals. We need to be careful
on infinite intervals.

In the following examples we will freely use the fact (which was estab-
lished in MAS221) that a bounded continuous function on [a, b] is Riemann
integrable. Then by Theorem 3.5.3, it is Lebesgue integrable. In particular

• f(x) = xn is integrable on [a, b] for n ∈ Z if 0 /∈ [a, b],

• f(x) = xn is integrable on [a, b] for n ∈ Z+ if 0 ∈ [a, b].

Example 1. Show that f(x) = x−α is integrable on [1,∞) for α > 1.

Proof. For each n ∈ N define fn(x) = x−α1[1,n](x). Then (fn(x)) increases
to f(x) as n→∞. We have∫ ∞

1

fn(x)dx =

∫ n

1

x−αdx =
1

α− 1
(1− n1−α).

By the monotone convergence theorem,∫ ∞
1

x−αdx =
1

α− 1
lim
n→∞

(1− n1−α) =
1

α− 1
.

Example 2. Show that f(x) = xαe−x is integrable on [0,∞) for α > 0.
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We use the fact that for any M ≥ 0, limx→∞ x
Me−x = 0, so that given

any ε > 0 there exists R > 0 so that x > R⇒ xMe−x < ε, and choose M so
that M − α > 1. Now write

xαe−x = xαe−x1[0,R](x) + xαe−x1(R,∞)(x).

The first term on the right hand side is clearly integrable. For the second
term we use that fact that for all x > R,

xαe−x = xMe−x.xα−M < εxα−M ,

and the last term on the right hand side is integrable by Example 1. So the
result follows by monotonicity (Theorem 3.3.1 (1)).

As a result of Example 2, we know that the gamma function Γ(α) =∫∞
0
xα−1e−xdx exists for all α > 1. It can also be extended to the case α > 0.

Example 3. Show that Γ(α) = lim
n→∞

n!nα

α(α + 1) · · · (α + n)
for α > 1.

Let Pα
n =

n!nα

α(α + 1) · · · (α + n)
. You can check (e.g. by induction and

integration by parts) that

Pα
n

nα
=

∫ 1

0

(1− t)ntα−1dt.

Make a change of variable x = tn to find that

Pα
n =

∫ n

0

(
1− x

n

)n
xα−1dx =

∫ ∞
0

(
1− x

n

)n
xα−11[0,n](x)dx.

Now the sequence whose nth term is
(
1− x

n

)n
xα−11[0,n](x) comprises non-

negative measurable functions, and is monotonic increasing to e−xxα−1 as
n→∞. The result then follows by the monotone convergence theorem.

Summation of series is also an example of Lebesgue integration. Suppose for
simplicity that we are interested in

∑∞
n=1 an, where an ≥ 0 for all n ∈ N.

We consider the sequence (an) as a function a : N → [0,∞). We work with
the measure space (N,P(N),m) where m is counting measure. Then every
sequence (an) gives rise to a non–negative measurable function a (why is it
measurable?) and

∞∑
n=1

an =

∫
N
a(n)dm(n).

The integration theory that we’ve developed tells us that this either con-
verges, or diverges to +∞, as we would expect from previous work.
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We may also consider Lebesgue integration of complex–valued functions.
So let (S,Σ,m) be a measure space and f : S → C. We can always write f =
f1 + if2, where fi : S → R (i = 1, 2). We say that f is measurable/integrable
if both f1 and f2 are. When f is integrable, we may define∫

S

fdm =

∫
S

f1dm+ i

∫
S

f2dm.

You can check that f is integrable if and only if
∫
S
|f |dm <∞, where we

now have |f | =
√
f 2

1 + f 2
2 . See problems 62–5 for applications to the Fourier

transform.

3.6 Further Topics: Fubini’s Theorem and

Function Spaces

This material is included for interest, it is not examinable. However the first
topic (Fubini’s theorem) is covered in greater detail for MAS451/6352, and
that more extensive treatment is examinable.

3.6.1 Fubini’s Theorem

Let (Si,Σi,mi) be two measure spaces3and consider the product space (S1×
S2,Σ1⊗Σ2,m1×m2) as discussed in section 1.6. We can consider integration
of measurable functions f : S1×S2 → R by the procedure that we’ve already
discussed and there is nothing new to say about the definition and properties
of
∫
S1×S2

fd(m1×m2) when f is either measurable and non-negative (so the
integral may be an extended real number) or when f is integrable (and the
integral is a real number.) However from a practical point of view we would
always like to calculate a double integral by writing it as a repeated integral
so that we first integrate with respect to m1 and then with respect to m2

(or vice versa). Fubini’s theorem, which we will state without proof, tells us
that we can do this provided that f is integrable with respect to the product
measure. It is named in honour of the Italian mathematician Guido Fubini
(1879-1943).

Theorem 3.6.1 [Fubini’s Theorem] Let f be integrable on (S1 × S2,Σ1 ⊗
Σ2,m1 ×m2) so that

∫
S1×S2

|f(x, y)|(m1 ×m2)(dx, dy) <∞. Then

3Technically speaking, the measures should have an additional property called σ–
finiteness for the main result below to be valid.
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1. The mapping f(x, ·) is m2-integrable, almost everywhere with respect to
m1,

2. The mapping f(·, y) is m1-integrable, almost everywhere with respect to
m2,

3. The mapping x →
∫
S2
f(x, y)m2(dy) is equal almost everywhere to an

integrable function on S1,

4. The mapping y →
∫
S1
f(x, y)m1(dy) is equal almost everywhere to an

integrable function on S2,

5. ∫
S1×S2

f(x, y)(m1 ×m2)(dx, dy) =

∫
S1

(∫
S2

f(x, y)m2(dy)

)
m1(dx)

=

∫
S2

(∫
S1

f(x, y)m1(dx)

)
m2(dy).

3.6.2 Function Spaces

An important application of Lebesgue integration is to the construction of
Banach spaces Lp(S,Σ,m) of equivalence classes of real-valued4 functions
that agree a.e. and which satisfy the requirement

||f ||p =

(∫
S

|f |pdm
) 1

p

<∞,

where 1 ≤ p < ∞. In fact || · ||p is a norm on Lp(S,Σ,m). When p = 2 we
obtain a Hilbert space with inner product:

〈f, g〉 =

∫
S

fgdm.

There is also a Banach space L∞(S,Σ,m) where

||f ||∞ = inf{M ≥ 0; |f(x)| ≤M a.e.}.

These spaces play important roles in functional analysis and its applications,
including partial differential equations, probability theory and quantum me-
chanics.

4The complex case also works and is important.
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