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Chapter 1

Metric Spaces

1.1. Definition and First Examples

Definition 1.1.1. A metric space consists of a set X and a real-valued function d
on X × X such that for any x, y, z ∈ X , the following properties hold:

(i) d is non-negative: d(x, y) ≥ 0;

(ii) d is definite: d(x, y) = 0 if and only if x = y;

(iii) d is symmetric: d(x, y) = d(y, x);

(iv) d satisfies the triangle inequality: d(x, z) ≤ d(x, y) + d(y, z).

The function d is called a metric.

We remark that the conditions (i)–(iv) are not independent; in fact, one can show
that (iv) implies (i) and that (ii) and (iv) imply (iii).

We next give several examples of metric spaces that will reoccur throughout the
text.

Example 1.1.2. From linear algebra, we know that

d(x, y) = |x − y| =

( d∑

j=1

|xj − yj|2
)1/2

,

where x = (x1, ... , xd)t and y = (y1, ... , yd)t, is a metric on Rd. This definition in
fact also gives a metric on Cd (the space of d by 1 matrices with complex entries).
We will use this as the standard metric on Rd and Cd. In Example 1.2.4 and
Example 1.4.2, we introduce other metrics on Rd and Cd. �

Example 1.1.3. Let X be an arbitrary set. The discrete metric d on X is
defined d(x, y) = 0 if x = y and d(x, y) = 1 otherwise. It is easily verified that d
satisfies the conditions (i)–(iv) in the definition. With this metric, we call X a
discrete metric space. �

Using the following more or less obvious result, it is easy to construct new metric
spaces from given spaces.

Proposition 1.1.4. Let X be a metric space with metric d and Y a subset to X.
Then Y is a metric space in itself with the restriction of d as the metric.

We call Y with the metric d|Y a (metric) subspace to X and the metric d|Y the
induced metric. When there is no risk of confusion, we shall denote the metric
on Y by just d instead of d|Y .

Example 1.1.5. Being a subset of R, Q is a metric space with the metric d2. �
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2 Chapter 1 Metric Spaces

1.2. Hölder’s and Minkowski’s inequalities

Let 1 < p < ∞. We denote by p′ the number defined by

1

p
+

1

p′
= 1, that is p′ =

p

p − 1
.

Obviously, 1 < p′ < ∞. We also define 1′ = ∞ and ∞′ = 1. Notice that this is
consistent with the limits obtained by letting p → 1 and p → ∞ in the definition
of p′. The number p′ is called the dual exponent to p.

Lemma 1.2.1. Let x, y ≥ 0 and 1 < p < ∞. Then

xy ≤ xp

p
+

yp′

p′
. (1)

Proof. Substituting xp = exp(s), yp′

= exp(t) in (1), we see that the inequality is
equivalent to

exp
(s

p
+

t

p′

)
≤ exp(s)

p
+

exp(t)

p′
,

which in turn follows from the fact that the exponential function is convex.

Theorem 1.2.2 (Hölder’s inequality for Cd). Suppose that x, y ∈ Cd. Then,
for 1 < p < ∞,

d∑

j=1

|xjyj| ≤
( d∑

j=1

|xj|p
)1/p( d∑

j=1

|yj|p′

)1/p′

. (2)

In the case p = 2, Hölder’s inequality is often called the Cauchy–Schwarz in-
equality.

Proof. Notice that if (2) is true for some x and y, then it is true for λx and µy,

where λ, µ ∈ C. We may thus assume that
∑d

j=1 |xj |p =
∑d

j=1 |yj|p′

= 1. It then
follows from Lemma 1.2.1 that

d∑

j=1

|xjyj | ≤ 1

p

d∑

j=1

|xj |p +
1

p′

d∑

j=1

|yj |p′

= 1 =

( d∑

j=1

|xj|p
)1/p( d∑

j=1

|yj|p′

)1/p′

.

Theorem 1.2.3 (Minkowski’s inequality Cd). Suppose that x, y ∈ Cd. Then,
for 1 ≤ p < ∞,

( d∑

j=1

|xj + yj |p
)1/p

≤
( d∑

j=1

|xj |p
)1/p

+

( d∑

j=1

|yj|p
)1/p

. (3)

Proof. The inequality (3) is obviously true if p = 1. We can therefore assume
that 1 < p < ∞. By Hölder’s inequality,

d∑

j=1

|xj + yj|p ≤
d∑

j=1

|xj + yj |p−1|xj | +
d∑

j=1

|xj + yj |p−1|yj|

≤
( d∑

j=1

|xj + yj|(p−1)p′

)1/p′(( d∑

j=1

|xj |p
)1/p

+

( d∑

j=1

|yj|p
)1/p)

.
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All there remains is to use the fact that (p − 1)p′ = p and divide the left and the

right member by (
∑d

j=1 |xj + yj |p)1/p′

.

Example 1.2.4. A generalization of the metric d2 on Rd and Cd is

dp(x, y) =

( d∑

j=1

|xj − yj|p
)1/p

,

where 1 ≤ p < ∞. It is clear that dp is definite and symmetric, and the triangle
inequality follows from Theorem 1.2.3. �

1.3. ℓ
p-spaces

Definition 1.3.1. For 1 ≤ p < ∞, the set ℓp consists of all sequences (xj)∞j=1 of

complex numbers such that
∑∞

j=1 |xj|p < ∞.

Suppose that x = (xj)∞j=1 ∈ ℓp and y = (yj)∞j=1 ∈ ℓp. Then, αx = (αxj)∞j=1 ∈ ℓp

for every number α ∈ C. Moreover, since

|xj + yj |p ≤ 2p(|xj |p + |yj|p) for every j,

it follows that x + y = (xj + yj)∞j=1 ∈ ℓp. This shows that ℓp is a vector space
over C. If we let d tend to ∞ in Theorem 1.2.2 and Theorem 1.2.3, we obtain
Hölder’s and Minkowski’s inequalities for series.

Corollary 1.3.2 (Hölder’s inequality for ℓ
p). Suppose that x ∈ ℓp and y ∈ ℓp′

,
where 1 < p < ∞. Then

∞∑

j=1

|xjyj| ≤
( ∞∑

j=1

|xj|p
)1/p( ∞∑

j=1

|yj|p′

)1/p′

.

Corollary 1.3.3 (Minkowski’s inequality for ℓ
p). Suppose that x, y ∈ ℓp,

where 1 ≤ p < ∞. Then

( ∞∑

j=1

|xj + yj|p
)1/p

≤
( ∞∑

j=1

|xj |p
)1/p

+

( ∞∑

j=1

|yj|p
)1/p

.

Example 1.3.4. It follows from Minkowski’s inequality that

dp(x, y) =

( ∞∑

j=1

|xj − yj |p
)1/p

, x, y ∈ ℓp,

is a metric on ℓp for 1 ≤ p < ∞. �

1.4. ℓ
∞-spaces

Definition 1.4.1. We denote by ℓ∞(M) the set of all bounded, complex-valued
functions on an arbitrary set M .



4 Chapter 1 Metric Spaces

For f, g ∈ ℓ∞(M), we define αf , where α ∈ C, and f + g pointwise:

(αf)(x) = αf(x) and (f + g)(x) = f(x) + g(x), x ∈ M.

It is obvious that αf ∈ ℓ∞(M) and f + g ∈ ℓ∞(M), so that ℓ∞ is a vector space
over C. A metric on ℓ∞(M) is defined by

d∞(f, g) = sup
x∈M

|f(x)− g(x)|.

To prove the triangle inequality, suppose that f, g, h ∈ ℓ∞(M). Then

|f(x) − h(x)| ≤ |f(x)− g(x)|+ |g(x)− h(x)| ≤ d∞(f, g) + d∞(g, h)

for every x ∈ M , which implies that d∞(f, h) ≤ d∞(f, g) + d∞(g, h).
Let ℓ∞(M,R) denote the set of all bounded, real-valued functions on M . It is

clear that ℓ∞(M,R) is a subspace to ℓ∞(M,R) both as a metric space and as a
vector space.

Example 1.4.2. If M = {1, 2, ... , d}, then ℓ∞(M) can be identified with Cd. Thus,
another metric on Cd is

d∞(x, y) = max
1≤j≤d

|xj − yj |.

Since Rd is a subspace to Cd, this expression defines a metric on Rd too. �

Example 1.4.3. The space ℓ∞(N) consists of all bounded sequences (xj)∞j=1 of
complex numbers; we will denote this space by ℓ∞. The metric on ℓ∞ is

d∞(x, y) = sup
1≤j<∞

|xj − yj |.

The subspaces c and c0 to ℓ∞ consist of all sequences (xj)∞j=1 ∈ ℓ∞ such that the

limit limj→∞ xj exists and limj→∞ xj = 0, respectively. �

1.5. Further Examples

Example 1.5.1. The space Cb(M) consists of all bounded, continuous functions
on a set M ⊂ Rd. The metric on Cb(M) is the same as in ℓ∞(M). If K ⊂ Rd is
compact (i.e., closed and bounded), then all continuous functions on K are bounded.
We will use the notation C(K) for Cb(K). In the case K = [a, b], we will usually
write C[a, b] instead of C([a, b]). �

Example 1.5.2. Let E be a measurable subset of Rd. For 1 ≤ p ≤ ∞, Lp(E) is a
metric space with the metric

dp(f, g) =

(∫

E

|f(x) − g(x)|p dx

)1/p

for 1 ≤ p < ∞

and

d∞(f, g) = ess sup
x∈E

|f(x)− g(x)| for p = ∞. �
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1.6. A Reverse Triangle Inequality

We close this chapter by proving a reverse triangle inequality:

Proposition 1.6.1. If X is a metric space, then

d(x, y) ≥ |d(x, z) − d(z, y)| for all x, y, z ∈ X.

Proof. It follows from (iii) and (iv) in Definition 1.1.1 that

d(x, z) ≤ d(x, y) + d(y, z) = d(x, y) + d(z, y), so that d(x, y) ≥ d(x, z) − d(z, y),

and

d(z, y) ≤ d(z, x) + d(x, y) = d(x, z) + d(x, y), so that d(x, y) ≥ d(z, y) − d(x, z).

Notice finally that |d(x, z) − d(z, y)| equals d(x, z) − d(z, y) or d(z, y) − d(x, z).

Exercises

E1.1. In Definition 1.1.1, show that (iv) implies (i) and that (ii) and (iv) imply (iii).



Chapter 2

Topological Concepts in Metric Spaces

In this chapter, X will always denote a metric space with metric d.

2.1. Open Sets

Definition 2.1.1. If x ∈ X and r > 0, the open ball with center x and radius r
is the set

Br(x) = {y ∈ X : d(x, y) < r}.
The corresponding closed ball is Br(x) = {y ∈ X : d(x, y) ≤ r}.

Example 2.1.2. If x ∈ R and r > 0, then

Br(x) = (x − r, x + r) and Br(x) = [x − r, x + r]. �

Example 2.1.3. Let X be a discrete metric space (see Example 1.1.3). If r < 1,
then Br(x) = Br(x) = {x}, if r = 1, then Br(x) = {x} and Br(x) = X , and
if r > 1, then Br(x) = Br(x) = X . �

Definition 2.1.4. A subset G to X is open if for every x ∈ G there exists an open
ball Br(x) such that Br(x) ⊂ G. A neighbourhood of x ∈ X is an open set G
such that x ∈ G.

Example 2.1.5. An open ball Br(x) ⊂ X is of course open. Indeed, suppose
that y ∈ Br(x) and y 6= x. Then the ball Bs(y), where s = r − d(x, y) > 0, is a
subset of Br(x), since if z ∈ Bs(y), then

d(x, z) ≤ d(x, y) + d(y, z) < d(x, y) + s = r. �

Example 2.1.6. By Example 2.1.5, every interval of the form (a, b) ⊂ R, where
−∞ < a < b < ∞, is open (take x as the midpoint of the interval and r as half its
length). As an exercise, show that all intervals (−∞, b) and (a,∞) are open. �

Example 2.1.7. If X is a discrete metric space and E a subset to X , then for
every x ∈ E, B1/2(x) = {x} ⊂ E. This shows that every subset to X is open. �

The following theorem shows that every metric space is also a topological space.

Theorem 2.1.8. The collection τ of open subsets of X is a topology on X :

(i) X, ∅ ∈ τ ;

(ii) if Gα ∈ τ for every α ∈ A, then
⋃

α∈A Gα ∈ τ ;

(iii) if G1 ... , Gn ∈ τ , then
⋂n

j=1 Gj ∈ τ .

We remark that the index set A in (ii) may be infinite and even uncountable.

6
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Proof. The first statement in the theorem is obvious; we prove the second and
leave the third as an exercise. If x ∈

⋃
α∈A Gα, then x belongs to some set Gα0

,
and since Gα0

is open, Br(x) ⊂ Gα0
for some r > 0. But from this it follows

that Br(x) ⊂
⋃

α∈A Gα, which shows that the union is open.

Remark 2.1.9. We will later show that the metrics d2, dp, and d∞ all give rise to
the same topology, i.e., the same open sets, on Rd and Cd.

Proposition 2.1.10. A subset G of X is open if and only if it is the union of a
(possibly empty) collection of open balls.

Proof. First, suppose that G is open. Then, for every x ∈ G, there exists a
ball Brx

(x) ⊂ G. The union of these balls, as x varies over G, equals G. The
converse follows directly from Theorem 2.1.8.

2.2. The Interior

Definition 2.2.1. The interior E◦ of a subset E to X is the union of all open
subsets to E. The elements of E◦ are called interior points.

Property (a) in the following corollary follows from (ii) in Theorem 2.1.8; prop-
erty (b) follows from (a).

Corollary 2.2.2. Let E be a subset of X. Then

(a) E◦ is the largest open subset of E;

(b) E is open if and only if E = E◦.

2.3. Closed Sets

Definition 2.3.1. A subset F to X is closed if its complement F c is open.

Example 2.3.2. An interval [a, b] ⊂ R is closed since [a, b]c = (−∞, a) ∪ (b,∞)
and both (−∞, a) and (b,∞) are open according to Example 2.1.6. In the same
way, one can show that all intervals (−∞, b] and [a,∞) are closed. �

Example 2.3.3. We will show that every ball Br(x) ⊂ X is closed. Suppose that y
belongs to Br(x)c = {y ∈ X : d(x, y) > r}. If s = d(x, y) − r and d(y, z) < s, it
then follows from Proposition 1.6.1 that z ∈ Br(x)c since

d(x, z) ≥ |d(x, y)− d(y, z)| = d(x, y)− d(y, z) > d(x, y) − s = r.

Thus, Bs(y) is a subset to Br(x)c. Since this holds for every y ∈ Br(x)c, Br(x)c is
open, and hence is Br(x) closed. �

Example 2.3.4. If X is a discrete metric space, then by Example 2.1.7 and the
definition, every subset of X is both open and closed. �

The next theorem is a counterpart to Theorem 2.1.8 for closed sets.

Theorem 2.3.5.
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(a) The sets X, ∅ are closed.

(b) If Fα is closed for every α ∈ A, then
⋂

α∈A Fα is closed.

(c) If F1 ... , Fn are closed, then
⋃n

1 Fj=1 is closed.

Proof. Property (a) follows from (i) in Theorem 2.1.8. We will prove that (b)
holds and leave (c) as an exercise. By De Morgan’s law,

( ⋂

α∈A

Fα

)c

=
⋃

α∈A

F c
α.

Now, F c
α is open, so it follows from (ii) in Theorem 2.1.8 that ∪α∈AF c

α is open.

Example 2.3.6. Exactly as in Example 2.3.3, one can show that

{x}c = {y ∈ X : d(x, y) > 0}

is open for every x ∈ X , i.e., the singleton {x} is closed. From (c) in Theorem 2.3.5
it now follows that every finite subset of X is closed. �

2.4. The Relative Topology

Proposition 2.4.1. Let Y be a subspace to X.

(a) A subset G to Y is open in Y if and only if G = G1 ∩ Y , where G1 is open
in X.

(b) A subset F to Y is closed in Y if and only if F = F1 ∩ Y , where F1 is closed
in X.

Proof.

(a) By Theorem 2.1.10, G is open in Y if and only if G is a union of open balls B
in Y , i.e., balls of the form B1 ∩ Y , where B1 is an open ball in X . Again by
Theorem 2.1.10, this is equivalent to G = G1 ∩ Y , where G1 is open in X .

(b) By the definition, F is closed in Y if and only Y \F is open in Y . But by (a),
this holds if and only if Y \F = G1 ∩ Y , where G1 is open in X , which is the
same as F = F1 ∩ Y , where F1 = Gc

1 is closed in X .

Definition 2.4.2. The relative topology τY on a subspace Y to X is the topol-
ogy induced by d|Y .

Proposition 2.4.1 shows that τY consists of all sets of the form G1 ∩ X , where G1

is open in X . The next example illustrates the fact that a set can be open (closed)
in the relative topology without being open (closed) in the topology of X .

Example 2.4.3. Let X = R and Y = (0, 1]. Then the set G = ( 1
2
, 1] is open in Y

since we have G = ( 1
2 , 2)∩Y , but G is not open in R. Similarly, F = (0, 1

2 ] is closed
in Y since F = [0, 1

2
] ∩ Y , but F is not closed in R. �
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2.5. Closure

Definition 2.5.1. The closure E of a subset E to X is the intersection of all
closed subsets of X that include E.

Example 2.5.2. For an interval (a, b) ⊂ R, −∞ < a < b < ∞, (a, b) = [a, b] since
[a, b] is closed and all closed subsets of R, that include (a, b), will include [a, b]. �

Example 2.5.3. It is not necessarily true that the closure of a ball Br(x) is the
closed ball Br(x). To see this, let X be a discrete metric space with moe than one
element. Then B1(x) = {x} for every x ∈ X , so that B1(x) = {x} since {x} is
closed, but B1(x) = X . �

Using (b) in Theorem 2.3.5, we obtain the following result:

Corollary 2.5.4. Let E ⊂ X. Then

(a) E is the smallest closed subset of X that includes E;

(b) E is closed if and only if E = E.

2.6. Accumulation Points

Definition 2.6.1. An element x ∈ X is an accumulation point of a subset E
to X if every neighbourhood of x contains at least one element y ∈ E with y 6= x.
The set of accumulation points of E is denoted E′ and called the derived set.

Example 2.6.2. For an interval (a, b) ⊂ R, −∞ < a < b < ∞, (a, b)′ = [a, b]. �

The next proposition shows that the closure of a set E is what one obtains when
one to E adds the accumulation points of E.

Proposition 2.6.3. If E ⊂ X, then E = E ∪ E′.

Proof. We first prove that E ⊂ E ∪ E′. Let x ∈ E \ E. If x /∈ E′, there exists
a neghbourhood G of x such that G ∩ E = ∅. But then E ⊂ Gc, from which it
follows that E ⊂ Gc since Gc is closed. This is a contradiction since x ∈ E ∩ G.
Thus, x ∈ E′.

We then prove that E ∪ E′ ⊂ E. Let x ∈ E′ \ E. If x ∈ E
c
, then, since E

c
is

open and E
c ⊂ Ec, there exists a neighbourhood G of x such that G ⊂ Ec. But

this is impossible since x ∈ E′. Thus x ∈ E.

Corollary 2.6.4. A subset F to X is closed if and only if F ′ ⊂ F .

Proof. If F is closed, then by (a) in Proposition 2.5.4, F = F . But according to
Proposition 2.6.3, F = F ∪ F ′, so F ′ ⊂ F . Conversely, if we assume that F ′ ⊂ F ,
then F = F ∪ F ′ = F , so F is closed by the same corollary.



10 Chapter 2 Topological Concepts in Metric Spaces

2.7. Dense Subsets

Definition 2.7.1. Let Y be a subset to X . Then a subset E to Y is dense in Y
if E ⊃ Y .

In particular, E ⊂ X is dense in X if E = X . Since E = E ∪ E′, this equivalent
to the fact that every element in X , that does not belong to E, is an accumulation
point of E.

Example 2.7.2. It is well-known that Q is dense in R: every neighbourhood of a
real number contains a rational number not equal to the given number. This fact
implies that the set of rational complex numbers, i.e., complex numbers with
rational real and imaginary parts, is dense in C. From this it follows that the set of
vectors with rational entries is dense in Rd and that the set of vectors with rational
complex entries is dense in Cd. �

Example 2.7.3. For every subset E to X , E is obviously dense in E. �

2.8. Separability

Definition 2.8.1. A subset Y to X is separable if it contains a countable, dense
subset.

Example 2.8.2. By Example 2.7.2, Rd and Cd are separable. �

Proposition 2.8.3. For 1 ≤ p < ∞, ℓp is separable.

Proof. We claim that the set E of sequences (yj)∞j=1, where every yj is a rational

complex number and all but a finite number of yj are zero, is dense in ℓp. It
suffices to show that if x ∈ ℓp, then x is an accumulation point of E, i.e., every
neighbourhood of x contains an element from E. For an arbitrary ε > 0, choose N
so large that

∑∞
j=N+1 |xj |p < εp. Next, for j = 1, ... , N , choose yj 6= xj such

that |xj − yj | < ε/N1/p, and set yj = 0 for j = N + 1, N + 2, ... . If y = (yj), then

dp(x, y)p =

N∑

j=1

|xj − yj |p +

∞∑

j=N+1

|xj |p = 2εp,

and hence, dp(x, y) < 2ε. This shows that x is an accumulation point of E.

Example 2.8.4. We will show that ℓ∞ is not separable. Let Y be the subspace
to ℓ∞ that consists of all sequences, where all elements in the sequence are 0 or 1.
Then Y is uncountable since every element in Y corresponds to a number in [0, 1]
written in the basis 2. The distance between two non-equal elements of Y is 1,
which implies that the balls B1/2(x), where x ∈ Y , are disjoint. Now, suppose
that {x1, x2, ...} were a countable, dense subset to ℓ∞. Then every ball B1/2(x)
would contain at least one xn. But this is impossible since the set of such balls is
uncountable. �

We leave it as an exercise to show that the subspaces c and c0 to ℓ∞ are in fact
separable.
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Example 2.8.5. The argument that was employed in Example 2.8.4 shows that a
discrete metric space X is separable if and only if X is countable. �

Example 2.8.6. It follows from the Weierstrass approximation theorem (Corol-
lary 5.7.7) that the space C(K), where K is a compact subset to Rd is separable:
The set of polynomials with rational coefficients is dense in C(K). �

Example 2.8.7. It shown in integration theory that the space Lp(E) is separable
for 1 ≤ p < ∞, but not for p = ∞. �

Exercises

E2.1. Show that all intervals (−∞, a) and (a,∞), where −∞ < a < ∞, are open.

E2.2. Prove (iii) in Theorem 2.1.8.

E2.3. Prove (c) in Theorem 2.3.5.

E2.4. Show that c and c0 are separable.
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Convergence in Metric Spaces

In this chapter, X will denote a metric space with metric d.

3.1. The Definition

Definition 3.1.1. A sequence (xn) ⊂ X is convergent with the limit x ∈ X
if d(x, xn) → 0. We denote this circumstance by writing xn → x or limn→∞ xn = x.

Proposition 3.1.2. The limit of a convergent sequence is unique.

Proof. Suppose that xn → x and xn → x′. Then

d(x, x′) ≤ d(x, xn) + d(xn, x′) → 0,

so d(x, x′) = 0 and hence x = x′.

Example 3.1.3. In Rd and Cd with the standard metric d2, a sequence converges
if and only if every coordinate sequence converges:

xn = (x1
n, ... , xd

n)t → x = (x1, ... , xd)t if and only if xj
n → xj , j = 1, ... , d.

It is easy to see that the same holds with the metrics dp, where 1 ≤ p ≤ ∞. �

In the next example, we will show that in ℓ∞ — unlike in Rd and Cd — coordinate-
wise convergence does not imply convergence. The converse, however, is of course
true: If a sequence converges in ℓ∞, then every sequence of coordinates converges.

Example 3.1.4. Let xn = (xj
n)∞j=1 ∈ ℓ∞, n = 1, 2, ... , where xj

n = 1 for 1 ≤ j ≤ n

and xj
n = 0 for j > n, and x = (xj)∞j=1 ∈ ℓ∞, where xj = 1 for every j. Then, for

every j, xj
n → xj , but xn 9 x since d(x, xn) = sup1≤j<∞ |xj − xj

n| = 1. �

Example 3.1.5. In ℓ∞(M), fn → f if d(f, fn) = supx∈M |f(x)−fn(x)| → 0. This
type of convergence is known as uniform convergence. �

The next proposition shows that the accumulation points of a set E is the
elements in X that can be approximated arbitrarily well by elements in E.

Proposition 3.1.6. Let E be a subset to X. Then x ∈ E′ if and only if there
exists a sequence (xn) ⊂ E such that xn 6= x for every n and xn → x.

Proof. If x ∈ E′, then, for n = 1, 2, ... , there exists an element xn ∈ E such
that xn 6= x and xn ∈ B1/n(x). But then d(x, xn) < 1

n
, so xn → x. Conversely,

suppose that xn 6= x for every n and xn → x. If G is an arbitrary neigbourhood
of x, there exists a ball Br(x) ⊂ G. Since xn → x, xn ∈ Br(x) if n is large enough.
This proves that x ∈ E′.

Corollary 3.1.7. Let F be a subset to X. Then F is closed if and only if the limit
of any convergent sequence of elements in F belongs to F .

Proof. Suppose that F is closed and that (xn) ⊂ F such that xn → x ∈ X .
If xn = x for some n, then x ∈ F . Otherwise, it follows from Theorem 3.1.6
that x ∈ F ′. But according to Corollary 2.6.4, F ′ ⊂ F , so x ∈ F . To prove the
converse, we let x ∈ F ′ and choose a sequence (xn) ⊂ F such that xn → x. Then,
by the assumption, x ∈ F . Thus, F ′ ⊂ F , so F is closed.

12
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3.2. Cauchy Sequences

Definition 3.2.1. A sequence (xn) ⊂ X is a Cauchy sequence if

d(xm, xn) → 0 as m, n → ∞.

Proposition 3.2.2. Every convergent sequence in X is a Cauchy sequence.

Proof. Suppose that xn → x. Then

d(xm, xn) ≤ d(xm, x) + d(x, xn) → 0 as m, n → ∞.

The converse to this proposition is false:

Example 3.2.3. The sequence ( 1
n )∞n=1 ⊂ (0, 1] is a Cauchy sequence since

∣∣∣
1

m
− 1

n

∣∣∣ ≤ 1

m
+

1

n
→ 0 as m, n → ∞.

However, it is not convergent in (0, 1]. �

3.3. Completeness

Definition 3.3.1. A subset Y to X is complete if every Cauchy sequence in Y is
convergent.

Example 3.3.2. Accoording to Example 3.2.3, (0, 1] ⊂ R is not complete. �

Example 3.3.3. The space Q is not complete. Take for instance xn = (1 + 1
n )n

for n = 1, 2, ... . This is a Cauchy sequence in Q since it converges to e in R. But
since e /∈ Q, the sequence is not convergent in Q. �

The next result, which we state without a proof, shows that R is complete.

Theorem 3.3.4 (The Cauchy Criterion). Every Cauchy sequence in R is con-
vergent.

Corollary 3.3.5. The spaces Rd and Cd are complete.

Proof. As in Example 3.1.3, we see that if (xn) is a Cauchy sequence in Rd, then
every coordinate sequence is a Cauchy sequence and thus convergent. Again using
Example 3.1.3, this implies that (xn) is convergent. The completeness of Cd follows
by looking at the real and imaginary parts of a sequence.

Proposition 3.3.6. For 1 ≤ p < ∞, ℓp is complete.

Proof. Let (xn) be a Cauchy sequence in ℓp, where xn = (xj
n)∞j=1 ∈ ℓp. Given an

arbitrary ε > 0, we choose N so large that

dp(xm, xn)p =

∞∑

j=1

|xj
n − xj

m|p < εp if m, n ≥ N. (1)
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This of course implies that, for every fixed j ≥ 1, |xj
n − xj

m| < ε if m, n ≥ N , so
that (xj

n)∞j=1 is a Cauchy sequence for every j. The completeness of C now implies

that there exist numbers xj such that xj
n → xj as n → ∞. Let x = (xj)∞j=1. It

follows from (1) that, for every k ≥ 1,

k∑

j=1

|xj
n − xj

m|p < εp if m, n ≥ N.

If we first let m → ∞ and then k → ∞ in this inequality, we obtain

∞∑

j=1

|xj
n − xj |p ≤ εp if n ≥ N. (2)

This shows that xn −x ∈ ℓp. But since we know that ℓp is a vector space, it follows
that x = xn − (xn − x) ∈ ℓp. The inequality (2) also shows that d(x, xn) ≤ ε
if n ≥ N , and thus xn → x.

Example 3.3.7. We know from theory of integration that Lp(E) is complete
for 1 ≤ p ≤ ∞. �

Proposition 3.3.8. For an arbitrary set M , ℓ∞(M) is complete.

It follows, for instance, that ℓ∞ is complete.

Proof. Let (fn) ⊂ ℓ∞(M) be a Cauchy sequence. Then

|fm(x) − fn(x)| ≤ d(fm, fn) → 0 for every x ∈ M,

which shows that (fn(x))∞n=1 ⊂ C is a Cauchy sequence for every x ∈ M . Since C
is complete, this implies that f(x) = limn→∞ fn(x) exists for every x ∈ M . We
next show that fn → f in ℓ∞(M). Let ε > 0 be arbitrary and choose N so large
that d(fm, fn) < ε if m, n ≥ N . Given x ∈ M , we then choose m ≥ N such
that |f(x) − fm(x)| < ε. It now follows that

|f(x)− fn(x)| ≤ |f(x) − fm(x)| + |fm(x) − fn(x)| < ε + d(fm, fn) < 2ε

if n ≥ N . This holds for every x ∈ M , so d(f, fn) ≤ 2ε if n ≥ N , i.e., fn → f .
From the last inequality, we obtain that

|f(x)| ≤ |f(x) − fN (x)| + |fN (x)| < 2ε + sup
y∈M

|fN (y)|

for every x ∈ M , which shows that f is bounded on M .

The next result is often useful for proving that a metric space is complete.

Proposition 3.3.9.

(a) If F is a complete subspace to X, then F is closed.

(b) If X is complete, then evey closed subspace F to X is complete.
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Thus, if X is complete, a subspace to X is complete if and only if it is closed.

Proof.

(a) Let (xn) ⊂ F be a sequence that converges to x ∈ X . Using Proposition 3.2.2
and the completeness of F , it follows directly that x ∈ F . According to
Corollary 3.1.7, this implies that F is closed.

(b) Let (xn) ⊂ F be a Cauchy sequence. Since X is complete, there exists an
element x ∈ X such that xn → x. But F is closed, so x ∈ F . This shows
that F is complete.

3.4. Completion

Example 3.4.1. It is known that the space R1[a, b] is not complete. �

The next theorem, which we will not use and hence state without a proof, shows
that every incomplete may be embedded in a complete metric space.

Theorem 3.4.2. There exists a metric space X̂ with metric d̂ such that

(i) X̂ is complete,

(ii) there exists an isometry σ : X → X̂ such that d̂(σ(x), σ(y)) = d(x, y) for
all x, y ∈ X,

(iii) σ(X) is dense in X̂.

The space X̂ is called the completion of X.

Example 3.4.3. We give two examples of completions:

(a) R is the completion of Q;

(b) L1(a, b) is the completion of R1[a, b]. �

Exercises

E3.1. Show that if a Cauchy sequence in a metric space has a convergent subsequence,
then the sequence is convergent.
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Continuity in Metric Spaces

Let X and Y denote metric spaces with metrics dX and dY , respectively.

4.1. The Definition

The following definition mimics the one usually encountered in analysis courses.

Definition 4.1.1. A function f from X to Y is continuous at x ∈ X if there for
every ε > 0 exists a δ > 0 such that

dX(x, x′) < δ implies that dY (f(x), f(x′)) < ε.

The function f is continuous if it is continuous at every point in X .

4.2. A Topological Characterisation of Continuity

Proposition 4.2.1. A function f : X → Y is continuous if and only if f−1(V ) is
open in X for every open subset V to Y .

Here, we use the notation f−1(V ) = {x ∈ X : f(x) ∈ V }, where V is a subset to Y .

Proof. Suppose that f is continuous and let V be an open subset to Y . We can
obviously assume that f−1(V ) is non-empty, so there exists a point x ∈ f−1(V ).
Since V is open, there exists an ε > 0 such that Bε(f(x)) ⊂ V . If δ > 0 is as in
the definition of continuity, it follows that f(x′) ∈ Bε(f(x)) if x′ ∈ Bδ(x), which
means that Bδ(x) ⊂ f−1(V ), so f−1(V ) is open.

Conversely, let x ∈ X and ε > 0. If V = Bε(f(x)), then since f−1(V ) is
open by assumption, there exists a number δ > 0 such that Bδ(x) ⊂ f−1(V ),
i.e., dX(x, x′) < δ implies that dY (f(x), f(x′)) < ε, so f is continuous at x.

Example 4.2.2. Let X be a discrete metric space. According to Example 2.1.7,
all subsets to X are open, so every function f : X → Y is trivially continuous. �

4.3. A Sequential Characterisation of Continuity at a Point

Proposition 4.3.1. A function f : X → Y is continuous at x ∈ X if and only
if f(xn) → f(x) for every sequence (xn) ⊂ X such that xn → x.

Proof. Suppose that f is continuous at x and that xn → x. Given ε > 0, let δ > 0
be as in the definition of continuity. Then dX(x, xn) < δ if n is sufficiently large,
so it follows that dY (f(x), f(xn)) < ε for those n. Thus, f(xn) → f(x).

To prove the converse, we suppose that f is not continuous at x. Then there
exists an ε > 0 and a sequence (xn) ⊂ X such that dX(x, xn) < 1

n
for every n,

but dY (f(x), f(xn)) ≥ ε. This, of course, contradicts the assumption.

Proposition 4.3.1 in conjunction with the ordinary rules for limits of numerical
sequences gives us the following result.

16
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Proposition 4.3.2. Suppose that f, g : X → C are continuous at x ∈ X. Then
the functions αf +βg, where α, β ∈ C, and fg are continuous at x. If, in addition,
we assume that g(x) 6= 0, then the function f/g is continuous at x.

It follows that if f and g are continuous, then αf + βg and fg also are continuous,
and that f/g is continuous if g(x) 6= 0 for every x ∈ X .

4.4. Spaces of Continuous Functions

Definition 4.4.1. We denote by C(X) the set of continuous, complex-valued func-
tions on X . The subset of bounded functions in C(X) is denoted Cb(X).

We denote by C(X,R) and Cb(X,R) the real-valued functions and bounded, real-
valued functions in C(X), respectively. It is clear that Cb(X) and Cb(X,R) are
metric spaces with the metric

d∞(f, g) = sup
x∈X

|f(x) − g(x)|.

According to Proposition 4.3.2, all these spaces are vector spaces.

Proposition 4.4.2. The space Cb(X) is a closed subspace of ℓ∞(X).

Proof. Suppose that (fn) ⊂ Cb(X) and that fn → f ∈ ℓ∞(X); we will show
that f is continuous at every x ∈ X . Let ε > 0 be given and choose n so large
that d∞(f, fn) < ε. Next, using the fact that fn is continuous at x, choose δ > 0
such that |fn(x) − fn(x′)| < ε for every x′ ∈ X such that dX(x, x′) < δ. It then
follows that

|f(x)− f(x′)| ≤ |f(x) − fn(x)| + |fn(x) − fn(x′)| + |fn(x′) − f(x′)|
≤ 2d∞(f, fn) + ε < 3ε

if dX(x, x′) < δ, which is exactly what we wanted to prove.

Corollary 4.4.3. The space Cb(X) is complete.

Proof. Since Cb(X) is a closed subspace of ℓ∞(X) and ℓ∞(X) is complete, it
follows from Proposition 3.3.9 that Cb(X) is complete.

Since Cb(X,R) obviously is a closed subspace to Cb(X), it follows that Cb(X,R)
is complete.
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Compactness in Metric Spaces

In this chapter, X will denote a metric space with metric d.

5.1. Definition and Examples

Definition 5.1.1. An open covering of X is a collection {Gα}α∈A of open subsets
to X such that X ⊂

⋃
α∈A Gα. A finite subcovering to such a covering is an

open covering {Gα}α∈A′ of X , where A′ is a finite subset to A.

Definition 5.1.2. The space X is compact if every open covering of X has a
finite subcovering. A subspace K to X is compact if K is compact with respect to
the relative topology.

It follows from Proposition 2.4.1 that an open covering of a subspace K to X has
the form {Gα ∩ K}α∈A, where every Gα is an open subset to X .

Example 5.1.3.

(a) The interval (0, 1) ⊂ R is not compact since the covering ( 1
n , 1), n = 1, 2, ... ,

of (0, 1) obviously has no finite subcovering.

(b) The space R is not compact since the covering (−n, n), n = 1, 2, ... , of R
lacks a finite subcovering.

(c) Every finite subset to Rd is obviously compact. �

Proposition 5.1.4. If X is compact and F ⊂ X is closed, then F is compact.

Proof. Suppose that F ⊂
⋃

α∈A Gα ∩ F , where every Gα is open in X . It then
follows that X ⊂

⋃
α∈A Gα ∪ F c. But since X is compact, there exist a finite

number of indices α1, ... , αn such that X ⊂ ⋃n
j=1 Gαj

∪ F c. But this implies

that F ⊂
⋃n

j=1 Gαj
∩ F , i.e., F is compact.

Definition 5.1.5. A subset E to X is bounded if supx,y∈E d(x, y) < ∞.

Proposition 5.1.6. Every compact subset K to X is closed and bounded.

According to the Heine–Borel theorem below (Theorem 5.2.5), the converse to this
proposition is true in Rd and Cd. In general, however, the converse is false; see
Example 5.2.6.

Proof. We will first show that K is closed. Let y ∈ Kc. For every x ∈ K,
there exist two disjoint, open balls Bx och By

x such that x ∈ Bx and y ∈ By
x.

Since K ⊂
⋃

x∈K Bx ∩K and K is compact, there are elements x1, ... , xn ∈ K such
that K ⊂

⋃n
j=1 Bxj

∩K. The set G =
⋂n

j=1 By
xj

is then a neighbourhood of y such
that G ∩K = ∅. This shows that y is not an accumulation point of K. Since this
is true for every y ∈ Kc, K ′ ⊂ K, so K is closed.

18
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To show that K is bounded, we first extract a finite subcovering {B1(xj)∩K}n
j=1

from the covering {B1(x)∩K}x∈K of K. Suppose that x, y ∈ K and that x ∈ B1(xr)
and y ∈ B1(xs). Then

d(x, y) ≤ d(x, xr) + d(xr, xs) + d(xs, y) < 2 + max
1≤j,k≤N

d(xj, xk),

which shows that K is bounded.

5.2. Totally Bounded Sets, Sequential Compactness

Definition 5.2.1. The space X is totally bounded if there for every ε > 0 exist
elements x1, ... , xn ∈ X such that X ⊂

⋃n
j=1 Bε(xj).

As in the proof of proposition 5.1.6, one can show that a compact space is totally
bounded and that a totally bounded space is bounded. A bounded space, however,
does not have to be totally bounded; see Example 5.2.6.

Definition 5.2.2. The space X is called sequentially compact is every sequence
in X has a convergent subsequence.

The following theorem summarises the relations between the concepts introduced
so far. Notice that a consequence of the theorem is that every compact space is
complete.

Theorem 5.2.3. The following conditions are equivalent :

(i) X is compact ;

(ii) X sequentially compact ;

(iii) X complete and totally bounded.

Proof. We will first show that (i) implies (ii). Let (xn)∞n=1 be a sequence of ele-
ments from X . The set Fn = {xn, xn+1, ...}, n = 1, 2, ... , is by definition closed, so
its complement Gn = X \ Fn is open. Suppose that

⋂∞
n=1 Fn = ∅. It then follows

that
∞⋃

n=1

Gn =

∞⋃

n=1

(X \ Fn) = X \
∞⋂

n=1

Fn = X,

so the sets Gn form an open covering of X . Since X is assumed to be compact, X
is covered by a finite number of the sets Gn: X ⊂ ⋃N

n=1 Gn. But this implies

that
⋂N

1 Fn=1 = ∅, which is impossible since xj ∈
⋂N

n=1 Fn for j ≥ N . The
assumption was thus incorrect, so we have

⋂∞
n=1 Fn 6= ∅. A moment’s reflection

shows that this implies that (xn)∞1 has a convergent subsequence.
We next show that (ii) implies (iii). If (xn) ⊂ X is a Cauchy sequence, then

by the assumption, the sequence has a convergent subsequence, which implies
that the whole sequence is convergent (see Exercise E3.1). Thus, X is complete.
Now suppose that X is not totally bounded. Then there exists a number ε > 0
such that X 6⊂

⋃N
n=1 Bε(xn) no matter how N and x1, ... , xN are chosen. First

choose x1 ∈ X arbitrary, then x2 ∈ Bε(x1)
c, then x3 ∈ (Bε(x1) ∪ Bε(x2))

c and
so on. But since d(xm, xn) ≥ ε for m, n = 1, 2, ... , the sequence (xn) cannot have
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a convergent subsequence (it is not even a Cauchy sequence). This contradiction
shows that X is totally bounded.

Let us finally show that (iii) implies (i). Suppose that {Gα}α∈A is a covering
of X with no finite subcovering. Since X is assumed to be totally bounded, there

are elements x
(1)
1 , ... , x

(1)
N1

∈ X such that X ⊂
⋃N1

j=1 B1(x
(1)
j ). At least one of the

balls in the covering — say B1 — cannot be covered with a finite number of sets Gα

(otherwise X could also be covered with a finite number of sets Gα). Now suppose

that X ⊂
⋃N2

j=1 B2−1(x
(2)
j ). Of the balls B2−1(x

(2)
j ), that intersect B1, at least

one — say B2 – has no finite subcovering. Continuing in this way, we obtain a
sequence of open balls Bn with centers xn and radii 2−n, such that none of the
balls can be covered with a finite number of sets Gα. Suppose that y ∈ Bn ∩Bn+1.
Then

d(xn, xn+1) ≤ d(xn, y) + d(y, xn+1) < 2−n + 2−(n+1) < 2−(n−1),

which implies that for m > n ≥ N ,

d(xn, xm) ≤ d(xn, , xn+1) + ... + d(xm−1, xm) < 2−(n−1) + ... + 2−(m−2)

< 2−(N−2).

Thus, (xn) is a Cauchy sequence and therefore the sequence converges to some
element x ∈ X . Suppose that x ∈ Gα and choose r so small that Br(x) ⊂ Gα

and n so large that d(x, xn) < r/2 and 2−n < r/2. If y ∈ Bn, then d(x, y) < r,
so Bn ⊂ Br(x) ⊂ Gα, which is a contradiction. We conclude that X is compact.

Corollary 5.2.4. If X is complete, then K ⊂ X is compact if and only if K is
closed and totally bounded.

Using this corollary, we get a short proof of the classical Heine–Borel theorem.

Theorem 5.2.5 (Heine–Borel). If K is closed and bounded set in Rdor Cd,
then K is compact.

Proof. We prove the the theorem for subsets to Rd and leave the rest of the proof
as an exercise. Since K is bounded, K ⊂ [−a, a]d if a is sufficiently large. By
Corollary 5.2.4, the set [−a, a]d is compact since it is closed and totally bounded.
From Proposition 5.1.4, it now follows that K is compact.

Example 5.2.6. The set B1(0) ⊂ ℓ2 is obviously both closed and bounded; it
is, however, not compact. In fact, let (δn)∞n=1 ⊂ B1(0) be defined by δj

n = 1
if j = n and δj

n = 0 otherwise. Then d2(δm, δn) =
√

2 if m 6= n, which shows
that the sequence does not contain a convergent subsequence. Hence, B1(0) is not
sequentially compact and not compact. This example also shows that a bounded
set does not have to be totally bounded. �

5.3. Relatively Compact Sets

Definition 5.3.1. A subspace Y to X is relatively compact if Y is compact.
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Example 5.3.2. Every bounded subset E to Rd is relatively compact. Indeed, E
is closed and bounded, and thus compact by the Heine–Borel theorem. �

The following necessary and sufficient condition for a subspace to be relatively
compact follows from Theorem 5.2.3.

Proposition 5.3.3. A subspace Y to X is relatively compact if and only if every
sequence in Y has a subsequence that converges to an element of Y .

Proof. If Y is relatively compact, then every sequence in Y and, in particular,
every sequence in Y has a subsequence with limit in Y . For the converse, let (xn)
be a sequence in Y . Then, according to Proposition 3.1.6, there exist a sequence
of elements yn ∈ Y such that d(xn, yn) < 1

n
for every n. The assumption now

shows that some subsequence (ynk
) converges to y ∈ Y . But then (by the triangle

inequality), xnk
also converges to y.

Corollary 5.3.4 (The Bolzano–Weierstrass Theorem). In Rd and Cd, ev-
ery bounded sequence has a convergent subsequence.

Proof. We prove the the corollary for real sequences and leave the rest of the
proof as an exercise. Suppose that (xn) is a bounded sequence in Rd. Then the
set Y = {xn : n = 1, 2, ...} is bounded and thus relatively compact as a subspace
to Rd.

We leave the proof of the following proposition as an exercise.

Proposition 5.3.5. Every relatively compact subspace to X is totally bounded, and
if X is complete, every totally bounded subspace to X is relatively compact.

5.4. Continuous Functions on Compact Sets

We next prove the classical results about continuous functions on compact sets in
a general setting. Below, Y will denote a metric space with metric dY .

Theorem 5.4.1. If X is compact and f : X → Y is a continuous function, then
the range f(X) of f is also compact.

Proof. Suppose that f(X) =
⋃

α∈A Vα, where every Vα is open in f(X). Then,
according to Proposition 4.2.1, the set Uα = f−1(Vα) is open for every α. Moreover,
there holds X =

⋃
α∈A Uα. Now, since X is assumed to be compact, there are in-

dices α1, ... , αn ∈ A such that X =
⋃n

k=1 Uαk
. This implies that f(X) =

⋃n
k=1 Vαk

,
so f(X) is compact.

Theorem 5.4.2. If X is compact and f : X → R is continuous, then f attains a
maximal and a minimal value on X.

Proof. We will show that f has a maximal value on X ; the existence of a minimal
value follows by considering the function −f . By Theorem 5.4.1, f(X) is compact,
and hence bounded and closed by the Heine–Borel theorem. The fact that f(X)
is bounded implies that sup f(X) < ∞, and the fact that f(X) is closed that
sup f(X) ∈ f(X). Thus, there exists a point x ∈ X such that f(x) = sup f(X).
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Definition 5.4.3. A function f : X → Y is uniformly continuous if there for
every ε > 0 exists a δ > 0 such that

d(x, x′) < δ implies that dY (f(x), f(x′)) < ε.

Theorem 5.4.4. If X is compact, then every continuous function f : X → Y is
uniformly continuous.

Proof. Let ε > 0 be given. Then, for every x ∈ X , there exists a number δ(x) > 0
such that dY (f(x), f(x′)) < ε if d(x, x′) < δ(x). The balls Bδ(x)/2(x), where x
varies over X , of course cover X , so by compactness, we can find a finite number
of points x1, ... , xn ∈ X such that X =

⋃n
j=1 Bj, where Bj = Bδ(xj)/2(xj). Next

put δ = 1
2 min(x1, ... , xn) and suppose that d(x, x′) < δ. If x ∈ Bj for some j, then

d(xj , x
′) ≤ d(xj , x) + d(x, x′) < 1

2δ(xj) + δ ≤ δ(xj),

so x′ ∈ Bj . Using the fact that f is continuous at xj , it now follows that

dY (f(x), f(x′)) ≤ dY (f(x), f(xj)) + dY (f(xj), f(x′)) < 2ε.

5.5. Compactness Criteria — The Arzelà–Ascoli theorem

Let X denote a compact metric space with metric d.

Definition 5.5.1. A subset E to C(X) is said to be equicontinuous if for ev-
ery ε > 0, there exists a number δ > 0 such that, for every f ∈ E,

d(x, x′) < δ implies that |f(x)− f(x′)| < ε.

Example 5.5.2. The subset

E = {f ∈ C[a, b] : |f(s)− f(t)| ≤ C|s − t|α, s, t ∈ [a, b]}

to C[a, b], where α > 0 is fixed, is equicontinuous. �

Theorem 5.5.3 (The Arzelà–Ascoli theorem). A subspace E to C(X) is rel-
atively compact if and only if E is bounded and equicontinuous.

The sufficiency part of the theorem was proved by G. Ascoli in 1882-83 and the
necessity part by C. Arzelà in 1889.

Proof. We can obviously assume that both X and E are non-empty. First, suppose
that the subspace E is relatively compact. Then, according to Proposition 5.3.5, E
is totally bounded, so for a given ε > 0, there are functions f1, ... , fn ∈ E such
that E ⊂

⋃n
j=1 Bε(fj). It also follows from Theorem 5.4.4 that each of these

functions is uniformly continuous, that is, we can find a number δ > 0 such
that |fj(x)−fj(x

′)| < ε for every j if d(x, x′) < δ. Now, suppose that f ∈ E∩Bε(fj).
If d(x, x′) < δ, then

|f(x) − f(x′)| ≤ |f(x) − fj(x)| + |fj(x) − fj(x
′)| + |fj(x

′) − f(x′)| < 3ε,
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thus proving that E is equicontinuous. The set E is finally bounded since it is
totally bounded.

Suppose conversely that E is bounded and equicontinuous. Let ε > 0 be arbi-
trary and δ > 0 as in the definition of equicontinuity. Since X is compact and hence
totally bounded, there are points x1, ... , xm ∈ X such that X =

⋃m
j=1 Bδ(xj). From

the boundedness of E, it follows that the set {(f(x1), ... , f(xn))t : f ∈ E} ⊂ Cn is
bounded and therefore totally bounded, so there are functions f1, ... , fn ∈ E such
that if f ∈ E, then ( n∑

j=1

|f(xj) − fk(xj)|2
)1/2

< ε

for some k. If x ∈ Bδ(xj), then

|f(x) − fk(x)| ≤ |f(x) − f(xj)| + |f(xj) − fk(xj)| + |fk(xj) − fk(x)| < 3ε.

Taking the supremum over all x ∈ X , it follows that d∞(f, fk) ≤ 3ε. Thus, E
is totally bounded and hence relatively compact by Corollary 4.4.3 and Proposi-
tion 5.3.5.

5.6. Peano’s Existence Theorem

As an application of the Arzelà–Ascoli theorem, we prove the Peano existence theo-
rem. Consider the following system of differential equations with initial conditions:

{
y′(t) = f(t, y(t)), t ≥ 0

y(0) = y0

. (1)

Here we assume that the function f in the right-hand side is continuous on the
compact set A = {(t, y) ∈ R × Rd : 0 ≤ t ≤ T, |y − y0| ≤ K} with values in Rd.
Suppose also that |f | ≤ M on this set.

Theorem 5.6.1 (G. Peano 1890). The problem (1) has at least one solution y
defined for 0 ≤ t ≤ T1, where T1 = min(T, K/M).

In the proof we will use the space C[0, T1;R
d] of continuous functions on [0, T1]

with values in Rd. The metric in this space is d∞(x, y) = sup0≤t≤T1
|x(t) − y(t)|.

It is not so hard to show that C[0, T1;R
d] is complete.

Proof. For n = 1, 2, ..., put yn(t) = y0 for 0 ≤ t ≤ T1/n. Next, define yn(t)
for T1/n ≤ t ≤ 2T1/n by

yn(t) = y0 +

∫ t−T1/n

0

f(τ, yn(τ)) dτ. (2)

Notice that yn is well-defined through this formula and that |yn(t)− y0| ≤ MT1/n.
Using the fact that MT1 ≤ K, we now see that equation (2) also defines yn(t)
for 2T1/n ≤ t ≤ 3T1/n and that |yn(t)− y0| ≤ 2MT1/n ≤ K for t belonging to this
interval. We continue in this way and obtain that (2) defines yn on [0, T1] and that
|yn| ≤ |y0| + K. One can also show that

|yn(t) − yn(s)| ≤ M |t − s|
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for 0 ≤ s ≤ t ≤ T1. If, for instance, T1/n ≤ s ≤ t ≤ T1, then

|yn(t) − yn(s)| =

∣∣∣∣

∫ t−T1/n

s−T1/n

f(τ, yn(τ)) dτ

∣∣∣∣ ≤ M |t − s|.

From this, we obtain that the subspace E = {yn : n = 1, 2, ...} to C[0, T1;R
d]

is equicontinuous. Hence, according to the Arzelà–Ascoli theorem, E is relatively
compact. It now follows from Proposition 5.3.3 and Proposition 4.4.2 that there ex-
ists a subsequence to (yn)∞n=1, which we after renumbering still can denote (yn)∞n=1,
that converges to a function y ∈ C[0, T1;R

d]. Letting n → ∞ in (2) and using the
fact that f is uniformly continuous, we obtain that

y(t) = y0 +

∫ t

0

f(τ, y(τ)) dτ, 0 ≤ t ≤ T1,

which implies that y is continuously differentiable and satisfies (1).

Example 5.6.2. The solution to (1), whose existence is guaranteed by Theo-
rem 5.6.1, does not necessarily have to be unique. For instance, the problem

{
y′(t) = 2

√
y(t), t ≥ 0

y(0) = 0

has both the solution y(t) = 0, t ≥ 0, and the solution y(t) = t2, t ≥ 0. �

5.7. The Stone–Weierstrass Theorem

In this section, X denotes a compact metric space. Thus, all continuous real- or
complex-valued functions are bounded.

Definition 5.7.1. A subspace A to C(X) is a subalgebra to C(X) if αf +βg ∈ A
and fg ∈ A whenever f, g ∈ A and α, β ∈ C.

Notice that every subalgebra is a vector subspace to C(X) and that C(X) is a
subalgebra to itself. The notion of a subalgebra to C(X,R) is defined similarly.

Lemma 5.7.2. For every number ε > 0, there exists a real polynomial p such that

max
−1≤t≤1

∣∣|t| − p(t)
∣∣ < ε.

Proof. Given ε > 0, put fε(t) = (t + ε2/4)1/2, 0 ≤ t ≤ 1. It is not so hard to see
that the Taylor series at t = 1

2
for fε converges uniformly to fε on [0, 1]. Thus, there

exists a polynomial q such that |fε(t)− q(t)| < ε
2 for 0 ≤ t ≤ 1. Now, if −1 ≤ t ≤ 1,

then ∣∣|t| − q(t2)
∣∣ ≤

∣∣|t| − fε(t
2)

∣∣ +
∣∣fε(t

2) − q(t2)
∣∣ < ε.

Thus, the assertion follows if we take p(t) = q(t2).

Proposition 5.7.3. Suppose that A is a closed subalgebra to C(X) or C(X,R).
Then, |f | ∈ A if f ∈ A. Moreover, A is a lattice, i.e., if f, g ∈ A, then max(f, g)
and min(f, g) both belong to A.
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Proof. We first prove that if f ∈ A, then |f | ∈ A. First suppose that |f | ≤ 1.
Let ε > 0 and let p denote the polynomial in Lemma 5.7.2. Then p(f) ∈ A
and

∣∣|f(x)| − p(f(x))
∣∣ < ε for every x ∈ X . It follows that |f | ∈ A, i.e., |f | ∈ A

since A is closed. For a general function f , let M = max |f |. Then |f |/M ∈ A,
so |f | = M(|f |/M) ∈ A. The second assertion follows from the identities

max(f, g) = 1
2(|f + g| + |f − g|), min(f, g) = 1

2 (|f + g| − |f − g|).

Definition 5.7.4. A subalgebra A to C(X) or C(X,R) separates points if, for
all y, z ∈ X such that y 6= z, there exists a function g ∈ A such that g(y) 6= g(z).

Theorem 5.7.5 (The Real Stone–Weierstrass Theorem). If A is a closed
subalgebra to C(X,R) such that A separates points and 1 ∈ A, then A = C(X,R).

Proof. Let f ∈ C(X,R). If y 6= z, then, since A separates points, there exists a
function g ∈ A such that g(y) 6= g(z). The function fy,z, defined by

fy,z(x) = f(z) + (f(y) − f(z))
g(x)− g(z)

g(y)− g(z)
, x ∈ X,

belongs to A and satisfies fy,z(z) = f(z). Since f and fy,z are continuous, it follows
that for ε > 0, there exists an open ball Bz with center z such that fy,z(x) < f(x)+ε
for every x ∈ Bz. Using the fact that X is compact, we can cover X with a
finite number of balls Bz1

, ... , Bzm
. If fy = min(fy,z1

, ... , fy,zm
), then fy ∈ A

and fy(x) < f(x) + ε for every x ∈ X . Moreover, since fy(y) = f(y), there is
an open ball By with center y such that fy(x) > f(x) − ε for every x ∈ By. By
compactness, X can be covered by a finite number of balls By1

, ... , Byn
. If we

let g = max(fy1
, ... , fyn

), then g ∈ A and

f(x) − ε < g(x) < f(x) + ε,

that is, |f(x) − g(x)| < ε for every x ∈ X . Since ε was arbitrary and A is closed,
this shows that f ∈ A.

Theorem 5.7.6 (The Stone–Weierstrass Theorem). If A is a closed subalge-
bra to C(X) such that A separates points, 1 ∈ A, and f ∈ A whenever f ∈ A,
then A = C(X).

Without the assumption that A is closed under complex conjugation, the conclusion
in the Stone–Weierstrass Theorem may be false.

Proof. Notice that if f ∈ A, then Re f = 1
2
(f + f) ∈ A and Im f = 1

2i
(f − f) ∈ A.

Moreover, the set Re(A) = {Re f : f ∈ A} is a closed subalgebra to C(X,R) that
satisfies the assumptions of Theorem 5.7.5. Thus, Re(A) = C(X,R). It follows
that A = C(X) since A = Re(A) + i Re(A) and C(X) = C(X,R) + iC(X,R).

Corollary 5.7.7 (Weierstrass’ Approximation Theorem). Suppose that K
is a non-empty, compact subset to Rd. Then every continuous function on K
can be approximated uniformly by polynomials.
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Proof. Let A be the closure in C(K) of the set of complex polynomials in d
variables. Then A satisfies the assumptions of Theorem 5.7.6, so A = C(K).

Basically the same proof gives the following corollary. Here, a trigonometric
polynomial is a function of the form

∑N
n=−N cneint, t ∈ R, where each cn is a

complex number.

Corollary 5.7.8. Every continuous function on R with period 2π can be approxi-
mated uniformly with trigonometric polynomials.

Exercises

E5.1. Finish the proof of Theorem 5.2.5.

E5.2. Show that the set [−a, a]d ⊂ R
d is closed.

E5.3. Prove Proposition 5.3.5.

E5.4. Show that C[0, T1;R
d] is complete.

E5.5. Let f(t) = (t + ε2/4)1/2, 0 ≤ t ≤ 1. Show that the Taylor series of f at t = 1

2

converges uniformly to f on [0, 1].

E5.6. Show that the Stone–Weierstrass theorem may be false without the assumption
that the algebra is closed under complex conjugation.

E5.7. Prove Corollary 5.7.8.
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Cantor’s Nested Set Theorem, Baire’s Category

Theorem

Below, X will denote a metric space with metric d. If E is a subset to X , then the
diameter of E is the number diam(E) = supx,y∈E d(x, y).

6.1. Cantor’s Nested Set Theorem

Theorem 6.1.1. Suppose that X is complete. If F1 ⊃ F2 ⊃ ... is a decreasing
sequence of non-empty, closed subsets to X such that diam(Fn) → 0, then the
intersection

⋂∞
n=1 Fn contains exactly one element.

Proof. First choose one element xn in every set Fn, n = 1, 2, ... . If m > n,
then d(xm, xn) ≤ diam(Fn). Since diam(Fn) → 0, this shows that (xn) is a Cauchy
sequence and hence that xn → x for some x ∈ X because X is complete. Using
the facts that xm ∈ Fn for m ≥ n and every Fn is closed, it follows that x ∈ Fn for
every n, i.e., x ∈

⋂∞
n=1 Fn. Finally, if x, y ∈

⋂∞
n=1 Fn, then d(x, y) ≤ diam(Fn) for

every n, which implies that d(x, y) = 0, that is x = y.

6.2. Baire’s Category Theorem

Definition 6.2.1. A subset E to X is nowhere dense in X if E
◦

= ∅.

Definition 6.2.2. The space X is of the first category if X =
⋃∞

n=1 Xn, where
every set Xn is nowhere dense in X and otherwise of the second category.

Example 6.2.3. As a metric space, Q is of the first category. Indeed, if (rn)∞n=1

is any enumeration of Q, then Q =
⋃∞

n=1{rn} och {rn} is nowhere dense in Q. �

For the case X = Rd, the following theorem was proved by René-Louis Baire
in 1894.

Theorem 6.2.4. Every complete metric space X is of the second category.

Proof. Suppose on the contrary that X =
⋃∞

n=1 Xn, where every set Xn is nowhere
dense in X . Take x0 ∈ X and put r0 = 2. Since x0 is not an interior point
to X1, there exists a point x1 ∈ Br0

(x0) such that x1 /∈ X1. Now, using the fact
that X1

c
is open, choose r1 ≤ 1 such that Br1

(x1) ∩ X1 = ∅. We can also assume
that Br1

(x1) ⊂ Br0
(x0). There also exists a point x2 ∈ Br1

(x1) such that x2 /∈ X2

and a radius r2 ≤ 1
2

such that Br2
(x2)∩X2 = ∅ and Br2

(x2) ⊂ Br1
(x1). Continuing

in the same manner, we obtain a decreasing sequence of balls Brn
(xn), where rn ≤ 1

n

and Brn
(xn) ∩ Xn = ∅. It now follows from Cantor’s theorem that

⋂∞
n=1 Brn

(xn)
contains a unique point x ∈ X . This is a contradiction since x does not belong to
any set Xn.
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6.3. Continuous, Nowhere Differentiable Functions

As an application of Baire’s theorem, we prove that there exist continuous, nowhere
differentiable functions.

Proposition 6.3.1. There exists a continuous function f on [0, 1] that is not dif-
ferentiable at any point.

Proof. For n = 1, 2, ... , let En denote the set of continuous functions f on [0, 1]
for which there exists a point x ∈ [0, 1 − 1

n ] such that
∣∣∣∣
f(x + h) − f(x)

h

∣∣∣∣ ≤ n for 0 < h <
1

n
. (1)

Notice that if f has a right-hand derivative at x ∈ [0, 1), then f ∈ En for some n.
If we can show that every En is nowhere dense in C[0, 1], it follows from Baire’s
theorem that

⋃∞
n=1 En is not the whole of C[0, 1], so there exists a continuous

function which does not belong to any set En and hence is not differentiable at
any point in [0, 1). If this function happens to be differentiable at 1, we can easily
make it nondifferentiable by adding a continuous function which is differentiable
everywhere except at 1.

To show that En is nowhere dense in C[0, 1], it suffices to show that En is closed
and that Ec

n is dense in C[0, 1]. Suppose that (fk) ⊂ En and that fk → f ∈ C[0, 1].
For every k, there exists a point xk ∈ [0, 1 − 1

n ] such that
∣∣∣∣
fk(xk + h) − fk(xk)

h

∣∣∣∣ ≤ n for 0 < h <
1

n
. (2)

From the Bolzano–Weierstrass theorem (Corollary 5.3.4), it follows that (xk) has a
subsequence, which we after renumbering still may denote by (xk), that converges
to x ∈ [0, 1− 1

n ]. For a fixed h such that 0 < h < 1
n , let

g(t) =
f(t + h) − f(t)

h
and gk(t) =

fk(t + h) − fk(t)

h
for 0 ≤ t ≤ 1

n
.

Then

|g(x)− gk(xk)| ≤ |g(x) − g(xk)| + |g(xk) − gk(xk)| ≤ |g(x)− g(xk)| + d∞(g, gk),

and since d∞(g, gk) → 0 and g is continuous at x, it follows that gk(xk) → g(x).
The inequality (1) thus follows from (2). This shows that f belongs to En, so
En is closed. We finally show that Ec

n is dense in C[0, 1]. Let f ∈ C[0, 1] and
let ε > 0 be arbitrary. From Weierstrass’ approxiamation theorem (Corollary 5.7.7),
it follows that there exists a polynomial p such that d∞(f, p) < ε. Let M be the
maximal value of |p′| on [0, 1] and let s be a “saw-tooth function” such that |s| ≤ ε
and the right-hand derivative of s is greater than or equal to n + M everywhere.
Then d∞(f, p+ s) < 2ε and the absolute value of the right-hand derivative of p + s
is greater than or equal to n everywhere, that is, p + s does not belong to En.

Exercises

E6.1. Formulate and prove a converse to Theorem 6.1.1.
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Banach’s Fixed Point Theorem

Let X be a complete metric space with metric d and let F be a mapping from X
into X .

7.1. Fixed Points

Definition 7.1.1. An element x ∈ X is a fixed point of F if F (x) = x.

Example 7.1.2. If T is a linear mapping on Rd and x is an eigenvector of T with
eigenvalue 1, then x is a fixed point of T since, by definition, Tx = x. �

7.2. Lipschitz Mappings and Contractions

Definition 7.2.1. The mapping F is a Lipschitz mapping if there exists a con-
stant L ≥ 0 such that

d(F (x), F (y)) ≤ Ld(x, y) for all x, y ∈ X. (1)

The infimum over all such constants L is called the Lipschitz constant of F . If
the Lipschitz constant is less than 1, F is said to be a contraction.

Remark 7.2.2.

(a) Notice that every Lipschitz mapping is uniformly continuous. Instead of say-
ing that F is a Lipschitz mapping, we will sometimes say that F is Lipschitz
continuous.

(b) In the case X = Rd, the Lipschitz condition (1) takes the form

|F (x) − F (y)| ≤ L|x − y| for all x, y ∈ Rd.

It follows that all derivatives of F (if they exist) are less than or equal L.

Example 7.2.3. Suppose that F : R → R is continuously differentiable satisfy-
ing |F ′(x)| ≤ L for every x ∈ R. Then, according to the mean value theorem,

|F (x) − F (y)| = |F ′(ξ)||x− y| ≤ L|x − y|

for all x, y ∈ R, which shows that F is a Lipschitz mapping. In particular,
if |F ′(x)| ≤ α < 1 for every x ∈ R, then F is a contraction. �

7.3. The Banach Fixed Point Theorem

The following fixed point theorem not only shows that a contraction on a complete
metric space has a unique fixed point, it also gives a practical method for finding
the fixed point numerically.

Theorem 7.3.1 (S. Banach 1922). Every contraction F : X → X has a unique-
ly determined fixed point.

29
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Proof. Let α < 1 denote the Lipschitz constant of F . Define the sequence (xn)∞n=0

by xn+1 = F (xn), n = 0, 1, ... , where x0 ∈ X is arbitrary. Then

d(xk+1, xk) = d(F (xk), F (xk−1)) ≤ αd(F (xk−1), F (xk−2)) ≤ ... ≤ αkd(x1, x0)

for k = 0, 1, ... . If m > n ≥ 0, this implies that

d(xm, xn) ≤
m−1∑

k=n

d(xk+1, xk) ≤ d(x1, x0)

m−1∑

k=n

αk <
αn

1 − α
d(x1, x0). (2)

This shows that (xn)∞n=0 is a Cauchy sequence and hence convergent since X is
complete; let x ∈ X denote the limit of the sequence. Since F is continuous, we
have

F (x) = F ( lim
n→∞

xn) = lim
n→∞

F (xn) = lim
n→∞

xn+1 = x,

so x is a fixed point of F . It remains to show that x is unique. If F (x) = x
and F (y) = y, then

d(x, y) = d(F (x), F (y)) ≤ αd(x, y),

which is impossible unless x = y.

Remark 7.3.2.

(a) The iterations xn+1 = F (xn), n = 0, 1, ... , are called fixed point iterations.
Notice that these iterations converge however the initial approximation x0 is
chosen.

(b) Letting m → ∞ in (2), we obtain the following error estimate:

d(x, xn) <
αn

1 − α
d(x1, x0).

(c) It suffices to assume that d(F (x), F (y)) < d(x, y) for all x, y ∈ X for the
uniqueness part of the theorem.

The next example shows that it is not sufficient that d(F (x), F (y)) < d(x, y) for
all x, y ∈ X for F to have a fixed point.

Example 7.3.3. Let F (x) = x + π
2 − arctan x, x ∈ R. Then, by the mean value

theorem,

|F (x) − F (y)| =

∣∣∣∣1 − 1

1 + ξ2

∣∣∣∣ |x − y| =
ξ2

1 + ξ2
|x − y| < |x − y|,

where ξ is between x and y. Since ξ2/(1+ ξ2) tends to 1 as x and y tend to ∞, this
is also the best possible estimate. It is easy to see that F indeed does not have a
fixed point. �



7.4. Picard’s Existence Theorem 31

7.4. Picard’s Existence Theorem

Consider the initial value problem:

{
y′(t) = f(t, y(t)), 0 ≤ t ≤ a

y(0) = y0

. (3)

Here, f is defined on the set {(t, x) ∈ R × Rd : 0 ≤ t ≤ a, x ∈ Rd} with
values in Rd. Moreover, it is assumed that f is continuous and satisfies a Lipschitz
condition with respect to the second variable (uniformly with respect to t): There
exists a constant L ≥ 0 such that

|f(t, y)− f(t, z)| ≤ L|y − z| for 0 ≤ t ≤ a and y, z ∈ Rd.

Theorem 7.4.1 (E. Picard 1890). The problem (3) has a unique solution.

Proof. The initial value problem (3) is equivalent to the following integral equa-
tion:

y(t) = y0 +

∫ t

0

f(τ, y(τ)) dτ, 0 ≤ t ≤ a. (4)

In fact, integrating (3) gives (4), and differentiating (4) (which is allowed since y
and f are continuous) gives (3). If F (y)(t) denotes the right-hand side of this
equation, we are looking for a fixed point of F . Let X denote the space of continuous
function on [0, a], with values Rd, equipped with the metric

d(x, y) = max
0≤t≤a

|x(t) − y(t)|e−2Lt.

We leave it as an exercise to show that this space is complete. It is easy to see
that F maps X into X . Moreover, if y, z ∈ X and 0 ≤ t ≤ a, then

|F (y)(t)− F (z)(t)| ≤
∫ t

0

|f(τ, y(τ))− f(τ, z(τ))| dτ ≤ L

∫ t

0

|y(τ) − z(τ)| dτ

≤ L

∫ t

0

|y(τ)− z(τ)|e−2Lτe2Lτ dτ ≤ Ld(y, z)

∫ t

0

e2Lτ dτ

≤ 1

2
e2Ltd(x, y).

It follows that d(F (y), F (z)) ≤ 1
2
d(x, y), so F is a contraction. Banach’s fixed point

theorem now shows that F has a unique fixed point y.

Example 7.4.2. We will solve the equation y′ = y, t ≥ 0, with the initial con-
dition y(0) = 1, using fixed point iterations. The right-hand side of the equation
satisfies a Lipschitz condition with L = 1 on every interval [0, a], so it follows from
Theorem 7.4.1, the problem has a unique solution on [0,∞). The corresponding
integral equation is

y(t) = 1 +

∫ t

0

y(τ) dτ, 0 ≤ t < ∞.
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If we take y0 = 1, then

y1(t) = 1 +

∫ t

0

y0(τ) dτ = 1 + t,

y2(t) = 1 +

∫ t

0

y1(τ) dτ = 1 + t +
t2

2
,

y3(t) = 1 +

∫ t

0

y2(τ) dτ = 1 + t +
t2

2
+

t3

6
.

Using induction, we see that yn(t) =
∑n

k=0
tk

k! , n = 0, 1, ... . As n tends to ∞, yn(t)

tends to the anticipated solution y(t) =
∑∞

k=0
tk

k!
= et. �

Example 7.4.3. The initial value problem in Example 5.6.2 does not have a unique
solution. The reason for this is that the right-hand side f(y) = 2

√
y, y ≥ 0, is not

a Lipschitz mapping, for instance since its derivative is unbounded on (0,∞) (cf.
Remark 7.2.2). �

7.5. A Fredholm Equation

Example 7.5.1. We will consider the following integral equation of Fredholm
type:1

x(t) − µ

∫ b

a

K(t, τ)x(τ) dτ = f(t), a ≤ t ≤ b.

Here, f ∈ C[a, b] and K ∈ C([a, b]2) are given functions and µ a parameter; the
solution x should belong to C[a, b]. If we define

F (x)(t) = f(t) + µ

∫ b

a

K(t, τ)x(τ) dτ, a ≤ t ≤ b,

for x ∈ C[a, b], then F maps C[a, b] into C[a, b] and the equation is equivalent to
the fixed point equation F (x) = x. As in the proof of Theorem 7.4.1, one has

‖F (x) − F (y)‖∞ ≤ |µ|‖K‖∞‖x − y‖∞

for all x, y ∈ C[a, b]. Thus, if we assume that |µ|‖K‖∞ < 1, then F is a contraction,
so the equation has a unique solution. �

Exercises

E7.1. Show that the space X of continuous function on an interval [0, a] with values
in R

d, equipped with the metric d(x, y) = max0≤t≤a |x(t)− y(t)|e−2Lt, x, y ∈ X,
is complete.

1Ivar Fredholm (1866–1927), Swedish mathematician
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Normed Spaces, Banach Spaces

In this chapter, X will denote a vector space over a field K which is either R or C.

8.1. Normed Spaces

Definition 8.1.1. A norm on X is a function ‖ · ‖ : X → R such that for
all x, y ∈ X the following properties hold:

(i) ‖ · ‖ is positive: ‖x‖ ≥ 0;

(ii) ‖ · ‖ is definite: if ‖x‖ = 0, then x = 0;

(iii) ‖ · ‖ is homogeneous: ‖αx‖ = |α|‖x‖ for every α ∈ K;

(iv) ‖ · ‖ satisfies the triangle inequality: ‖x + y‖ ≤ ‖x‖ + ‖y‖.

Equipped with a norm, X is called a normed space.

Remark 8.1.2.

(a) Notice that if x = 0, then ‖x‖ = ‖0x‖ = 0‖x‖ = 0, so (ii) is in fact an
equivalence.

(b) It is easy to see that d(x, y) = ‖x − y‖, x, y ∈ X, defines a metric on X .

Example 8.1.3. In Chapter 1, the following spaces were introduced as metric
spaces. They are, in fact, also normed spaces:

(a) Rd och Cd with the norm ‖x‖2 =
(∑d

j=1 |xj|2
)1/2

, x = (x1, ... , xd)t ∈ Rd;

other norms on these spaces are ‖x‖p =
(∑d

j=1 |xj |p
)1/p

, 1 ≤ p < ∞,

and ‖x‖∞ = max1≤j≤d |xj |;

(b) ℓp, 1 ≤ p < ∞, with the norm ‖x‖p =
(∑∞

j=1 |xj |p
)1/p

;

(c) ℓ∞(M) with the so called supremum norm ‖x‖∞ = supt∈M |x(t)|;

(d) ℓ∞, c and c0 with the norm ‖x‖∞ = supj≥1 |xj |;

(e) Cb(X), where X is a metric space, and C(X), where X is a compact metric
space, with the norm ‖f‖∞ = supx∈X |f(x)|;

(f) Lp(E), 1 ≤ p < ∞, where E is a measurable subset to Rd, with the

norm ‖f‖p =
(∫

E
|f(x)|p dx

)1/p
. �

In the rest of this chapter, X denotes a normed space. The following reverse
triangle inequality follows directly from Proposition 1.6.1.

Proposition 8.1.4. For all x, y ∈ X, there holds
∣∣‖x‖ − ‖y‖

∣∣ ≤ ‖x − y‖.

It follows from this inequality that the function X ∋ x 7→ ‖x‖ ∈ R+ is uniformly
continuous.
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Exercises

E8.1. Show that if X is a normed space, then d(x, y) = ‖x − y‖, x, y ∈ X, defines a
metric on X.

8.2. Banach Spaces

Definition 8.2.1. A Banach space is a complete normed space (with the metric
given by the norm).

Example 8.2.2. All spaces in Example 8.1.3 are Banach spaces. �

Example 8.2.3. Let H∞(D) denote the space of bounded analytic functions on
the open unit disk D = {z ∈ C : |z| < 1} in the complex plane equipped with
the norm ‖f‖∞ = supz∈D |f(z)|. We will prove that H∞(D) is a Banach space
by showing that H∞(D) is a closed subset of Cb(D). Suppose that fn ∈ H∞(D)
and that fn → f ∈ Cb(D). If γ is a simple, closed curve in D, then, by Cauchy’s
integral theorem, ∫

γ

f(z) dz = lim
n→∞

∫

γ

fn(z) dz = 0.

Morera’s theorem now shows that f is analytic. �

Example 8.2.4. According to Example 3.4.1, the space C[a, b] of Riemann inte-

grable functions on an interval [a, b] with the norm ‖f‖ =
∫ b

a
|f(x)| dx is not a

Banach space. �

8.3. Series in Banach Spaces

Definition 8.3.1. A series
∑∞

n=1 xn, where the terms xn belong to X , is conver-

gent with the sum x ∈ X if
∑N

n=1 xn → x as N → ∞. The series
∑∞

n=1 xn is
absolutely convergent if

∑∞
n=1 ‖xn‖ < ∞.

Theorem 8.3.2. A normed space X is a Banach space if and only if every abso-
lutely convergent series in X is convergent.

Proof. First suppose that X is a Banach space and that
∑∞

n=1 xn is absolutely

convergent. Put SN =
∑N

n=1 xn, N = 0, 1, 2, ... . If M > N , then

‖SM − SN‖ =
∥∥∥

M∑

n=N+1

xn

∥∥∥ ≤
M∑

n=N+1

‖xn‖.

Letting M, N → ∞, it follows that (SN )∞n=1 is a Cauchy sequence and therefore
convergent.

For the converse, let (xn)∞n=1 ⊂ X be a Cauchy sequence. For k = 1, 2, ... ,
choose nk such that ‖xm − xn‖ < 2−k if m, n ≥ nk. The series

∑∞
k=1(xnk+1

− xnk
)

is then absolutely convergent and hence convergent by assumption. This implies
that the limit

x = lim
p→∞

xnp+1
= xn1

+ lim
p→∞

p∑

k=1

(xnk+1
− xnk

) = xn1
+

∞∑

k=1

(xnk+1
− xnk

)
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exists. Finally, since (xn)∞n=1 is a Cauchy sequence and a subsequence converges
to x, the whole sequence converges to x (see Exercise E3.1).

Example 8.3.3. Using Theorem 8.3.2, we get a new proof of the completeness
of R. Indeed, suppose that

∑∞
n=1 xn is absolutely convergent, where (xn)∞n=1 ⊂ R.

Put an = |xn| − xn for n = 1, 2, ... . Then the positive series
∑∞

n=1 an converges
according to one of the comparison tests since an ≤ |xn| for every n. But this
implies that

∑∞
n=1 xn converges since xn = |xn| − an. �

8.4. Schauder Bases

Definition 8.4.1. A sequence (en)∞n=1 ⊂ X is a Schauder basis for X if there
for every x ∈ X exist unique numbers αn, n = 1, 2, ... , such that

x =

∞∑

n=1

αnen.

Example 8.4.2. The sequence (δn)∞n=1 in Example 5.2.6, defined by δj
n = 1 for j =

n and δj
n = 0 otherwise, is a Schauder basis for ℓp, 1 ≤ p < ∞. Indeed, if x ∈ ℓp,

then ∥∥∥∥x −
N∑

n=1

xjδn

∥∥∥∥
p

=

∞∑

n=N+1

|xj|p → 0 as N → ∞.

A Schauder basis is not the same as a basis or a Hamel basis for a vector space.
A basis for a vector space is by a collection of linearly independent vectors such
that every vector in the space is a finite linear combination of the vectors in the
basis. Using Zorn’s lemma, one can show that every vector space has a basis. For
finite-dimensional spaces, these two concepts of course coincide.

Proposition 8.4.3. If X is an infinite-dimensional Banach space, then every Ha-
mel basis for X, is uncountable.

Proof. To produce a contradiction, suppose that (en)∞n=1 is a countable Hamel
basis for X and put Xk = span{e1, ... , ek}, k = 1, 2, ... . Then each Xk is closed
and X =

⋃∞
k=1 Xk since (en)∞n=1 is a basis for X . But Xk, being finite-dimensional,

cannot contain interior points, and is thus nowhere dense in X , which contradicts
Baire’s theorem (Theorem 6.2.4).

Proposition 8.4.4. If X has a Schauder basis, then X is separable.

Proof. Finite linear combinations with rational coefficients of the vectors in the
basis are dense in X .

The proposition implies, for instance, that ℓ∞ does not have a Schauder basis.
In 1973, the Swedish mathematician Per Enflo gave an example of a separable
Banach space without a Schauder basis, thus refuting the conjecture by Stefan
Banach from 1930 stating that every separable Banach space has a Schauder basis.
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8.5. Equivalent Norms and Finite-dimensional Spaces

Definition 8.5.1. Two norms ‖ · ‖1 and ‖ · ‖2 on X are equivalent if there exist
two positive constans C and D such that

C‖x‖1 ≤ ‖x‖2 ≤ D‖x‖1 for every x ∈ X.

Example 8.5.2. The norms ‖ · ‖p, 1 ≤ p < ∞, and ‖ · ‖∞ on Kd are equivalent.
It is in fact easy to see that, for every x ∈ Kd,

‖x‖∞ ≤ ‖x‖p ≤ d1/p‖x‖∞. �

More generally, we have the following theorem.

Theorem 8.5.3. All norms on a finite-dimensional, normed space X are equiva-
lent.

The converse to the statement in this theorem is in fact also true: If all norms on X
are equivalent, then X has to be finite-dimensional. This gives us our first char-
acterization of finite-dimensional, normed spaces: These are exactly those normed
spaces for which all norms are equivalent. Another characterization is given in
Corollary 8.6.2 below.

The theorem is a direct consequence of the following lemma.

Lemma 8.5.4. Suppose that dim(X) = d < ∞ and that e1, ... , ed is a basis for X.
Put

‖x‖2 =

( d∑

j=1

|xj |2
)1/2

for x = x1e1 + ... + xded ∈ X.

Then ‖ · ‖ and ‖ · ‖2 are equivalent.

Notice that the norm ‖x‖2 equals the Euclidian norm of the coordinate vector
of x ∈ X .

Proof. To estimate ‖x‖ with ‖x‖2 from above is straightforward:

‖x‖ =

∥∥∥∥
d∑

j=1

xjej

∥∥∥∥ ≤
d∑

1

|xj|‖ej‖ ≤
( d∑

j=1

|xj|2
)1/2( d∑

j=1

‖ej‖2

)1/2

= D‖x‖2,

where D =
(∑d

j=1 ‖ej‖2
)1/2

. To prove the reverse inequality, we notice that the

set S = {x ∈ X : ‖x‖2 = 1} is compact since the unit sphere {(x1, ... , xd)t ∈ Kd :∑d
j=1 |xj|2 = 1} in Kd is compact by the Heine–Borel theorem (Theorem 5.2.5).

Moreover, the function S ∋ x 7→ ‖x‖ ∈ R is continuous and positive on S, so it
follows from Theorem 5.4.2 that there exists a constant C > 0 such that ‖x‖ ≥ C
for every x ∈ S. Finally, if x 6= 0, then x/‖x‖2 ∈ S, so

∥∥∥∥
x

‖x‖2

∥∥∥∥ ≥ C and hence ‖x‖ ≥ C‖x‖2.
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Proposition 8.5.5. Suppose that X is finite-dimensional with dim(X) = d. Then
the following properties hold :

(a) if e1, ... , ed is a basis for X, then

xn = x1
ne1 + ... + xd

ned −→ x = x1e1 + ... + x1ed

if and only if xj
n → xj for j = 1, ... , n;

(b) X is complete;

(c) a subset K to X is compact if and only if K is bounded and closed.

Proof.

(a) By Lemma 8.5.4, convergence with respect to ‖ · ‖ is the same as convergence
with respect to ‖ · ‖2 which in turn is the same as convergence in every
coordinate.

(b) If (xn) is a Cauchy sequence in X , then, again according to Lemma 8.5.4,
every sequence of coordinates (xj

n), j = 1, ... , d, is a Cauchy sequence in K
and hence convergent. By (a), this implies that (xn) is convergent.

(c) If K is compact, then, by Proposition 5.1.6, K is bounded and closed. Suppose
conversely that K is bounded and closed, and let (xn) ⊂ K. Then (xn) is
bounded with respect to the 2-norm since ‖xn‖2 ≤ C‖xn‖ for every n. The
Bolzano–Weierstrass Theorem (Corollary 5.3.4) now shows that (xn) has a
subsequence in which every sequence of coordinates converges. Again, (a)
implies that (xn) is convergent. Hence, by Theorem 5.2.3, K is compact.

Corollary 8.5.6. If Y is a finite-dimensional subspace to X, then Y is complete
and in particular closed.

Proof. By (b) in Proposition 8.5.5, Y is complete. Moreover, all complete metric
spaces are closed.

8.6. Riesz’ Lemma

We denote by

SX = {x ∈ X : ‖x‖ = 1} and BX = {x ∈ X : ‖x‖ ≤ 1}

the unit sphere in X and the closed unit ball in X , respectively.

Lemma 8.6.1 (F. Riesz 1918). Suppose that Y 6= X is a closed subspace to X
and let the number τ satisfy 0 < τ < 1. Then there exists an element x̂ ∈ SX such
that

‖x̂ − y‖ ≥ τ for every y ∈ Y.
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Proof. For x ∈ X \ Y , put d = infy∈Y ‖x − y‖. Then d > 0, because otherwise
there would exist a sequence (yn) ⊂ Y such that ‖x− yn‖ → 0, which would imply
that x ∈ Y since Y is closed. Then choose ŷ ∈ Y such that d ≤ ‖x− ŷ‖ ≤ d/τ and
define x̂ = (x − ŷ)/‖x − ŷ‖. It now follows that

‖x̂ − y‖ =

∥∥x − (ŷ + ‖x − ŷ‖y)
∥∥

‖x − ŷ‖ ≥ d

d/τ
= τ.

Corollary 8.6.2. The closed unit ball BX is compact if and only if dim(X) < ∞.

Proof. The sufficiency part follows from (c) in Proposition 8.5.5. Now, if BX is
compact, then, by Theorem 5.2.3, BX is totally bounded, so there exist a finite
number of points x1, ... , xN ∈ BX such that BX ⊂

⋃N
n=1 B1/2(xn). Then the

set Y = span{x1, ... , xN} is a closed subspace to X . If dim(X) = ∞, then Y 6= X ,
so according to Riesz’ lemma, there exists a point x̂ on the unit sphere SX such
that ‖x̂ − xn‖ ≥ 1

2 for every n, which obviously is a contradiction.

Exercises

E8.2. Show by an example that the statement Riesz’ lemma may be false for τ = 1.



Chapter 9

Hilbert Spaces

Throughout this chapter, X will denote a vector space over a field K which is
either R or C.

9.1. Inner Product Spaces, Hilbert Spaces

Inner Product

Definition 9.1.1. A function ( · , · ) : X × X → K is called an inner product if

(i) the function ( · , z) : X → K is linear for every z ∈ X , that is,

(αx + βy, z) = α(x, z) + β(y, z) for all x, y ∈ X, α, β ∈ K;

(ii) (x, y) = (y, x) for all x, y ∈ X ;

(iii) (x, x) ≥ 0 for every x ∈ X ;

(iv) (x, x) = 0 implies that x = 0.

Equipped with an inner product, X is called an inner product space.

For the rest of this chapter, X will always denote an inner product space.

Remark 9.1.2.

(a) Notice that if x = 0, then by (i), (x, x) = 0, so (iv) is really an equivalence.

(b) It follows from (i) and (ii) that, for x, y, z ∈ X and λ ∈ K,

(x, y + z) = (x, y) + (x, z) and (x, λy) = λ(x, y).

In the case K = R, this means that ( · , · ) is bilinear (linear in both argu-
ments), and in the case K = C, that ( · , · ) is sesquilinear (linear in the first
argument but only additive in the second).1

Example 9.1.3. Let us give a few examples of inner product spaces:

(a) Kd with (x, y) =
∑d

j=1 xjyj, x, y ∈ Kd;

(b) ℓ2 with (x, y) =
∑∞

j=1 xjyj , x, y ∈ ℓ2; the series is absolutely convergent

since 2|xjyj | ≤ |xj |2 + |yj|2 for all j;

(c) L2(E), where E ⊂ Rd is measurable, with (f, g) =
∫

E
fg dx, f, g ∈ L2(E);

this definition makes sense since fg is measurable and belongs to L1(E) be-
cause 2|fg| ≤ |f |2 + |g|2, where |f |2 + |g|2 ∈ L1(E). �

1In Latin, sesqui means one one and a half.

39
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The Cauchy–Schwarz Inequality

Theorem 9.1.4 (The Cauchy–Schwarz Inequality). For x, y ∈ X,

|(x, y)|2 ≤ (x, x)(y, y).

Equality holds if and only if x and y are linearly dependent.

Proof. The inequality obviously holds true if y = 0. If y 6= 0, put e = ty,
where t−1 =

√
(y, y). Then (e, e) = 1, and

0 ≤ (x − (x, e)e, x − (x, e)e) = (x, x) − |(x, e)|2 = (x, x) − |(x, y)|2
(y, y)

,

from which the Cauchy–Schwarz inequality follows directly. Equality holds if and
only if x − (x, e)e = x − t2(x, y)y = 0, which means that x and y are linearly
dependent.

Example 9.1.5. We formulate the Cauchy–Schwarz inequality for the spaces in
Example 9.1.3:

(a) For Kd:
∣∣∑d

j=1 xjyj
∣∣ ≤

(∑d
j=1 |xj|2

)1/2(∑d
j=1 |yj|2

)1/2
.

(b) For ℓ2:
∣∣∑∞

j=1 xjyj
∣∣ ≤

(∑∞
j=1 |xj|2

)1/2(∑∞
j=1 |yj|2

)1/2
.

(c) For L2(E): |
∫

E
fg dx| ≤

(∫
E
|f |2 dx

)1/2(∫
E
|g|2 dx

)1/2
. �

The Norm on an Inner Product Space

Definition 9.1.6. For x ∈ X , we define ‖x‖ =
√

(x, x).

With this notation, the Cauchy–Schwarz inequality may be written

|(x, y)| ≤ ‖x‖‖y‖, x, y ∈ X.

Proposition 9.1.7. The function ‖ · ‖ is a norm on X.

Proof. Among the properties in Definition 8.1.1, it is only the triangle inequality
that really requires a proof. We deduce this from the Cauchy–Schwarz inequality
in the following way:

‖x + y‖2 = ‖x‖2 + 2 Re(x, y) + ‖y‖2 ≤ ‖x‖2 + 2|(x, y)|+ ‖y‖2

≤ ‖x‖2 + 2‖x‖‖y‖+ ‖y‖2 = (‖x‖ + ‖y‖)2.

The next simple, but useful corollary follows directly from the Cauchy–Schwarz
inequality.

Corollary 9.1.8. The function ( · , z) : X → K is Lipschitz continuous for every
fixed z ∈ X :

|(x, z) − (y, z)| ≤ ‖x − y‖‖z‖ for all x, y ∈ X.
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In vector algebra, the following identity is known as the parallelogram law.

Proposition 9.1.9. For x, y ∈ X, ‖x + y‖2 + ‖x − y‖2 = 2(‖x‖2 + ‖y‖2).

Proof. Expand the left-hand side as in the proof of Proposition 9.1.7.

Thus, if a norm is induced by an inner product, then the norm has to satisfy
the parallelogram law. To put it in another way, if a norm does not satisfy the
parallelogram law, then it does not come from an inner product.

Example 9.1.10. The standard norm ‖ · ‖∞ on C[0, 1] is not induced by an inner
product. Take for instance f(t) = 1 and g(t) = t for 0 ≤ t ≤ 1. Then

‖f + g‖2
∞ + ‖f − g‖2

∞ = 5 but 2(‖f‖2
∞ + ‖g‖2

∞) = 4. �

Proposition 9.1.11 (Polarization Identities). Suppose that x, y ∈ X.

(a) If K = R, then (x, y) = 1
4(‖x + y‖2 − ‖x − y‖2).

(b) If K = C, then (x, y) = 1
4(‖x + y‖2 + i‖x + iy‖2 − ‖x − y‖2 − i‖x − iy‖2).

These identities are proved by expanding the right-hand sides. One can prove that
if a norm on a vector space satisfies the parallelogram law, then an inner product
on the space can be defined using one of these identities:

Proposition 9.1.12. If a norm on a vector space satisfies the parallelogram law,
then it is possible to define an inner product on the space.

Exercises

E9.1. Prove Proposition 9.1.12.

Hilbert Spaces

Definition 9.1.13. A Hilbert space is a complete inner product space.

Example 9.1.14. According to Example 8.2.2, the spaces in Example 9.1.3 are all
Hilbert spaces. �

9.2. Orthogonality

Orthogonality, Orthogonal Complement

Definition 9.2.1.

(a) Two vectors x, y ∈ X are orthogonal if (x, y) = 0.

(b) The orthogonal complement Y ⊥ to a subset Y to X is the set

Y ⊥ = {x ∈ X : (x, y) = 0 for every y ∈ Y }.

Proposition 9.2.2. For every subset Y to X, the orthogonal complement Y ⊥ is a
closed subspace to X.
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Proof. Suppose that u, v ∈ Y ⊥. Then (αu + βv, y) = α(u, y) + β(v, y) = 0 for
all α, β ∈ K and every y ∈ Y , so αu + βv ∈ Y ⊥; thus, Y ⊥ is a subspace to X .
To show that Y ⊥ is closed, suppose that (xn) ⊂ Y ⊥ and that xn → x ∈ X . It
then follows from Corollary 9.1.8 that (x, y) = limn→∞(xn, y) = 0 for every y ∈ Y ,
so x ∈ Y ⊥.

The next proposition generalizes Pythagoras’ Theorem in classical geometry.

Proposition 9.2.3 (Pythagoras’ Theorem). If x1, ... , xN are pairwise orthog-
onal, that is, (xm, xn) = 0 if m 6= n, then

∥∥∥∥
N∑

n=1

xn

∥∥∥∥
2

=

N∑

n=1

‖xn‖2.

Proof. Just expand the left-hand side in the identity using the properties of the
inner product and the fact that the vectors are pairwise orthogonal:

∥∥∥∥
N∑

n=1

xn

∥∥∥∥
2

=

( N∑

m=1

xm,

N∑

n=1

xn

)
=

N∑

m,n=1

(xm, xn) =

N∑

n=1

(xn, xn) =

N∑

n=1

‖xn‖2.

Orthonormal Sets

Definition 9.2.4. A subset E to X is orthonormal if

(e, f) =

{
1 if e = f
0 if e 6= f

for all e, f ∈ E. A sequence (en)∞n=1 ⊂ X is orthonormal if the corresponding
set E = {e1, e2, ...} is orthonormal.

Example 9.2.5. The sequence (δn)∞n=1 ⊂ ℓ2 in Example 5.2.6 is orthonormal:

(δm, δn) =
∞∑

j=1

δj
mδj

n =

{
1 if m = n
0 if m 6= n

. �

Example 9.2.6. The sequence
(
eint/

√
2π

)∞
−∞

⊂ L2(−π, π) is orthonormal:

(
eimt

√
2π

,
eint

√
2π

)
=

1

2π

∫ π

−π

ei(m−n)t dt =

{
1 if m = n
0 if m 6= n

. �

Lemma 9.2.7. Suppose that H is a Hilbert space and that (en)∞n=1 ⊂ H is a
orthonormal sequence. Then a series

∑∞
n=1 cnen is convergent in H if and only

if
∑∞

n=1 |cn|2 < ∞.

Proof. According to Pythagoras’ theorem (Theorem 9.2.3),

∥∥∥∥
M∑

n=N

cnen

∥∥∥∥
2

=

M∑

n=N

|en|2

for M > N . It follows that the series
∑∞

n=1 cnen is convergent in H if and only
if

∑∞
n=1 |cn|2 is convergent.
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Example 9.2.8. If the sequence (cn)∞−∞ ⊂ C satisfies
∑∞

−∞ |cn|2 < ∞, then the

function x(t) =
∑∞

−∞ cne−int, t ∈ R, belongs to L2(−π, π) and has period 2π.
Compare this with the following result: If we assume that

∑∞
−∞ |cn| < ∞ (a

stronger assumption), then it follows from Weierstrass’ theorem that x is continuous
on R. �

9.3. Least Distance

Distance to a Convex Subset

In this and the following subsection, H will denote a Hilbert space. A subset K
to H is called convex if x, y ∈ K implies that

tx + (1 − t)y ∈ H for 0 ≤ t ≤ 1.

Theorem 9.3.1. Let K be a closed, convex subset to H. Then, for every x ∈ H,
there exists a unique vector y ∈ K such that

‖x − y‖ = inf
z∈K

‖x − z‖.

Proof. First choose a sequence (yn) ⊂ K such that ‖x−yn‖ → d = infz∈K ‖x−z‖.
By the parallelogram law (Theorem 9.1.9),

4
∥∥∥x − ym + yn

2

∥∥∥
2

+ ‖ym − yn‖2 = 2(‖x − ym‖2 + ‖x − yn‖2).

Since K is convex, (ym + yn)/2 ∈ K, so the first term in the left-hand side is
at least 4d2. On the other hand, the right-hand side tends to 4d2, so it follows
that ‖ym − yn‖ → 0. If y denotes the limit of the sequence (yn), then y ∈ K
since K is closed. Moreover, ‖x − y‖ = d since the norm is continuous. To prove
that y is unique, suppose that ‖x − y′‖ = d for some y′ ∈ K. Then, as above,

∥∥∥x − y + y′

2

∥∥∥
2

+ ‖y − y′‖2 = 2(‖x − y‖2 + ‖x − y′‖2).

Since the first term in the left member is at least 4d2 and the right member is
exactly 4d2, it follows that ‖y − y′‖ = 0, so y = y′.

Distance to a Subspace

Theorem 9.3.2. Suppose that Y is a closed subspace to H. Then

‖x − y‖ = inf
z∈Y

‖x − z‖ if and only if (x − y, z) = 0 for every z ∈ Y.

Proof. Suppose first that ‖x − y‖ = d = infz∈Y ‖x − z‖. Given z ∈ Y , choose a
scalar λ ∈ K such that (x − y, λz) = −|(x − y, z)|. Then

d2 ≤ ‖(x − y) + tλz‖2 = ‖x − y‖2 + 2t Re(x − y, λz) + t2|λ|2‖z‖2

= d2 − 2t|(x − y, z)| + t2|λ|2‖z‖2

for every t ∈ R. This implies that 2|(x − y, z)| ≤ t|λ|2‖z‖2 for every t ≥ 0, from
which it follows that (x − y, z) = 0.
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The converse is easier; in fact, by Pythagoras’ theorem (Theorem 9.2.3),

‖x − z‖2 = ‖(x − y) + (y − z)‖2 = ‖x − y‖2 + ‖y − z‖2 ≥ ‖x − y‖2

for every z ∈ Y since x − y and y − z are orthogonal.

9.4. Orthogonal Projections and the Gram–Schmidt Proce-

dure

Orthogonal Projections

Let H denote a Hilbert space. Suppose that Y is a closed subspace to H and
let x ∈ H. Then, according to Theorem 9.3.1, there exists a vector y ∈ Y such
that ‖x − y‖ = infz∈Y ‖x − z‖. Moreover, according to Theorem 9.3.2, this vector
satisfies (x−y, z) = 0 for every vector z ∈ Y . These two theorems also show that y
is uniquely determined by this condition.

Definition 9.4.1. Let Y be a closed subspace to H and let x ∈ H. The unique
vector y ∈ Y , that satisfies (x−y, z) = 0 for every z ∈ Y , is called the orthogonal
projection of x on Y . We will denote this vector by PY x.

Corollary 9.4.2. If Y is a closed subspace to H, then H = Y ⊕ Y ⊥, that is, for
every x ∈ H there exist unique vectors y ∈ Y and z ∈ Y ⊥ such that x = y + z.

Example 9.4.3. Suppose that {e1, ... , eN} ⊂ X is orthonormal and let Y be the
linear span of {e1, ... , eN}. Then the orthogonal projection of a vector x ∈ X on Y

is PY x =
∑N

n=1(x, en)en since x − PY x ⊥ em for m = 1, 2, ... , N :

(x − PY x, em) = (x, em) −
N∑

n=1

(x, en)(en, em) = (x, em) − (x, em) = 0. �

The Gram–Schmidt Procedure

The Gram–Schmidt orthogonalization procedure is probably known to the
reader from linear algebra. Given a linearly independent set of vectors u1, u2, ...
(finite or infinite) in X , it produces an orthonormal set of vectors e1, e2, ... with the
same linear span: Put e1 = u1/‖u1‖ and






fn+1 = un+1 − Pspan{e1,...,en}un+1

en+1 =
fn+1

‖fn+1‖
for n = 1, 2, ... .

Example 9.4.4. It is well-known that if one applies the Gram–Schmidt procedure
to the sequence un(t) = tn, 0 ≤ t ≤ 1, n = 0, 1, ... , in L2(0, 1), one obtains

the orthonormal sequence en =
√

n + 1
2
Pn, n = 0, 1, ... , where Pn is the n-th

Legendre polynomial, given by Rodriguez’ formula:

Pn(t) =
1

2nn!

dn

dtn
(t2 − 1)n. �
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Exercises

E9.2. Apply the Gram–Schmidt procedure to the polynomials 1, t, t2 in L2(0, 1).

9.5. Complete Orthonormal Systems, Orthonormal Bases

The Finite-Dimensional Case

As the next example shows, it is easy to find the coordinates for a vector in a
finite-dimensional inner product space with respect to an orthonormal basis. If one
knows the coordinates, the length of the vector can then be calculated by means of
Pythagoras’ theorem.

Example 9.5.1. Suppose that dim(X) = d < ∞ and that {e1, ... , ed} is an or-
thonormal basis for X . Then every vector x ∈ X can be written

x = x1e1 + ... + xded.

Taking the inner product of both sides in this identity with en, n = 1, ... , d, we
find that xn = (x, en), so that

x =
d∑

n=1

(x, en)en.

It now follows from Pythagoras’ theorem that

‖x‖2 =

d∑

n=1

|(x, en)|2. �

We will next investigate to what extent this example can be generalized to infinite-
dimensional spaces.

Bessel’s Inequality

Theorem 9.5.2 (Bessel’s Inequality). If (en)∞n=1 ⊂ X is orthonormal, then,
for every x ∈ X,

∞∑

n=1

|(x, en)|2 ≤ ‖x‖2.

Proof. According to Example 9.4.3, the orthogonal projection of x on the sub-
space span{e1, ... , eN} to X is the vector

∑N
n=1(x, en)en. Two applications of

Pythagoras’ theorem now shows that

‖x‖2 =

∥∥∥∥x −
N∑

n=1

(x, en)en

∥∥∥∥
2

+

∥∥∥∥
N∑

n=1

(x, en)en

∥∥∥∥
2

=

∥∥∥∥x −
N∑

n=1

(x, en)en

∥∥∥∥
2

+

N∑

n=1

|(x, en)|2 ≥
N∑

n=1

|(x, en)|2.

Since this inequality holds for any N , Bessel’s inequality follows.
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Example 9.5.3. The Fourier coefficients of f ∈ L2(−π, π) is defined by

F (n) =
1

2π

∫ π

−π

f(t)e−int dt, n = 0,±1,±2, ... .

Notice that F (n) = (f, en)/
√

2π, where en is defined in Example 9.2.6. It now
follows from Bessel’s inequality that

∞∑

−∞

|F (n)|2 ≤ 1

2π

∫ π

−π

|f(t)|2 dt. �

Corollary 9.5.4. If (en)∞n=1 ⊂ X is orthonormal, then the series
∑∞

n=1(x, en)en

is convergent for every x ∈ X.

Proof. Let SN =
∑N

n=1(x, en)en, N = 1, 2, ... , denote the N -th partial sum to the
series

∑∞
n=1(x, en)en. If M > N , then

‖SM − SN‖2 =

∥∥∥∥
M∑

n=N+1

(x, en)en

∥∥∥∥
2

=

M∑

n=N+1

|(x, en)|2,

so it follows from Bessel’s inequality that (SN )∞n=1 is a Cauchy sequence and hence
convergent.

Unconditional Convergence

In this subsection, Z denotes a normed space. A permutation of N is a bijection
from N to N.

Definition 9.5.5. A series
∑∞

n=1 xn, where every xn ∈ Z, is unconditionally
convergent if

∑∞
n=1 xσ(n) is convergent in Z with the same sum for every permu-

tation σ : N → N.

A series
∑∞

n=1 xn is thus unconditionally convergent if it converges to the same
sum however the terms are arranged. A classical theorem by Riemann states that
for series with real or complex terms, unconditional convergence is the same as
absolute convergence.

Theorem 9.5.6 (B. Riemann). A series with real or complex terms is uncondi-
tionally convergent if and only if it is absolutely convergent.

The corresponding result holds true in every finite-dimensional normed space Z. In
general, absolute convergence implies unconditional convergence:

Theorem 9.5.7. In a normed space, every absolutely convergent series is uncon-
ditionally convergent.

Since we will not use this result, we omit its proof. The converse to this theorem
is false: A. Dvoretzky and C.A. Rogers showed in 1950 that in every infinite di-
mensional normed space, there exists a unconditionally convergent series that is
not absolutely convergent. Thus, the property that unconditional and absolute
convergence coincide completely characterizes finite-dimensional spaces.
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Complete Orthonormal Systems, Parseval’s Identity

Let H be a Hilbert space.

Lemma 9.5.8. Suppose that E ⊂ H is an orthonormal set and let x ∈ H. Then
the set Ex = {e ∈ E : (x, e) 6= 0} is countable.

Proof. Put Em = {e ∈ E : |(x, e)| ≥ 1
m
}, m = 1, 2, ... . If e1, ... , ek ∈ Em, it follows

from Bessel’s inequality that

k

m2
≤

k∑

n=1

|(x, en)|2 ≤ ‖x‖2.

Thus, k ≤ m2‖x‖2, so Em is finite. This implies that the set E =
⋃∞

m=1 Em is
countable.

Theorem 9.5.9. For an orthonormal subset E to H, the following conditions are
equivalent.

(i) For every x ∈ H, x =
∑

e∈E(x, e)e, where the series is unconditionally con-
vergent ;

(ii) For every x ∈ H, ‖x‖2 =
∑

e∈E |(x, e)|2;

(iii) If (x, e) = 0 for every e ∈ E, then x = 0.

Notice that, by Lemma 9.5.8, the series in (i) and (ii) contain only countably many
terms. If E ⊂ H satisfies (i)–(iii), we say that E is a complete orthonormal
system in H. The identity in (ii) is known as Parseval’s identity.

Proof. Given x ∈ H, let (en)∞n=1 be any enumeration of Ex. We first assume
that (i) holds true and deduce (ii). As in the proof of Bessel’s inequality,

‖x‖2 −
N∑

n=1

|(x, en)|2 =

∥∥∥∥x −
N∑

n=1

(x, en)en

∥∥∥∥
2

.

The right-hand side tends to 0 as N → ∞, so Parseval’s identity holds.
The fact that (ii) implies (iii) is self-evident.
Finally, suppose that (iii) holds. Then, according to Corollary 9.5.4, the se-

ries
∑∞

n=1(x, en)en is convergent; denote the sum by y. Since

(x − y, e) = (x, e) − (x, e) = 0

for every e ∈ E, we have y = x, and hence x =
∑∞

n=1(x, en)en. The series is
unconditionally convergent since the sum is x for any enumeration of Ex.

Orthonormal Bases

In the case when the set E in Theorem 9.5.9 itself is countable, (i) means that E
is an orthonormal basis for H.
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Example 9.5.10. The sequence (δn)∞n=1 in Example 5.2.6 is an orthonormal basis
for ℓ2. �

Theorem 9.5.11. A Hilbert space H has an orthonormal basis if and only if H is
separable.

Proof. If dim(X) < ∞, there is nothing to prove, so suppose that dim(X) = ∞.
The necessity part of the theorem then follows directly from Proposition 8.4.4.

For the sufficiency part, suppose that (en)∞n=1 is dense in H. After successively
removing linearly dependent elements in the sequence, we can assume that (en)∞n=1

is linearly independent with span dense in H. Using the Gram–Schmidt procedure,
we can also assume that (en)∞n=1 is orthonormal. Let x ∈ H and let ε > 0 be
arbitrary. One can then find a vector y =

∑mε

n=1 anen such that ‖x − y‖ < ε. It
now follows from the properties of the orthogonal projection that if N ≥ mε, then

∥∥∥∥x −
N∑

n=1

(x, en)en

∥∥∥∥ ≤
∥∥∥∥x −

mε∑

n=1

(x, en)en

∥∥∥∥ ≤ ‖x − y‖ < ε.

Since ε was arbitrary, this shows that x =
∑∞

n=1(x, en)en.

Example 9.5.12. We will show that the sequence
(
eint/

√
2π

)∞
−∞

is an orthonor-

mal basis for L2(−π, π) by verifying (iii) in Theorem 9.5.9. Therefore, suppose
that f ∈ L2(−π, π) and that (f(t), eint) = 0 for every integer n. Using the fact
that continuous functions are dense in L2(−π, π), it follows from Corollary 5.7.8
that trigonometric polynomials are also dense in this space. Thus, for an arbi-
trary ε > 0, there exists a trigonometric polynomial φ such that ‖f − φ‖2 < ε.
From Hölder’s inequality, we now obtain that

‖f‖2
2 =

∫ π

−π

|f |2 dt =

∫ π

−π

(f − φ)f dt ≤ ‖f − φ‖2‖f‖2 < ε‖f‖2,

which implies that ‖f‖2 < ε. Since ε was arbitrary, it follows that ‖f‖2 = 0 and
hence that f = 0.

The properties (i) and (ii) in Theorem 9.5.9 show that, if f ∈ L2(−π, π), then

f(t) =

∞∑

−∞

F (n)eint and
1

2π

∫ π

−π

|f(t)|2 dt =

∞∑

−∞

|F (n)|2,

where the first series converges unconditionally in L2(−π, π). �

Let us point out that there are Hilbert spaces that are non-separable.

Example 9.5.13. The space ℓ2(R) consists of all complex-valued functions x on R
that are 0 outside a countable subset to R and that satisfies

∑
t∈R

|x(t)|2 < ∞.
One can show that ℓ2(R) is a Hilbert space with the inner product

(x, y) =
∑

t∈R

x(t)y(t), x, y ∈ ℓ2(R);

see Exercise E9.3. This space is, however, not separable. In fact, if δu(t) = 1
for t = u and δu(t) = 0 for t 6= u, then ‖δu − δv‖ =

√
2 if u 6= v. Since (δt)t∈R is

uncountable, this implies that ℓ2(R) is non-separable. It is easy to see that (δt)t∈R

is a complete orthonormal system in ℓ2(R). �
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The Riesz–Fischer Theorem

Theorem 9.5.14 (Riesz–Fischer). If H is a separable, infinite-dimensional Hil-
bert space over the complex numbers, then H is isometrically isomorphic to ℓ2, i.e.,
there exists a bijection from H to ℓ2 that preserves the norm.

Similarly, if H is a separable, infinite-dimensional Hilbert space over the real num-
bers, then H is isometrically isomorphic to ℓ2(N,R). If dim(H) = d, then H is
isometrically isomorphic to either Cd or Rd.

Proof. According to Theorem 9.5.11, H has an orthonormal basis (en)∞n=1. Bessel’s
inequality shows that the mapping T (x) = ((x, en))∞n=1, x ∈ H, maps H into ℓ2.
To prove that T is injective, suppose that T (x) = T (y). Then (x − y, en) = 0 for
every n, and hence, by Theorem 9.5.9, x = y. The mapping T is also surjective,
since if (cn)∞n=1 ∈ ℓ2, then T (x) = (cn)∞n=1 ∈ ℓ2 for x =

∑∞
n=1 cnen, where x ∈ H

by Lemma 9.2.7. Finally, T is isometric since, by Parseval’s identity,

‖T (x)‖2
ℓ2 =

∞∑

n=1

|(x, en)|2 = ‖x‖2.

Exercises

E9.3. Show that ℓ2(R) is a Hilbert space with the inner product (x, y) =
P

t∈R
x(t)y(t).



Chapter 10

Bounded Linear Operators

In this chapter, X and Y will denote two normed spaces over a field K which is
either R or C. The norms in X and Y will both be denoted by ‖ · ‖.

10.1. Linear Operators

Definition 10.1.1. A linear operator from X to Y is a function T : X → Y
such that

T (αx + βy) = αT (x) + βT (y)

for all x, y ∈ X and all α, β ∈ K. Let L(X, Y ) denote the class of linear opera-
tors from X to Y . In the case Y = K, we call the elements in L(X,K) linear
functionals.

We will often write Tx instead of T (x) etc. Notice that if T ∈ L(X, Y ), then T0 = 0
(where the first 0 is the zero in X and the second is the zero in Y ).

Example 10.1.2. The following operators are both linear.

(a) The operator T : C[a, b] → C[a, b] is defined by Tx(t) =
∫ t

a
x(τ) dτ, a ≤ t ≤ b,

for x ∈ C[a, b].

(b) The subspace C1[0, 1] to C[0, 1] consists of all continuously differentiable func-
tions on the interval [0, 1]. The operator T : C1[0, 1] → C[0, 1] is defined
by Tx(t) = x′(t), 0 ≤ t ≤ 1, for x ∈ C1[0, 1]. �

10.2. Bounded operators

Theorem 10.2.1. The following conditions are equivalent for T ∈ L(X, Y ):

(i) T is continuous at 0;

(ii) T is continuous;

(iii) T is uniformly continuous;

(iv) T Lipschitz continuous;

(v) there exists a constant C ≥ 0 such that ‖Tx‖ ≤ C‖x‖ for every x ∈ X.

According to Remark 7.2.2, condition (iv) means that there exists a constant C ≥ 0
such that

‖Tx − Ty‖ ≤ C‖x − y‖ for all x, y ∈ X.

Proof. It is easy to see that every condition implies the one above. We therefore
assume that (i) holds and deduce (v). By the definition of continuity at 0, using
the fact that T0 = 0, there exists a number δ > 0 such that ‖Tx‖ ≤ 1 if ‖x‖ ≤ δ.
For an arbitrary x 6= 0, this implies that

∥∥∥∥T

(
δ

x

‖x‖

)∥∥∥∥ =
δ

‖x‖‖Tx‖ ≤ 1 and hence that ‖Tx‖ ≤ 1

δ
‖x‖.
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Definition 10.2.2.

(a) We say that an operator T ∈ L(X, Y ) is bounded if there exists a con-
stant C ≥ 0 such that ‖Tx‖ ≤ C‖x‖ for every x ∈ X . Otherwise, T is said
to be unbounded.

(b) The class of bounded operators from X to Y is denoted B(X, Y ). In the
case X = Y , we write B(X) instead of B(X, X).

(c) For T ∈ B(X, Y ), the norm ‖T‖ of T is defined by

‖T‖ = inf{C ≥ 0 : ‖Tx‖ ≤ C‖x‖ for every x ∈ X}.

In Proposition 10.4.1 below, we show that ‖ · ‖ really is a norm on B(X, Y ). Notice
that if T ∈ B(X, Y ), then ‖Tx‖ ≤ ‖T‖‖x‖ for every x ∈ X .

We leave the proof of the following result to the reader.

Proposition 10.2.3. For every T ∈ B(X, Y ),

‖T‖ = sup
x6=0

‖Tx‖
‖x‖ = sup

‖x‖=1

‖Tx‖ = sup
‖x‖≤1

‖Tx‖.

Exercises

E10.1. Supply a proof for Proposition 10.2.3.

10.3. Examples

Example 10.3.1 (Continuation of Example 10.1.2).

(a) If x ∈ C[a, b], then

|Tx(t)| ≤
∫ b

a

|x(τ)| dτ ≤ (b − a)‖x‖∞

for every t ∈ [a, b], which implies that ‖Tx‖∞ ≤ (b − a)‖x‖∞, from which
it follows that ‖T‖ ≤ b − a. On the other hand, if x(t) = 1, a ≤ t ≤ b,
then Tx(t) = t − a, so ‖Tx‖∞ = b − a = (b − a)‖x‖∞. This shows that T is
bounded with ‖T‖ = b − a.

(b) In this case, the operator T is unbounded. Indeed, if x(t) = tn, 0 ≤ t ≤ 1,
for n = 1, 2, ..., then Tx(t) = ntn−1, which implies that ‖Tx‖∞ = n = n‖x‖∞,
so T cannot be bounded. �

Example 10.3.2. Instead of considering C1[0, 1] as a subspace to C[0, 1], we can
equip C1[0, 1] with the norm ‖x‖C1[0,1] = ‖x‖∞ + ‖x′‖∞. With this norm, the
differentiation operator in Example 10.1.2 (now defined on another domain) is in
fact bounded: If x ∈ C1[0, 1], then

|Tx(t)| = |x′(t)| ≤ ‖x′‖∞ ≤ ‖x‖ for every t ∈ [0, 1],

which implies that ‖Tx‖∞ ≤ ‖x‖C1[0,1], so T is bounded with ‖T‖ ≤ 1. �
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Example 10.3.3. The linear operator T : C[a, b] → K is defined by Tx = x(t0),
where a ≤ t0 ≤ b, for x ∈ C[a, b]. Since

|Tx| = |x(t0)| ≤ ‖x‖∞ for every x ∈ C[a, b],

we see that T is bounded with ‖T‖ ≤ 1. But T1 = 1 = ‖1‖∞, so ‖T‖ = 1. �

Example 10.3.4. Let 1 ≤ p ≤ ∞. The left shift operator L : ℓp → ℓp and the
right shift operator R : ℓp → ℓp are defined by

L(x1, x2, ...) = (x2, x3, ...) and R(x1, x2, ...) = (0, x1, x2, ...)

for x = (x1, x2, ...) ∈ ℓp, respectively. We leave it to the reader to show that both L
and R are bounded with ‖L‖ = ‖R‖ = 1 (see Exercise E10.2). �

Example 10.3.5. Given k ∈ C[a, b], we define the operator T : C[a, b] → K

by Tx =
∫ b

a
k(t)x(t) dt for x ∈ C[a, b]. Then T is bounded since

|Tx| =

∣∣∣∣

∫ b

a

k(t)x(t) dt

∣∣∣∣ ≤
∫ b

a

|k(t)| dt ‖x‖∞,

for every x ∈ C[a, b], and this also shows that ‖T‖ ≤
∫ b

a
|k(t)| dt. To show that the

last inequality in fact is an equality, we consider the family of functions

xε(t) =
k(t)

|k(t)| + ε
, a ≤ t ≤ b,

where ε > 0. Notice that xε ∈ C[a, b] and ‖xε‖∞ ≤ 1 for every ε > 0. Moreover,

Txε =

∫ b

a

|k(t)|2
|k(t)| + ε

dt ≥
∫ b

a

|k(t)|2 − ε

|k(t)| + ε
dt =

∫ b

a

|k(t)| dt − ε.

From the last inequality, we obtain that

‖T‖ = sup
‖x‖∞≤1

|Tx| ≥ sup
ε>0

|Txε| ≥
∫ b

a

|k(t)| dt. �

Example 10.3.6. The Fredholm operator T : C[a, b] → C[a, b] is defined by

Tx(t) =

∫ b

a

K(t, τ)x(τ) dτ, a ≤ t ≤ b,

for x ∈ C[a, b], where the kernel K ∈ C([a, b] × [a, b]) (see also Example 7.5.1).

As in Example 10.3.5, ‖T‖ ≤ maxa≤t≤b

∫ b

a
|K(t, τ)| dτ . This inequality is also an

equality. In fact, if a ≤ t ≤ b is fixed, then, by the same example,

∫ b

a

|K(t, τ)| dτ = sup
‖x‖∞≤1

∣∣∣∣

∫ b

a

K(t, τ)x(τ) dτ

∣∣∣∣ ≤ sup
‖x‖∞≤1

max
a≤s≤b

∣∣∣∣

∫ b

a

K(s, τ)x(τ) dτ

∣∣∣∣

= sup
‖x‖∞≤1

‖Tx‖∞ = ‖T‖,

from which it follows that maxa≤t≤b

∫ b

a
|K(t, τ)| dτ ≤ ‖T‖. �
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Example 10.3.7. Suppose that K ∈ L2((a, b) × (a, b)) and define Tx as in Ex-
ample 10.3.6, but now for x ∈ L2(a, b). It then follows from Hölder’s inequality
that

‖Tx‖2 =

(∫ b

a

∣∣∣∣
∫ b

a

K(t, τ)x(τ) dτ

∣∣∣∣
2

dt

)1/2

≤
(∫ b

a

∫ b

a

|K(t, τ)|2 dτdt

)1/2(∫ b

a

|x(τ)|2 dτ

)1/2

Thus, T maps L2(a, b) into L2(a, b) and ‖T‖ ≤ ‖K‖2. One can show that this – in
general – is not an equality. �

Proposition 10.3.8.

(a) If dim(X) < ∞, then every operator T ∈ L(X, Y ) is bounded.

(b) If dim(X) = ∞, then there exist an unbounded operator T : X → Y .

Proof.

(a) Suppose that dim(X) = d and let e1, ... , ed be a basis for X . If x ∈ X

and x =
∑d

j=1 xjej , then, using the triangle inequality and Theorem 8.5.3, it
follows that

‖Tx‖ =

∥∥∥∥
d∑

j=1

xjTej

∥∥∥∥ ≤ max
1≤j≤d

‖Tej‖
d∑

j=1

|xj | ≤ C max
1≤j≤d

‖Tej‖‖x‖.

(b) Let {en}∞n=1 be a linearly independent subset to the unit sphere SX in X and
let B be a basis for X containing {en}∞n=1. For a non-zero element y in Y ,
define T by Ten = ny, n = 1, 2, ... , and Tx = 0 for all other elements x of B,
and then extend T to X by linearity. Then T is unbounded since

sup
‖x‖=1

‖Tx‖ ≥ sup
n=1,2,...

‖Ten‖ = sup
n=1,2,...

n‖y‖ = ∞.

Exercises

E10.2. Show that the left shift and right shift operators are bounded on ℓp, 1 ≤ p ≤ ∞,
and verify that both have norm 1.

E10.3. Prove that if K ∈ C([a, b] × [a, b]), then the function [a, b] ∋ t 7→
R b

a
|K(t, τ)| dτ

is continuous (this was used in Example 10.3.6).

10.4. The Spaces L(X, Y ) and B(X, Y )

Proposition 10.4.1.

(a) The space L(X, Y ) is a vector space.

(b) The space B(X, Y ) is a subspace to L(X, Y ).
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(c) The function ‖ · ‖ is a norm on B(X, Y ).

Proof.

(a) For S, T ∈ L(X, Y ) and α, β ∈ K, the operator αS + βT is defined by

(αS + βT )(x) = αSx + βTx for x ∈ X.

We leave it to the reader to show that αS + βT ∈ L(X, Y ).

(b) Let S, T ∈ B(X, Y ) och α, β ∈ K. Since

‖(αS + βT )(x)‖ ≤ |α|‖S‖‖x‖ + |β|‖T‖‖x‖ = (|α|‖S‖ + |β|‖T‖)‖x‖

for every x ∈ X , it follows that the operator αS + βT is bounded, that
is, αS + βT ∈ B(X, Y ).

(c) Recall that ‖T‖ = inf{C ≥ 0 : ‖Tx‖ ≤ C‖x‖ for every x ∈ X} for an ope-
rator T ∈ B(X, Y ). The norm is obviously positive. It is also definite, since
if ‖T‖ = 0, then ‖Tx‖ = 0, i.e., Tx = 0 for every x ∈ X , which by definition
means that T = 0. The homogeneity of the norm is proved in the following
way for α 6= 0 (the case α = 0 being self-evident):

‖αT‖ = |α| inf{ C
|α|

≥ 0 : ‖Tx‖ ≤ C
|α|

‖x‖ for every x ∈ X} = |α|‖T‖.

To prove the triangle inequality, suppose that S, T ∈ B(X, Y ). Then, since

‖(S + T )(x)‖ ≤ (‖S‖ + ‖T‖)‖x‖ for every x ∈ X,

it follows that ‖S + T‖ ≤ ‖S‖ + ‖T‖.

Definition 10.4.2. Let Tn ∈ B(X, Y ), n = 1, 2, ... , and T ∈ B(X, Y ). We say
that

(i) Tn converges strongly to T if Tn → T in B(X, Y ), i.e., ‖T − Tn‖ → 0;

(ii) Tn converges pointwise to T if Tnx → Tx in Y , i.e., ‖Tx − Tnx‖ → 0, for
every x ∈ X .

Proposition 10.4.3. Strong convergence implies pointwise convergence.

Proof. If Tn → T in B(X, Y ) and x ∈ X , then

‖Tx − Tnx‖ ≤ ‖T − Tn‖‖x‖ −→ 0.

Example 10.4.4. In general, pointwise convergence does not imply strong conver-
gence. For instance, if Tn is defined by Tnx = xn for x ∈ c0, then Tnx → 0 for
every x ∈ c0. On the other hand, ‖Tn‖ = sup‖x‖≤1 |Tnx| = 1, from which it follows
that Tn does not converge to 0 strongly. �

Theorem 10.4.5. If Y is complete, then B(X, Y ) is a Banach space.
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Proof. Suppose that (Tn)∞n=1 is a Cauchy sequence in B(X, Y ). Then, as in the
proof of Proposition 10.4.3, (Tnx)∞n=1 is a Cauchy sequence in Y for every x ∈ X ,
and therefore Tx = limn→∞ Tnx exists for every x ∈ X . Since limits are linear,
we have T ∈ L(X, Y ). For a given ε > 0, choose N so large that ‖Tm − Tn‖ < ε
if m, n ≥ N . For x ∈ X , it then follows that

‖Tmx − Tnx‖ ≤ ‖Tm − Tn‖‖x‖ < ε‖x‖

if m, n ≥ N . We now let m → ∞ in this inequality using the continuity of the
norm (Proposition 8.1.4), to obtain

‖Tx − Tnx‖ ≤ ε‖x‖, whence ‖T − Tn‖ ≤ ε

if n ≥ N . Thus, Tn → T in B(X, Y ). Finally, since

‖Tx‖ ≤ ‖Tx − TNx‖ + ‖TNx‖ < (ε + ‖TN‖)‖x‖

for every x ∈ X , we see that T ∈ B(X, Y ).
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Duality

In this chapter, X will denote a normed space over a field K which is either R or C.

11.1. Definition of the Dual Space

Definition 11.1.1. The space X ′ = B(X,K) is called the dual space to X .

According to our notation, the elements in X ′ are called bounded linear func-
tionals on X . The norm in X ′ is

‖f‖ = sup
‖x‖≤1

|f(x)|, f ∈ X ′.

According to Theorem 10.4.5, X ′ is a Banach space with this norm.

11.2. Examples

Example 11.2.1. According to Examples 10.3.1, 10.3.3, and 10.3.5, the following
operators belong to the dual of C[a, b]:

(a) the operator f(x) =
∫ b

a
x(τ) dτ, x ∈ C[a, b], with norm b − a;

(b) the operator f(x) = x(t0), x ∈ C[a, b], where a ≤ t0 ≤ b is fixed, with norm 1;

(c) the operator f(x) =
∫ b

a
x(τ)y(τ) dτ, x ∈ C[a, b], where y ∈ C[a, b], with

norm
∫ b

a
|y(τ)| dτ . �

11.3. Finite Dimensional Spaces

Theorem 11.3.1. If dim(X) = d < ∞, then dim(X ′) = d.

Proof. Let e1, ... , ed be a basis for X . We define operators e′1, ... , e
′
d from X to K

in the following way: if x =
∑d

j=1 xjej , then e′k(x) = xk for k = 1, ... , k. In
particular, e′k(ej) = δjk, 1 ≤ j, k ≤ d. It now follows from Lemma 8.5.4 that

|e′k(x)| = |xk| ≤
( d∑

j=1

|xj|2
)1/2

≤ C‖x‖

for every x ∈ X , showing that e′k ∈ X ′ for k = 1, ... , d. The operators e′1, ... , e
′
d are

linearly independent, since if

λ1e
′
1 + ... λde

′
d = 0,

then, by applying the left-hand side to ej , we obtain that λj = 0 for j = 1, ... , d.
These operators also span X ′. Indeed, if f ∈ X ′, then

f =

d∑

k=1

yke′k, (1)

56
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where yk = f(ek), k = 1, ... , d; this identity is verified by applying both sides to
the basis of X . Thus, e′1, ... , e

′
d is a basis for f , so dim(X ′) = d.

Notice that it follows from (1) that if f ∈ X ′, then

f(x) =
d∑

k=1

xkyk, x ∈ X, (2)

where yk = f(ek), k = 1, ... , d. It follows conversely from the Cauchy–Schwarz
inequality (Theorem 9.1.4) that, for fixed numbers y1, ... , yd ∈ K, the operator,
defined by (2), belongs to X ′.

11.4. ℓp-spaces

Theorem 11.4.1. Suppose that 1 ≤ p < ∞. Then f ∈ (ℓp)′ if and only if there
exists a unique sequence y ∈ ℓp′

such that

f(x) =
∞∑

k=1

xkyk for x ∈ ℓp. (3)

If f ∈ (ℓp)′ is given by (3) for some y ∈ ℓp′

, then ‖f‖ = ‖y‖p′.

Proof. We prove the theorem for 1 < p < ∞ and leave the case p = 1 as an
exercise. First, suppose that f ∈ (ℓp)′ and let (ek)∞k=1 be the standard Schauder
basis for ℓp. Then

f(x) =
∞∑

k=1

xkf(ek) =
∞∑

k=1

xkyk

for x ∈ ℓp, where yk = f(ek), k = 1, 2, ... . This shows proves that y is uniquely
determined. To show that y ∈ ℓp′

, put xk = |yk|p′

/yk if yk 6= 0 and xk = 0
otherwise. Then, for 1 ≤ N < ∞,

N∑

k=1

|xk|p =

N∑

k=1

|yk|(p′−1)p =

N∑

k=1

|yk|p′

. (4)

Using this identity and the fact that f is bounded, it now follows that

N∑

k=1

|yk|p′

=
N∑

k=1

xkyk ≤ ‖f‖
( N∑

k=1

|xk|p
)1/p

= ‖f‖
( N∑

k=1

|yk|p′

)1/p

,

which implies that y ∈ ℓp′

with ‖y‖p′ ≤ ‖f‖. It also follows from (4) that x ∈ ℓp.
Hölder’s inequality (Corollary 1.3.2) now shows that

|f(x)| ≤
∞∑

k=1

|xkyk| ≤ ‖x‖p‖y‖p′

for x ∈ ℓp, and hence that ‖f‖ ≤ ‖y‖p′ .

For the converse, let f be defined by (3), where y ∈ ℓp′

. Hölder’s inequality
then shows that f ∈ (ℓp)′ with ‖f‖ ≤ ‖y‖p′ . Using the same argument as above,
we finally see that ‖y‖p′ ≤ ‖f‖.
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It follows from Theorem 11.4.1 that the mapping (ℓp)′ ∋ f 7→ y ∈ ℓp′

is a isometric
isomorphism. Thus, (ℓp)′ ∼= ℓp′

for 1 ≤ p < ∞. It is often practical to identify f
with y. We will adapt this convention in what follows and — when there is no risk
of confusion — write (ℓp)′ = ℓp′

.

Example 11.4.2. Suppose that y ∈ ℓ1 and let

f(x) =

∞∑

k=1

xkyk for x ∈ ℓ∞.

This series is absolutely convergent, and since |f(x)| ≤ ‖x‖∞‖y‖1 for every x ∈ ℓ∞,

we have that f ∈ (ℓ∞)′ with ‖f‖ ≤ ‖y‖1. Now, if xk = yk/|yk| if yk 6= 0 and
xk = 0 otherwise, then x ∈ ℓ∞ and f(x) = ‖y‖1. Thus, ‖f‖ = ‖y‖1. This shows
that ℓ1 ⊂ (ℓ∞)′ (or more precisely, that ℓ1 is isometrically isomorphic to a subspace
of (ℓ∞)′). �

The following theorem will be proved later.

Theorem 11.4.3. If X ′ is separable, then X is also separable.

Since ℓ1 is separable, but ℓ∞ is not, it follows from this theorem that ℓ1 is a proper
subset to (ℓ∞)′. We will not give an exact description of (ℓ∞)′ here.

11.5. Lp-spaces

Example 11.5.1. Suppose that y ∈ Lp′

(a, b), where 1 ≤ p < ∞, and let

f(x) =

∫ b

a

x(t)y(t) dt for x ∈ Lp(a, b). (5)

It follows directly from Hölder’s inequality that

|f(x)| ≤ ‖x‖p‖y‖p′

for every x ∈ Lp(a, b), so f ∈ (Lp(a, b))′ with ‖f‖ ≤ ‖y‖p′ . Using a similar argument
as in the proof of Theorem 11.4.1, one can actually show that ‖f‖ = ‖y‖p′ . This

shows that Lp′

(a, b) ⊂ (Lp(a, b))′ for 1 ≤ p < ∞. �

The following theorem is a special case of Riesz’ representation theorem, usu-
ally proved in courses on Lebesgue integration. Together with Example 11.5.1, it
shows that (Lp(a, b))′ = Lp′

(a, b) for 1 ≤ p < ∞.

Theorem 11.5.2. Let 1 ≤ p < ∞. Then, for every f ∈ (Lp(a, b))′, there exists a
unique function y ∈ Lp′

(a, b) such that

f(x) =

∫ b

a

x(t)y(t) dt for x ∈ Lp(a, b)

and ‖f‖ = ‖y‖p′.
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11.6. The Riesz Representation Theorem for Hilbert Spaces

Let H denote a Hilbert space. Given a fixed element u ∈ H, we define f(x) = (x, u)
for x ∈ H. According to the properties of the inner product, f is a linear operator
from H to C. The Cauchy–Schwarz inequality (Theorem 9.1.4) also shows that

|f(x)| = |(x, u)| ≤ ‖x‖‖u‖

for every x ∈ H, so f ∈ H ′ with ‖f‖ ≤ ‖u‖. Since f(u) = ‖u‖2, we actually
have ‖f‖ = ‖u‖. The following representation theorem, proved by F. Riesz in 1934,
shows that every element H ′ is given in this way as the inner product with some
vector in H.

Theorem 11.6.1. For every f ∈ H ′ there exists a unique element u ∈ H such that

f(x) = (x, u) for x ∈ H.

This element satisfies ‖u‖ = ‖f‖.

Together with the discussion above, this theorem shows that H ′ is isometrically
isomorphic to H.

Proof. The set Y = ker(f) = {y ∈ X : f(x) = 0} is a closed subset to H.
If Y = H, u = 0 works in the statement of the theorem. Otherwise, choose an
element z ∈ Y ⊥ such that ‖z‖ = 1. Every element x ∈ H may be decomposed
as x = y + λz, where y ∈ Y and λ = f(x)/f(z) (notice that f(z) 6= 0). Since

0 = (y, z) = (x − λz, z) = (x, z) − λ = (x, z) − f(x)

f(z)

it follows that
f(x) = (x, f(z)z).

We therefore take u = f(z)z. As above, we then have ‖f‖ = ‖u‖. To prove unique-
ness, suppose that there exist elements u1, u2 ∈ H so that f(x) = (x, u1) = (x, u2)
for every x ∈ H. Then (x, u1 − u2) = 0 for every x ∈ H, from which it follows
that u1 − u2 = 0, i.e., u1 = u2.

Example 11.6.2. We state two consequences of Theorem 11.6.1. The reader
should compare these with Theorem 11.4.1 and Theorem 11.5.2, respectively.

(a) Every f ∈ (ℓ2)′ may be written

f(x) =

∞∑

j=1

xjyj, x ∈ ℓ2,

for some y ∈ ℓ2 with ‖y‖2 = ‖f‖.

(b) Every f ∈ (L2(a, b))′ may be written

f(x) =

∫ b

a

x(t)y(t)dt, x ∈ L2(a, b),

for some y ∈ L2(a, b) with ‖y‖2 = ‖f‖. �
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Exercises

E11.1. Prove Theorem 11.4.1 in the case p = 1.

E11.2. Show that c
′ = c

′
0 = ℓ1.

E11.3. Show that if f is defined by (5), where 1 ≤ p < ∞ and y ∈ Lp′

(a, b), then
‖f‖ = ‖y‖p′ .
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The Hahn–Banach Extension Theorem

Let X denote a vector space over a field K, which is either R or C. Let also Y be
a non-trivial subspace to X and f a linear functional on Y . A linear extension
of f to X is a linear functional F on X such that F = f on Y .

12.1. Semi-norms

Definition 12.1.1. A semi-norm on a vector space X is a function ρ : X → R
such that for all x, y ∈ X the following properties hold:

(i) ρ(x) ≥ 0;

(ii) ρ(αx) = |α|ρ(x) for every α ∈ K;

(iii) ρ(x + y) ≤ ρ(x) + ρ(y).

The difference between a semi-norm and a norm is thus that a semi-norm does not
have to be definite: it is possible that ρ(x) = 0 even if x is not 0.

Example 12.1.2. The function ρ(x) =
∫ 1

0
|x(t)| dt, x ∈ L1(R), is a semi-norm

on L1(R), but not a norm since ρ(x) = 0 only implies that x = 0 on (0, 1). �

In what follows, ρ denotes a semi-norm on X .

12.2. The Hahn–Banach Theorem

The following extension theorem for real vector spaces was proved independently
by Hahn in 1927 and by Banach in 1929.

Theorem 12.2.1. Let X be a real vector space. If f is a linear functional, defined
on a subspace Y to X, such that |f | ≤ ρ on Y , then there exists a linear extension F
of f to X such that |F | ≤ ρ on X.

The extension F is in general not uniquely determined (not even in finite dimen-
sion).

Example 12.2.2. Let X denote the space of real-valued functions in L1(−1, 1)
and let Y be the subspace to X , consisting of functions that are 0 on (−1, 0). A
semi-norm on X is the ordinary norm ρ(x) = ‖x‖1 and a linear functional on Y

is f(x) =
∫ 1

0
x(t) dt. Obviously, |f | ≤ ρ on Y . The functional

F (x) = a

∫ 0

−1

x(t) dt +

∫ 1

0

x(t) dt

extends f to X and satisfies |F | ≤ ρ for |a| ≤ 1. �

The proof of this theorem relies on the following lemma.
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Lemma 12.2.3. Let X be a real vector space and Y a non-trivial subspace to X.
If f is a linear functional on Y such that |f | ≤ ρ on Y and x ∈ X \ Y , then there
exists a linear extension F of f to span(Y ∪ {x}) such that |F | ≤ ρ on X.

Notice that span(Y ∪ {x}) consists of elements u = y ± tx, where y ∈ Y and t ≥ 0.

Proof. Using the linearity of f and the fact that |f | ≤ ρ on Y , it follows that

f(y) + f(z) = f(y + x) + f(z − x) ≤ ρ(y + x) + ρ(z − x),

and hence that
f(z) − ρ(z − x) ≤ ρ(y + x) − f(y)

for all y, z ∈ Y . Taking the supremum over z and the infimum over y, it follows
that there exists a real number c such that

f(z) − ρ(z − x) ≤ c ≤ ρ(y + x) − f(y)

for all y, z ∈ Y , which in turn implies that f(y) ± c ≤ ρ(y ± x) for every y ∈ Y .
Now, for t > 0,

f(y) ± tc = t(f( y
t ) ± c) ≤ t(ρ( y

t ) ± c) = ρ(y ± tx).

If we define F (y±tx) = f(y)±tc for y ∈ Y and t ≥ 0, we thus obtain an extension F
of f to span(Y ∪{x}) that satisfies F (u) ≤ ρ(u) for every u ∈ span(Y ∪{x}). Finally,
since

−F (u) = F (−u) ≤ ρ(−u) = ρ(u),

we have |F (u)| ≤ ρ(u) for every u ∈ span(Y ∪ {x}).

Proof (Theorem 12.2.1). Let A denote the class of pairs (Z, F ), where Z is a
subspace to X such that Y ⊂ Z and F is an extension of f to Z such that |F | ≤ ρ.
Notice that A 6= ∅ since (Y, f) ∈ A. We then introduce a partial order on A in
the following manner: (Z1, F1) ≤ (Z2, F2) if Z1 ⊂ Z2 and F2 is an extension of F1

to Z2.
Now, let K be a completely ordered chain in A. Then V =

⋃
(Z,F )∈K Z is

a subspace to X due to the fact that K is completely ordered. Moreover, the
functional G on V , defined by G(x) = F (x) if x ∈ Z, where (Z, F ) ∈ K, is an
extension of f such that G ≤ ρ. We also see that (V, G) is an upper bound to K. It
thus follows from Zorn’s lemma that A has a maximal element (Z, F ). Then Z = X ,
since otherwise (Z, F ) would not be maximal according to Lemma 12.2.3.

The Hahn–Banach theorem was generalized to complex spaces by Bohnenblust
and Sobczyk in 1938. We shall also call this version the Hahn–Banach theorem.

Theorem 12.2.4. Let X be a complex vector space. If f is a linear functional,
defined on a subspace Y to X, such that |f | ≤ ρ on Y , then there exists a linear
extension F of f to X such that |F | ≤ ρ on X.

Proof. We start by writing f = g + ih, where g and h are real-valued functionals
on Y . Then

f(iy) = g(iy) + ih(iy) = ig(y)− h(y),
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so it follows that h(y) = −g(iy) and hence that f(y) = g(y)−ig(iy) for every y ∈ Y .
Denote by XR the real vector space associated to X . Then, according to the real
Hahn–Banach theorem, g has an extension G to XR that satisfies |G| ≤ ρ. We
now let F (x) = G(x) − iG(ix) for x ∈ X . Then F extends f to X . We leave it
to the reader to verify that F is linear. Finally, given x ∈ X , choose θ ∈ R so
that F (x) = eiθ|F (x)|. Then

|F (x)| = e−iθF (x) = F (e−iθx) = G(e−iθx) ≤ ρ(e−iθx) = ρ(x).

Exercises

E12.1. Give an example of a linear functional f from R to R such that |f(x)| ≤ ‖x‖2

for every x ∈ R which has no unique extension to R
2.

E12.2. Show that the functional F in the proof of Theorem 12.2.4 is linear.

12.3. Extension Theorems for Normed Spaces

In this and the next section, X denotes a normed space over K and Y a subspace
to X . We also assume that f ∈ Y ′. We first prove that f can be extended to X
without increasing the norm.

Theorem 12.3.1. There exists an extension F ∈ X ′ of f to X which satis-
fies ‖F‖ = ‖f‖.

Proof. We first define a new norm ρ on X by ρ(x) = ‖f‖‖x‖, x ∈ X . By the
definition of the norm of f , we then have |f(y)| ≤ ρ(y) for every y ∈ Y . The
Hahn–Banach theorem now shows that f has a linear extension F to X such that

|F (x)| ≤ ρ(x) = ‖f‖‖x‖ for every x ∈ X.

From the last inequality, it follows that F is bounded and ‖F‖ ≤ ‖f‖. But since F
is an extension of F , we also have

‖f‖ = sup
y∈SY

|f(y)| = sup
y∈SY

|F (y)| ≤ sup
x∈SX

|F (x)| = ‖F‖.

It is possible to prove various versions of Theorem 12.3.1 without the use of
the Hahn-Banach theorem by making stronger assumptions. The following result is
useful when one has a bounded functional, defined on a dense subspace to a larger
space, and wants to extend the operator to the whole space. The procedure is often
described by saying that the operator is extended by continuity.

Proposition 12.3.2. If Y is dense in X, then f has a unique extension F ∈ X ′

to X such that ‖F‖ = ‖f‖.

Proof. For x ∈ X , choose (yn)∞n=1 ⊂ Y such that yn → x. Then, since

|f(ym) − f(yn)| ≤ ‖f‖‖ym − yn‖ −→ 0 as m, n → ∞
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and K is complete, we see that F (x) = limn→∞ f(yn) exists. It is easy to see that
the limit is independent of which sequence we choose and that the operator F is
linear. Moreover,

|F (x)| = lim
n→∞

|f(yn)| ≤ lim
n→∞

‖f‖‖yn‖ = ‖f‖‖x‖

for every x ∈ X , which shows that F is bounded with ‖F‖ ≤ ‖f‖. As in the last
part of the proof of Theorem 12.3.1, one can also show that ‖f‖ ≤ ‖F‖, so we in
fact have ‖F‖ = ‖f‖. From the independence of the approximating sequence, it
also follows that F = f on Y , so F is an extension of f . Finally, if G ∈ X ′ is
another extension of f , then

G(x) = lim
n→∞

G(yn) = lim
n→∞

f(yn) = F (x)

for every x ∈ X , showing that G = F .

Exercises

E12.3. Prove Theorem 12.3.1 with the extra assumption that X is separable.

E12.4. Prove Theorem 12.3.1 in the case when X is a Hilbert space.

12.4. Consequences of the Hahn–Banach Theorem

In the following corollary, SX′ = {f ∈ X ′ : ‖f‖ = 1} denotes the unit sphere in X ′.

Corollary 12.4.1. For every x ∈ X,

‖x‖ = sup
f∈SX′

|f(x)|. (1)

Moreover, the supremum is attained for some functional f ∈ SX′ .

The supremum in (1) may thus be replaced by maximum. By definition of the
norm in the dual space,

‖f‖ = sup
x∈SX

|f(x)| for f ∈ X ′.

In general, however, is false that ‖f‖ = maxx∈SX
|f(x)| for f ∈ X ′.

Notice that if x 6= 0, then it follows from (1) that f(x) 6= 0 for some f ∈ SX′ ,
and hence that the dual space to X contains other elements than 0.

Proof. It is clear that the right-hand side of (1) is less than or equal ‖x‖ for
every x ∈ X . To prove the reverse inequality, let x ∈ X and define g on span{x}
by g(αx) = α‖x‖ for α ∈ K. Then, |g(αx)| = |α|‖x‖ = ‖αx‖ for every α ∈ K, so
we have ‖g‖ = 1. Theorem 12.3.1 now shows that there exists an extension G ∈ X ′

of g to X such that ‖G‖ = 1. Then

‖x‖ = |g(x)| = |G(x)| ≤ sup
f∈SX′

|f(x)|,

which proves (1). It also follows that |G(x)| = ‖x‖.
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Example 12.4.2. For f ∈ Lp(E), where 1 ≤ p < ∞,

‖f‖p = max
‖g‖p′=1

∣∣∣∣

∫

E

f(x)g(x) dx

∣∣∣∣. �

The next corollary shows that X ′ is large enough to separate points in X .

Corollary 12.4.3. If x1, x2 ∈ X and x1 6= x2, then there exists a functional f ∈
X ′ such that f(x1) 6= f(x2).

Proof. Take x = x1 − x2 in Corollary 12.4.1.

Corollary 12.4.4. Let Y be a closed subspace of X. Then, for every x ∈ X \ Y ,
there exists a functional f ∈ SX′ such that f(x) = dist(x, Y ) and f = 0 on Y .

Notice that dist(x, Y ) = infy∈Y ‖x − y‖ > 0 since Y is closed.

Proof. Define g on span(Y ∪ x) by g(y + tx) = t dist(x, Y ) for y ∈ Y and t ∈ R.
Then g = 0 on Y and g(x) = dist(x, Y ). Moreover,

|g(y + tx)| = |t| dist(x, Y ) ≤ |t|‖x −
(
−y

t

)
‖ = ‖y + tx‖,

from which it follows that ‖g‖ ≤ 1. We also have

dist(x, Y ) = inf
y∈Y

|g(x − y)| ≤ ‖g‖ inf
y∈Y

‖x − y‖ = ‖g‖ dist(x, Y ),

so ‖g‖ ≥ 1, and hence ‖g‖ = 1. Let finally f ∈ SX′ be any extension of g to X .

Corollary 12.4.5. For a subspace Z, the following conditions are equivalent X :

(i) Z is dense in X ;

(ii) if f ∈ X ′ and f = 0 on Z, then f = 0.

Proof. Suppose first that (i) holds. For x ∈ X , take a sequence (zn) ⊂ Z such
that zn → x. Then f(x) = limn→∞ f(zn) = 0, which proves that (ii) holds.

For the converse, suppose that (i) does not hold and let Y = Z. Then there
exists x ∈ X \ Y and f ∈ SX′ such that f(x) 6= 0 and f = 0 on Y . But then (ii)
cannot hold.
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The Second Dual, Reflexive Spaces

In what follows, X will denote a normed space over a field K, which is either R
or C.

13.1. The Definition

Definition 13.1.1. The space X ′′ = (X ′)′ is called the second dual to X .

Notice that X ′′ = B(X ′,K) is complete since K is complete.

13.2. Reflexive Spaces

Given x ∈ X , we define Tx ∈ L(X ′,K) through Tx(f) = f(x) for f ∈ X ′. Since

|Tx(f)| = |f(x)| ≤ ‖x‖‖f‖,

we see that Tx is bounded on X ′, i.e., Tx ∈ X ′′. By varying x, we get a lin-
ear mapping T from X to X ′′. This mapping is in fact isometric (and therefore
bounded):

‖Tx‖ = sup
f∈SX′

|Tx(f)| = sup
f∈SX′

|f(x)| = ‖x‖,

where the last equality follows from Corollary 12.4.1. This fact implies that T is
injective: If Tx = 0, then ‖x‖ = ‖Tx‖ = 0, and therefore x = 0. The mapping T is
known as the canonical embedding of X into X ′′. Notice that X is isometrically
isomorphic to the image T (X) of X under the canonical embedding: X ∼= T (X).

Definition 13.2.1. The space X is called reflexive if the canonical embedding T
is surjective.

If X is reflexive, then X is thus isometrically isomorphic to X ′′ via the canonical
embedding. R.C. James showed in 1950–1952 that the converse is false: It is
possible that X ∼= X ′′ without X being reflexive; the bijection from X to X ′′ may
be given by some other mapping than the canonical embedding.

13.3. Examples

Example 13.3.1. If X is not complete, then X cannot be reflexive. �

Theorem 13.3.2. If X is finite-dimensional, then X is reflexive.

Proof. According to Theorem 11.3.1, dim(X ′′) = dim(X ′) = dim(X). From this
fact and the fact that T : X → X ′′ is injective, it follows that T is surjective.

Theorem 13.3.3. Every Hilbert space H is reflexive.

Proof. Suppose that f ∈ H ′. It then follows from Riesz’ representation theorem
(Theorem 11.6.1) that there exists a unique vector y ∈ H such that f(x) = (x, y)
for x ∈ H and ‖y‖ = ‖f‖. The mapping A : H ′ → H, given by Af = y is

66



13.3. Examples 67

then a isometric bijection, which is also conjugate linear (additive and conjugate
homogeneous). Moreover, H ′ is a Hilbert space with the inner product

(f, g) = (Ag, Af), f, g ∈ H ′.

Now, suppose that F ∈ H ′′. It then follows from Riesz’ representation theorem,
applied to H ′, that there exists a unique functional g ∈ H ′ such that F (f) = (f, g)
for f ∈ H ′. If we let x = Ag, then

F (f) = (f, g) = (Ag, Af) = (x, Af) = f(x) = Tx(f) for every f ∈ H ′,

thus showing that Tx = F . It follows that T is surjective.

Theorem 13.3.4. For 1 < p < ∞, ℓp is reflexive.

Proof. In Theorem 11.4.1, we saw that for every f ∈ (ℓp)′, there exists a unique
sequence y ∈ ℓp′

such that

f(x) = 〈x, y〉 for x ∈ ℓp, where 〈x, y〉 =

∞∑

k=1

xkyk.

Define the operator Ap : (ℓp)′ → ℓp′

by Apf = y for f ∈ (ℓp)′. If F ∈ (ℓp)′′, then
we have x = Ap′ ◦ F ◦ A−1

p ∈ ℓp. We now see that

F (f) = F (A−1
p y) = F ◦ A−1

p (y) = A−1
p′ x(y) = 〈x, y〉 = f(x) = Tx(f),

which shows that T is surjective.

Example 13.3.5. According to Theorem 11.4.1, (ℓ1)′ ∼= ℓ∞. Now, if ℓ1 were
reflexive, then (ℓ∞)′ ∼= ℓ1. But this is impossible since ℓ1 is separable, but ℓ∞ is
not. Thus, ℓ1 is not reflexive. A similar argument shows that c och c0 are not
reflexive. �

The proof of the following theorem is almost identical to that of Theorem 13.3.4.
As in Exampe 13.3.5, one also shows that L1(E) is not reflexive.

Theorem 13.3.6. For 1 < p < ∞, Lp(E) is reflexive.
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The Uniform Boundedness Principle,

Banach–Steinhaus’ Theorem

In the present chapter, X let denote a Banach space and Y a normed space over
the real or the complex numbers. Let also Tn, n = 1, 2, ..., denote a sequence of
operators in B(X, Y ) and T an operator in L(X, Y ).

14.1. The Uniform Boundedness Principle

Different versions of the following theorem was proved by Hahn 1922, Banach 1922,
Hildebrandt 1923, and Banach and Steinhaus 1927.

Theorem 14.1.1 (The Uniform Boundedness Principle). Suppose that the
sequence (Tn)∞n=1 is bounded pointwise.Then (Tn)∞n=1 is also bounded.

Remark 14.1.2.

(i) The assumption means that supn≥1 ‖Tnx‖ < ∞ for every x ∈ X .

(ii) The conclusion means that supn≥1 ‖Tn‖ < ∞.

Proof. By the assumption, X =
⋃∞

m=1 Xm, where

Xm = {x ∈ X : ‖Tnx‖ ≤ m for evey n}.

Notice that Xm is closed since the norm in X and every operator Tn is continuous.
Since X is complete, it follows from Baire’s theorem (Theorem 6.2.4) that some
set Xm has nonempty interior. Thus, there exists a element x0 ∈ Xm and a
number r > 0 such that x ∈ Xm if ‖x−x0‖ ≤ r. If ‖y‖ ≤ 1, then x = x0+ry ∈ Xm,
so

‖Tny‖ =
∥∥∥T

(x − x0

r

)∥∥∥ ≤ 2m

r
for every n.

This shows that ‖Tn‖ ≤ 2m/r for every n.

14.2. Banach–Steinhaus sats

Theorem 14.2.1. If Tn converges to T pointwise, then

(i) C = supn≥1 ‖Tn‖ < ∞;

(ii) T ∈ B(X, Y );

(iii) ‖T‖ ≤ lim infn→∞ ‖Tn‖.

Remark 14.2.2. In Example 10.4.4 we saw that if Tn converges to T pointwise,
it does not follow that Tn converges to T strongly, i.e., with respect to the norm.
This example also shows that the inequality in (iii) may be strict.
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Proof.

(i) If the sequence (Tnx)∞n=1 is convergent for every x ∈ X , then (Tnx)∞n=1 is
obviously bounded. The conclusion now follows from Theorem 14.1.1.

(ii) Since ‖Tnx‖ ≤ C‖x‖ for every x ∈ X and every n ≥ 1, it follows using the
fact that Tn converges to T that ‖Tx‖ ≤ C‖x‖ for every x ∈ X , and hence
that T ∈ B(X, Y ).

(iii) We have

‖Tx‖ = lim
n→∞

‖Tnx‖ = lim inf
n→∞

‖Tnx‖ ≤ (lim inf
n→∞

‖Tn‖)‖x‖,

from which it follows that ‖T‖ ≤ lim inf n → ∞‖Tn‖.

14.3. An Application to Fourier Series

We next present a classic application of Banach–Steinhaus’ theorem.

Example 14.3.1. Let C2π(R) denote the subspace to C(R) consisting of functions
with period 2π. We will show that there exists a function f ∈ C2π(R) whose Fourier
series is divergent in 0. For f ∈ C2π(R), the Nth partial sum to the Fourier series
of f is

SNf(t) =

N∑

−N

F (n)eint =
1

2π

∫ π

−π

DN (t − τ)f(τ) dτ, N = 1, 2, ... ,

where DN is the Dirichlet kernel:

DN (τ) =

N∑

−N

einτ =
sin(N + 1

2
)τ

sin(τ/2)
, τ ∈ R.

Define TN : C2π(R) → C by TNf = SNf(0), N = 1, 2, ... . To prove that there
exists a function f such that the Fourier series of f is divergent in 0, it suffices to
show that supn≥1 ‖TN‖ = ∞. According to Example 10.3.5, ‖TN‖ = 1

2π
‖DN‖1.

Now,

‖DN‖1 ≥ 4

∫ π

0

∣∣∣sin(N +
1

2
)τ

∣∣∣
dτ

τ
= 4

∫ (N+ 1
2
)π

0

| sinu| du

u
−→ ∞ as N → ∞.

This shows that supn≥1 ‖TN‖ = ∞. �

Remark 14.3.2. The result in Example 14.3.1 was proved by Paul du Bois-Rey-
mond frn 1873. In 1915, Nikolai Luzin conjectured that the Fourier series of a
function f ∈ L2(−π, π) converges a.e. This was proved by Lennart Carleson as late
as 1966. Carleson’s result was generalized in 1968 by Richard A. Hunt to Lp(−π, π),
where 1 < p < ∞. Much earlier, in 1923, Andrey Kolmogorov had proved that there
exists a function in L1(−π, π) whose Fourier series diverges a.e.



Chapter 15

Weak and Weak∗ Convergence

Let X denote a normed space over a field K, which is either R or C. We say
that xn ∈ X converges strongly to x ∈ X if xn converges to x in X , that is
if ‖x − xn‖ → 0. This type of convergence is as usual denoted xn → x.

15.1. Weak Convergence

Definition 15.1.1. We say that xn ∈ X converges weakly to x ∈ X and
write xn ⇀ x if

f(xn) → f(x) for every f ∈ X ′.

Example 15.1.2. According to Theorem 11.4.1, xn ⇀ x in ℓp, 1 ≤ p < ∞,
if

∑∞
j=1 xj

nyj → ∑∞
j=1 xjyj for every sequence y ∈ ℓp′

. �

Example 15.1.3. According to Theorem 11.5.1, fn ⇀ f in Lp(E), 1 ≤ p < ∞,
if

∫
E

fng dx →
∫

E
fg dx for every function g ∈ Lp′

(E). �

The following theorem shows that strong convergence implies weak convergence
and that the usual rules for limits also hold for weak limits.

Theorem 15.1.4.

(a) If xn → x, then xn ⇀ x.

(b) If xn ⇀ x and yn ⇀ y, then αxn + βyn ⇀ αx + βy for all α, β ∈ K.

Proof.

(a) If f ∈ X ′, then |f(x) − f(xn)| ≤ ‖f‖‖x − xn‖ → 0.

(b) Again if f ∈ X ′, then

f(αxn + βyn) = αf(xn) + βf(yn) → αf(x) + βf(y) = f(αx + βy).

15.2. Examples

For finite-dimensional spaces, weak convergence coincides with strong convergence.

Theorem 15.2.1. If dim(X) < ∞, then every weakly convergent sequence in X
is strongly convergent.

Proof. Let e1, ... , ed be a basis for X and let e′1, ... , e
′
d be the corresponding dual

basis, defined by the condition e′k(x) = xk for k = 1, ... , d, where xk is the kth
coordinate of x ∈ X with respect to e1, ... , ed (see Theorem 11.3.1). If xn converges
weakly to x in X , then

xk
n = e′k(xn) → e′k(x) = xk for k = 1, ... , d.
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Since all norms on X are equivalent (see Theorem 8.5.3), we now obtain that

‖x − xn‖ ≤ C

( d∑

j=1

|xj − xj
n|2

)1/2

−→ 0,

showing that xn converges strongly to x.

The following two examples show that weak convergence in general does not
imply strong convergence.

Example 15.2.2. We will show that the sequence (eint)∞−∞ ⊂ L2(−π, π) converges
weakly to 0. If f ∈ (L2(−π, π))′ has the representation f(x) =

∫ π

−π
x(t)y(t) dt

for x ∈ L2(−π, π), where y ∈ L2(−π, π), then

f(eint) =

∫ π

−π

y(t)eint dt = 2πY (−n),

where Y (n) denote the Fourier coefficients of y. Since Y (−n) → 0 as |n| → ∞
(which, for instance, follows from Bessel’s inequality), we see that eint ⇀ 0. The
sequence does not, however, converge strongly to 0 since ‖eint‖2 =

√
2π. �

Example 15.2.3. We next show that the standard basis (en)∞n=1 for ℓp, where
1 < p < ∞ (see Example 8.4.2), converges weakly to 0. Suppose that f ∈ (ℓp)′

is given by f(x) =
∑∞

j=1 xjyj for x ∈ ℓp, where y ∈ ℓp′

. Then f(en) = yn → 0

since
∑∞

j=1 |yj |p′

< ∞. The sequence does not converge strongly to 0 since, for
every n, ‖en‖p = 1. �

The following theorem, proved by I. Schur in 1920, shows that the result in the
previous example is false in the case p = 1. Since we will not use this result, we
omit its proof.

Theorem 15.2.4. In ℓ1, every weakly convergent sequence is strongly convergent.

15.3. Further Properties of Weak Convergence

The next theorem shows that weak limits are unique and weakly convergent se-
quences are bounded.

Theorem 15.3.1. Suppose that X is complete.

(a) If xn ⇀ x and xn ⇀ y, then x = y.

(b) If xn ⇀ x, then (xn)∞n=1 is bounded and ‖x‖ ≤ lim infn→∞ ‖xn‖.

In the proof of (a), we use the following lemma which is a consequence of Corol-
lary 12.4.1. It shows that the dual space X ′ of X is large enough to separate the
points of X .

Lemma 15.3.2. If x, y ∈ X and f(x) = f(y) for every f ∈ X ′, then x = y.
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Proof. We have f(x − y) = 0 for every f ∈ X ′ and hence

‖x − y‖ = sup
‖f‖≤1

|f(x − y)| = 0.

Proof (Theorem 15.3.1).

(a) This follows directly from Lemma 15.3.2 since it follows from the assumption
that f(x) = f(y) for every f ∈ X ′.

(b) If T denotes the canonical embedding of X into X ′′ (see Section 13.2), then
it follows that Txn(f) → Tx(f) for every f ∈ X ′. The Banach–Steinhaus
theorem (Theorem 14.2.1) then shows that

sup
n≥1

‖Txn‖ < ∞ and ‖Tx‖ ≤ lim inf
n→∞

‖Txn‖.

The statement now follows from the fact that T is an isometry.

A necessary condition for a sequence to be weakly convergent is thus that the
sequence is bounded. In some cases it is also possible to find sufficient conditions
for weak convergence.

Example 15.3.3. Let (xn)∞n=1 be a bounded sequence in ℓp, 1 < p < ∞. If
xn ⇀ x ∈ ℓp and fj ∈ ℓp, j = 1, 2, ... , is defined by fj(x) = xj for x ∈ ℓp,
then xj

n = fj(xn) → fj(x) = xj for every j.
Suppose conversely xj

n → xj for every j. Let f(x) =
∑∞

j=1 xjyj for x ∈ ℓp,

where y ∈ ℓp′

. Then

|f(x) − f(xn)| ≤
∞∑

j=1

|xj − xj
n||yj| ≤

N∑

j=1

|xj − xj
n||yj| +

∞∑

j=N+1

(|xj| + |xj
n|)|yj|

≤
N∑

j=1

|xj − xj
n||yj| + (‖x‖p + ‖xn‖p)

( ∞∑

j=N+1

|yj|p′

)1/p′

.

According to Theorem 15.3.1, there exists a constant C such that ‖xn‖ ≤ C for
every n. We now see that if we first choose N and after that n large enough,
then |f(x) − f(xn)| can be made arbitrarily small. Thus, xn ⇀ x. �

Example 15.3.4. Lt (fn)∞n=1 ⊂ C[a, b] be bounded. If fn ⇀ f ∈ C([a, b]), then fn

converges pointwise to f , i.e., fn(t) → f(t) for every t ∈ [a, b]. This follows if we
apply the functional δt, a ≤ t ≤ b, defined by δt(f) = f(t), to the sequence. It
is also true, but harder to show, that pointwise convergence of bounded sequences
in C[a, b] implies weak convergence. �

15.4. Weak∗ Convergence

Below, (fn)∞n=1 will denote a sequence in X ′. We say that fn converges strongly
to f ∈ X ′, and write fn → f , if ‖f − fn‖ → 0, where ‖ · ‖ is the norm in X ′.
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Definition 15.4.1. The sequence (fn)∞n=1 converges weak∗ to f ∈ X ′ if

fn(x) → f(x) for every x ∈ X.

This convergence is denoted fn
∗
⇀ f .

Thus, weak* convergence in X ′ coincides with pointwise convergence. The following
theorem summarizes some properties of weak* convergence; we leave the proof to
the reader.

Theorem 15.4.2.

(a) If fn → f , then fn
∗
⇀ f .

(b) If fn
∗
⇀ f and gn

∗
⇀ g, then αfn + βgn

∗
⇀ αf + βg for all α, β ∈ K.

(c) If fn
∗
⇀ f and fn

∗
⇀ g, then f = g.

(d) If fn
∗
⇀ f , then (fn)∞1 is bounded and ‖f‖ ≤ lim infn→∞ ‖fn‖.

Remark 15.4.3. In general, weak* convergence is not the same as weak conver-
gence in X ′. First of all, fn ⇀ f in X ′ if F (fn) → F (f) for every F ∈ X ′′. Now,

every x ∈ X can be identified with an element of X ′′, so if fn ⇀ f , then fn
∗
⇀ f ,

i.e., weak convergence implies weak* convergence. If X is reflexive, these concepts,
however, coincide.



Chapter 16

The Open Mapping Theorem and the Closed

Graph Theorem

Let X and Y be Banch spaces over a field K, which is either R or C, and let T be
a linear operator from X to Y . Consider the equation

Tx = y, (1)

where x ∈ X is unknown and the right-hand side y ∈ Y is known. If T is invertible
with inverse T−1 : Y → X , then the equation has exactly one solution x = T−1y
for every y. Moreover, if T−1 is bounded, then

‖x‖ = ‖T−1y‖ ≤ ‖T−1‖‖y‖.

It follows that the problem (1) is numerically stable in the sense that small errors
in the right-hand side of (1) give rise to small errors in the solution.

16.1. Open Mappings

Suppose that T is bounded and invertible; we will investigate if the same holds
for the operator T−1. Notice that T−1 is bounded, i.e., continuous, if and only
if (T−1)−1(G) = T (G) is open for every open subset G to X .

Definition 16.1.1. The operator T is said to be open if T (G) is open for every
open subset G to X .

Example 16.1.2. Every bounded operator is not open. For instance, the opera-
tor T : ℓ∞ → c0, which maps x = (xj)∞j=1 ∈ ℓ∞ to Tx = (xj/j)∞j=1 ∈ c0, is not

open since T (B1(0)) = {y ∈ c0 : |yj| ≤ c/j for j = 1, 2, ... , for some c < 1} does
not contain an open ball with center 0. �

Theorem 16.1.3. Every open mapping T is surjective.

Proof. Since T is open and T0 = 0, Bε(0) ⊂ T (B1(0)) for some number ε > 0.
From the linearity of T , it now follows that BR(0) ⊂ T (BR/ε(0)) for every R > 0,
which shows that T is surjective.

16.2. The Open Mapping Theorem

Lemma 16.2.1. If T ∈ B(X, Y ) is surjective, then there exists a number ε > 0
such that Bε(0) ⊂ T (B1(0)).

Proof. We begin by showing that

Bε(0) ⊂ T (B1/2(0)) for some ε > 0. (2)

Since T is surjective, Y =
⋃∞

n=1 T (Bn/2(0)). Baire’s category theorem (Theo-

rem 6.2.4) now shows that some set T (Bn/2(0)) has non-empty interior, so there

74



16.3. The Inverse Mapping Theorem 75

exists a vector y ∈ Y and a number r > 0 such that Br(y) ⊂ T (Bn/2(0)). Sup-

pose that ‖z‖ < r. Then ‖(z + y) − y‖ < r and hence z + y ∈ T (Bn/2(0)).

Since also Br(−y) ⊂ T (Bn/2(0)), we similarly have z − y ∈ T (Bn/2(0)). Us-

ing the fact that T (Bn/2(0)) is convex, we see that z ∈ T (Bn/2(0)), and hence

that Br(0) ⊂ T (Bn/2(0)). This proves (2) with ε = r/n.
Now, if y ∈ Bε(0), then ‖y − Tx1‖ < 2−1ε for some vector x1 ∈ B1/2(0).

Thus, y − Tx1 ∈ Bε/2(0) ⊂ T (B1/4(0)). Using induction, we can find a se-
quence (xn)∞n=1 ⊂ X such that ‖xn‖ < 2−n and ‖y − T (

∑n
k=1 xk)‖ < 2−nε

for n = 1, 2, ... . Since ‖xn‖ < 2−n, the series x =
∑∞

k=1 xk converges absolutely
and x ∈ B1(0). We also have

‖y − Tx‖ = lim
n→∞

∥∥∥y − T
( n∑

k=1

xk

)∥∥∥ ≤ lim
n→∞

2−nε = 0,

so y = Tx.

The following theorem was proved by J. Schauder in 1930.

Theorem 16.2.2 (The Open Mapping Theorem). An operator T ∈ B(X, Y )
is surjective if and only if it is open.

Proof. The sufficiency part follows from Theorem 16.1.3. Now suppose that T is
surjective. Let G ⊂ X be open and let y = Tx ∈ T (G). Since G is open, there
exists a number r > 0 such that Br(x) ⊂ G. Then Br(0) ⊂ G − x, where we use
the notation G − x = {g − x : g ∈ G}. According to Lemma 16.2.1, there exists a
number s > 0 such that Bs(0) ⊂ T (Br(0)). But since Br(0) ⊂ G − x, this implies
that

Bs(0) ⊂ T (G − x) = T (G) − Tx = T (G) − y,

and hence that Bs(y) ⊂ T (G). This proves that T (G) is open.

16.3. The Inverse Mapping Theorem

The inverse mapping theorem was proved by S. Banach in 1929.

Theorem 16.3.1 (The Inverse Mapping Theorem). If T ∈ B(X, Y ) is bijec-
tive, then T−1 ∈ B(Y, X).

Proof. Accoording to Theorem 16.2.2, T is open, so T−1 is bounded.

Example 16.3.2. Let us define the operator T : C[0, 1] → C[0, 1] by

Tx(t) =

∫ t

0

x(τ) dτ, 0 ≤ t ≤ 1, for x ∈ C[0, 1].

According to Example 10.3.1, T is bounded. Moreover, T is injective: If Tx = 0,
then Tx(t) =

∫ t

0
x(τ) dτ = 0 for 0 ≤ t ≤ 1, which after differentiation shows

that x = 0. The range of T is R(T ) = {y ∈ C1[0, 1] : y(0) = 0}. As a map-
ping from C[0, 1] to R(T ), T is invertible with the inverse T−1y = y′, y ∈ R(T ).
However, the inverse of T is not bounded (see Example 10.3.1), which seems to
contradict the inverse mapping theorem. The explanation R(T ) is not a closed
subset to C[0, 1] and therefore not complete. �
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Example 16.3.3. For f ∈ L1(−π, π), we define Tf = (F (n))∞−∞, where F (n)
denote the Fourier coefficients of f . According to the Riemann–Lebesgue lem-
ma, F (n) → 0 as |n| → ∞, so T : L1(−π, π) → c0. It also follows from the
uniqueness theorem for Fourier coefficients that T is injective.

Now suppose that T were surjective. Then T−1 : c0 → L1(−π, π) would be
bounded, so there would exist a constant C > 0 so that ‖Tf‖∞ ≥ C‖f‖1 for
every f ∈ L1(−π, π). But for the Dirichlet kernel DN ∈ L1(−π, π) (see exam-
ple 14.3.1), ‖TDN‖∞ = 1, while ‖DN‖1 → ∞ as N → ∞. This shows that T is
not surjective, so the range of T is not the whole of c0. �

Corollary 16.3.4. Suppose that X is complete with respect to two norms ‖ · ‖1

and ‖ · ‖2. If there exists a constant D > 0 such that

‖x‖1 ≤ D‖x‖2 for every x ∈ X,

then the norms ‖ · ‖1 and ‖ · ‖2 are equivalent, that is there exists a constant C > 0
such that

C‖x‖2 ≤ ‖x‖1 for every x ∈ X.

Proof. Let Xj = (X, ‖ · ‖j), j = 1, 2. The operator T : X2 → X1, which is
given by Tx = x, x ∈ X2, is obviously both bijective and bounded. According to
Theorem 16.3.1, the operator T−1 : X1 → X2 is therefore bounded, so there exists
a constant K > 0 such that ‖x‖2 = ‖T−1x‖2 ≤ K‖x‖1.

Example 16.3.5. Let X = {x ∈ C[0, 1] : x(0) = 0}. Then X is complete with
respect to the two norms ‖x‖1 = ‖x′‖∞ and ‖x‖2 = ‖x‖∞ + ‖x′‖∞ (x ∈ X).
Moreover, ‖x‖1 ≤ ‖x‖2 for every x ∈ X . It thus follows from Corollary 16.3.4
that there exists a constant C > 0 such that ‖x‖1 ≥ C‖x‖2 for every x ∈ X . In
particular, ‖x′‖∞ ≥ C‖x‖∞. Of course, this follows directly from the representation

x(t) =

∫ t

0

x′(τ) dτ, 0 ≤ t ≤ 1. �

16.4. The Closed Mapping Theorem

Definition 16.4.1. The operator T is said to be closed if

{
X ∋ xn → x ∈ X

Txn → y ∈ Y

}
implies that y = Tx.

Remark 16.4.2. The operator T is continuous if X ∋ xn → x ∈ X implies
that Txn → Tx. Every bounded, i.e., continuous operator T is therefore closed.

Example 16.4.3. Let D = C1[0, 1] considered as a subset to C[0, 1]. We will show
that the operator T : D → C[0, 1], given by Tx = x′, x ∈ D, is closed. Suppose
therefore that xn → x and Txn → y i C[0, 1], i.e., xn and x′

n tend uniformly to x
and y, respectively. According to a well-known theorem in analysis, it now follows
that y ∈ C1[0, 1] and y = x′ = Tx. �
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Definition 16.4.4.

(a) A norm on X × Y is given by ‖(x, y)‖ = ‖x‖ + ‖y‖, (x, y) ∈ X × Y

(b) The graph of T is the set GT = {(x, Tx) : x ∈ X} ⊂ X × Y .

Remark 16.4.5.

(a) Notice that X × Y is a Banach space equipped with the norm ‖( · , · )‖.

(b) The operator T is closed if and only if GT is closed.

The closed mapping theorem was proved by S. Banach in 1932.

Theorem 16.4.6 (The Closed Mapping Theorem). The operator T is boun-
ded if and only if it is closed.

Proof. It remains to prove the sufficiency part, so suppose that T is closed.
Then GT is a Banach space since GT is closed and X × Y is complete. The
projection P : GT → X , that maps (x, Tx) ∈ GT onto x ∈ X , is obviously linear
and bijective. The projection is also bounded:

‖P (x, Tx)‖ = ‖x‖ ≤ ‖x‖ + ‖Tx‖ = ‖(x, Tx)‖ for every (x, Tx) ∈ GT .

It thus follows from the inverse mapping theorem that the inverse P−1 : X → GT

is bounded. Now suppose that xn → x. Since P−1 is continuous, we then have

P−1(xn) = (xn, Txn) → P−1(x) = (x, Tx),

and, in particular, Txn → Tx.

Example 16.4.7 (Continuation of Example 16.4.3). The operator T despite
the fact that it is closed, the reason being that D is not a closed subset to C[0, 1]
and therefore not complete. �



Chapter 17

Linear Operators on Hilbert Spaces

In the following chapter, H denotes a Hilbert space over C.

17.1. The Adjoint Operator

Theorem 17.1.1. For every operator T ∈ B(H) there exists a uniquely determined
operator T ∗ ∈ B(H) such that

(Tx, y) = (x, T ∗y) for all x, y ∈ H. (1)

The operator T ∗ is called the adjoint operator or just the adjoint to T .

Proof. For a fixed vector y ∈ H, we define a linear operator fy on H by

fy(x) = (Tx, y), x ∈ H.

Then fy ∈ H ′ with ‖fy‖ ≤ ‖T‖‖y‖. Thus, according to Theorem 11.6.1, there
exists an element T ∗y ∈ H such that fy(x) = (x, T ∗y) for every x ∈ H, which
proves (1). The mapping y 7→ T ∗y is linear since the inner product is linear. We
also have

‖T ∗y‖ = ‖fy‖ ≤ ‖T‖‖y‖
for every y ∈ H, so T ∗ is bounded with ‖T ∗‖ ≤ ‖T‖. Finally, if

(Tx, y) = (x, T ∗
1 y) = (x, T ∗

2 y)

for all x, y ∈ H, then (x, T ∗
1 y − T ∗

2 y) = 0 for all x, y ∈ H, from which it follows
that T ∗

1 y = T ∗
2 y for every y ∈ H.

Remark 17.1.2. The proof shows that ‖T ∗‖ ≤ ‖T‖. In Theorem 17.2.1 (d) below,
we will show that actually ‖T ∗‖ = ‖T‖.

Example 17.1.3. Suppose that T : Cd → Cd is given by the matrix A in the

standard basis for Cd. Let A∗ = A
t
. Then

(Tx, y) = (Ax)ty = xtAty = xtA∗y = (x, T ∗y)

for all x, y ∈ H if T ∗ is the operator that is given by the matrix A∗ in the standard
basis for Cd. Notice that we here use the uniqueness part of Theorem 11.6.1. �

Example 17.1.4. Let K ∈ L2((a, b)× (a, b)). In Example 10.4.4, we saw that the
operator T , defined by

Tx(t) =

∫ b

a

K(t, τ)x(τ) dτ, a ≤ t ≤ b,

for x ∈ L2(a, b), maps L2(a, b) into L2(a, b). Now, according to Fubini’s theorem,

(Tx, y) =

∫ b

a

(∫ b

a

K(t, τ)x(τ) dτ

)
y(t) dt =

∫ b

a

x(τ)

(∫ b

a

K(t, τ)y(t) dt

)
dτ

= (x, T ∗y)
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for all x, y ∈ L2(a, b) if T ∗ is the operator defined by

T ∗y(τ) =

∫ b

a

K(t, τ)y(t) dt, a ≤ τ ≤ b. �

Example 17.1.5. Let R : ℓ2 → ℓ2 and L : ℓ2 → ℓ2 be the right and left shift
operators, respectively, defined in Example 10.3.4. Then

(Rx, y) = ((0, x1, ...), (y1, y2, ...)) = ((x1, x2, ...), (y2, y3, ...)) = (x, Ly)

for all x, y ∈ ℓ2, which shows that R∗ = L. In the same manner, one shows
that L∗ = R. �

Example 17.1.6. The operator Tm : L2(0, 1) → L2(0, 1) is defined by

Tmx(t) = m(t)x(t), 0 ≤ t ≤ 1,

for x ∈ L2(0, 1), where the multiplicator m ∈ L∞(0, 1). In this case,

(Tmx, y) =

∫ 1

0

m(t)x(t)y(t)dt =

∫ 1

0

x(t)m(t)y(t) dt = (x, Tmy)

for all x, y ∈ L2(0, 1), which shows that (Tm)∗ = Tm. �

17.2. Properties of the Adjoint

Theorem 17.2.1. Suppose that S, T ∈ B(H).Then the following properties hold :

(a) (αS + βT )∗ = αS∗ + βT ∗ for all α, β ∈ C;

(b) (ST )∗ = T ∗S∗;

(c) (T ∗)∗ = T ;

(d) ‖T ∗‖ = ‖T‖.

Proof.

(a) For x, y ∈ H, ((αS + βT )x, y) = α(Sx, y) + β(Tx, y) = (x, (αS∗ + βT ∗)(y)).

(b) For x, y ∈ H, ((ST )(x), y) = (S(Tx), y) = (Tx, S∗y) = (x, (T ∗S∗)(y)).

(c) Since (Tx, y) = (x, T ∗y) for all x, y ∈ H, (Tx, y) = (x, T ∗y), from which it
follows that (T ∗y, x) = (y, Tx) for all x, y ∈ H. Hence, (T ∗)∗ = T .

(d) According to Remark 17.1.2, ‖T ∗‖ ≤ ‖T‖. If we apply this inequality to the
operator T = (T ∗)∗, we obtain ‖T‖ = ‖(T ∗)∗‖ ≤ ‖T ∗‖
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17.3. Self-adjoint, Normal, and Unitary Operators

Definition 17.3.1. An operator T ∈ B(H) is called

(i) self-adjoint if T ∗ = T ;

(ii) normal if TT ∗ = T ∗T ;

(iii) unitary if T is invertible and T−1 = T ∗.

Notice that all self-adjoint and all unitary operators are normal.

Example 17.3.2. The operator in Example 17.1.3 is self-adjoint if A
t
= A. �

Example 17.3.3. The operator in Example 17.1.4 is self-adjoint if

K(τ, t) = K(t, τ) for 0 ≤ t, τ ≤ 1.

For instance, if K(t, τ) = k(t − τ), where k is an even, real-valued function, then
the operator is self-adjoint. �

Example 17.3.4. The operator R in Example 17.1.5 is not normal:

RR∗x = (0, x2, ...) but R∗Rx = (x1, x2, ...) for x ∈ ℓ2. �

Example 17.3.5. For the operator Tm in Exempel 17.1.6, T ∗
m = Tm, so T is self-

adjoint if m is real-valued. We also see that Tm is normal since

TmT ∗
m = T|m|2 and T ∗

mTm = T|m|2 .

From these identities, it also follows that Tm is unitary if and only if |m| = 1, in
which case T−1

m = Tm−1 . �

Lemma 17.3.6. If T ∈ B(H) is self-adjoint, then (Tx, x) is real for every x ∈ H.

Proof. If x ∈ H, then

(Tx, x) = (x, Tx) = (T ∗x, x) = (Tx, x).

Theorem 17.3.7 (Rayleigh’s Principle). If T ∈ B(H) is self-adjoint, then

‖T‖ = sup
‖x‖=1

|(Tx, x)|. (2)

Proof. Denote the right-hand side (2) by M . Since

|(Tx, x)| ≤ ‖Tx‖‖x‖ ≤ ‖T‖‖x‖2 = ‖T‖
for every x ∈ H that satisfies ‖x‖ = 1, we have M ≤ ‖T‖. To prove the reverse
inequality, suppose that ‖x‖ = ‖y‖ = 1. Then, using the fact that T = T ∗, we see
that

(T (x + y), x + y) − (T (x − y), (x− y)) = 2((Tx, y) + (Ty, x)) = 4 Re(Tx, y).

As above, |(Tu, u)| ≤ M‖u‖2 for every vector u ∈ H. This then implies that

4 Re(Tx, y) ≤ M(‖x + y‖2 + ‖x − y‖2) = 2M(‖x‖2 + ‖y‖2) = 4M.

Choose θ ∈ R so that (Tx, y) = eiθ|(Tx, y)|. If we replace x with e−iθx in the
last inequality, we then obtain that |(Tx, y)| ≤ M for every unit vector y. Corol-
lary 12.4.1 and Theorem 11.6.1 now shows that ‖Tx‖ ≤ M for every unit vector x,
and hence that ‖T‖ ≤ M .
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Compact Operators on Hilbert Spaces

In the following chapter, H denotes a Hilbert space over C.

18.1. Compact Operators

Definition 18.1.1. An operator T ∈ L(H) is said to be compact if T (B) is
relatively compact for every bounded subset B to K. The class of compact operators
on H is denoted K(H).

According to Definition 5.3.1, T (B) is relatively compact if T (B) is compact.

Theorem 18.1.2. Every compact operator is bounded.

Proof. Suppose that T ∈ K(H). Since BH is bounded and T is compact, T (BH)
is compact. It then follows from Theorem 5.1.6 that T (BH) is bounded and, in
particular, that T (BH) is bounded. This fact now implies that

‖T‖ = sup
‖x‖≤1

‖Tx‖ < ∞.

Example 18.1.3. Suppose that dim(H) < ∞ and that T ∈ B(H). If B is
a bounded subset to H, then T (B) is closed and bounded. Since H is finite-
dimensional, this implies that T (B) is compact. Thus, T is compact. �

Example 18.1.4. Suppose that T ∈ B(H) has finite rank: dim R(T ) < ∞. If B
is a bounded subset to H, then T (B) is bounded since T is bounded. It now follows
that T (B) is compact since R(T ) is finite-dimensional. �

Example 18.1.5. If dim(H) = ∞, then the identity operator I : H → H is never
compact because I(BH) = BH and BH is not compact according to Riesz’ lemma
(cf. Theorem 8.6.1 and Corollary 8.6.2). �

The following alternative characterization of compact operators follows from
Theorem 5.3.3.

Theorem 18.1.6. An operator T ∈ B(H) is compact if and only if (xn)∞n=1 ⊂ H
is bounded implies that (Txn)∞n=1 ⊂ H has a convergent subsequence.

18.2. Properties of Compact Operators

The following theorem summarizes the algebraic properties of K(H); it shows that
K(H) is a subspace to B(H) and an algebra C. The theorem is a direct consequence
of Theorem 18.1.6.

Theorem 18.2.1. Suppose that S, T ∈ K(H). Then the following properties hold :

(a) αS + βT ∈ K(H) for all α, β ∈ C;

(b) ST ∈ K(H).

81
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The next theorem shows that K(H) is a closed subspace to B(H).

Theorem 18.2.2. If Tn ∈ K(H) and Tn → T ∈ B(H), then T ∈ K(H).

Proof. Let (x
(0)
n )∞n=1 ⊂ H be a bounded sequence; we will construct a conver-

gent subsequence to (Tx
(0)
n )∞n=1 ⊂ H using Cantor’s diagonal procedure. First

choose a subsequence (x
(1)
n )∞n=1 ⊂ (x

(0)
n )∞n=1 such that (T1x

(1)
n )∞n=1 is convergent.

Then choose a subsequence (x
(2)
n )∞n=1 ⊂ (x

(1)
n )∞n=1 such that (T2x

(2)
n )∞1 is conver-

gent. Continue in the same way and let xn = x
(n)
n , n = 1, 2, ... , the diagonal

sequence.

Notice that

‖T (xm − xn)‖ = ‖(T − Tk)(xm − xn) + Tk(xm − xn)‖
≤ ‖T − Tk‖‖xm − xn‖ + ‖Tk(xm − xn)‖.

The right-hand side tends to 0 as k → ∞ since Tk → T and ‖xm −xn‖ is bounded.
Also, for a fixed k, ‖Tk(xm − xn)‖ → 0 as m, n → ∞. This shows that (Txn)∞n=1 is
a Caucy sequence and therefore convergent.

Corollary 18.2.3. The space K(H) is complete.

18.3. Approximation with Finite Rank Operators

Theorem 18.2.2 in combination with 18.1.4 gives a method for proving that a op-
erator is compact. Here, the rank of an operator is the dimension of its range.

Example 18.3.1. Consider the operators T and Tn, n = 1, 2, ... , from ℓ2 to ℓ2,
defined by

Tx =
(x1

1
,
x2

2
, ...

)
and Tnx =

(x1

1
,
x2

2
, ... ,

xn

n
, 0, ...

)
for x ∈ ℓ2.

Then every operator Tn has finite rank. Also, for x ∈ ℓ2,

‖(T − Tn)x‖2
2 =

∞∑

j=n+1

|xj |2
j2

≤ 1

(n + 1)2

∞∑

j=1

|xj|2 ≤ 1

(n + 1)2
‖x‖2,

which shows that ‖T − Tn‖ ≤ 1/(n + 1), and hence that Tn → T . It now follows
from Theorem 18.2.2 that T is compact. �

Exactly as in this example, one can show that every diagonal operator

Tx = (a1x1, a2x2, ...), x ∈ ℓ2,

where (aj)∞j=1 ∈ c0, is compact. In general, if T ∈ B(H) is the limit of a sequence
of operators Tn with finite rank, then T is compact. Theorem 18.3.5 shows that
the converse is also true.
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Example 18.3.2. The operator T : L2(0, 1) → L2(0, 1) is defined by

Tx(t) =

∫ 1

0

K(t, τ)x(τ) dτ, 0 ≤ τ ≤ 1, for x ∈ L2(0, 1),

where the kernel K is assumed to belong to L2((0, 1) × (0, 1)). According to Ex-
ample 10.4.4, ‖T‖ ≤ ‖K‖2. An orthonomal basis for L2(0, 1) is given by the func-
tions en(t) = e2πint, 0 ≤ t ≤ 1, n = 0,±1, ... . If we for a fixed τ expand K(t, τ)
with respect to this basis, we obtain

K(t, τ) =
∞∑

−∞

Kn(τ)en(t), 0 ≤ t ≤ 1,

where the series converges at least in L2(0, 1). Parseval’s identity also shows that

‖K‖2
2 =

∫ 1

0

(∫ 1

0

|K(t, τ)|2 dt

)
dτ =

∫ 1

0

( ∞∑

−∞

|Kn(τ)|2
)

dτ =

∞∑

−∞

∫ 1

0

|Kn(τ)|2 dτ.

For N = 0, 1, ... , we now define KN (t, τ) =
∑N

−N Kn(τ)en(t) and let TN be the
operator, which is given by the kernel KN . Since dim R(TN ) = 2N + 1, the opera-
tor TN is compact. We now obtain

‖T − TN‖2 ≤ ‖K − KN‖2
2 ≤

∑

|n|>N

∫ 1

0

|Kn(τ)|2 dτ −→ 0 as N → ∞,

which shows that T is compact. �

To prove that every compact operator is the limit of a sequence of finite rank
operators, we first show that the range of a compact operator is separable.

Theorem 18.3.3. If T ∈ K(H), then the range R(T ) is separable.

In the proof, we use the following lemma (see Definition 5.2.1).

Lemma 18.3.4. Every totally bounded metric space X is separable.

Proof. There exist elements x
(n)
1 , ... , x

(n)
kn

∈ X such that X ⊂ ⋃kn

j=1 B1/n(x
(n)
j )

for n = 1, 2, .... This shows that the set {x(n)
j : j = 1, ... , kn, n = 1, 2, ...} is dense

in X .

Proof (Theorem 18.3.3). Notice that R(T ) =
⋃∞

n=1 T (Bn(0)). It also follows
from Lemma 18.3.4 that every set T (Bn(0)) contains a countable, dense subset Dn.
But then

⋃∞
n=1 Dn is countable and dense in R(T ).

Theorem 18.3.5. If T ∈ K(H), then there exits a sequence Tn, n = 1, 2, ... , with
finite rank such that Tn → T .
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Proof. According to Theorem 18.3.3, H1 = R(T ) is a separable Hilbert space.
Let (en)∞n=1 be an orthonormal basis for H1 (see Theorem 9.5.11), let Pn denote
the orthogonal projection on span{e1, ... , en}, and define Tn = PnT, n = 1, 2, ... .
For x ∈ H, Parseval’s identity (Theorem 9.5.9) shows that

‖Tx − Tnx‖2 =

∥∥∥∥
∞∑

j=1

(Tx, ej)ej −
n∑

j=1

(Tx, ej)ej

∥∥∥∥
2

=

∞∑

j=n+1

|(Tx, ej)|2 −→ 0

as n → ∞. Let ε > 0. Since T (BH) is compact, there exists elements x1, ... , xk ∈ H

such that T (BH) ⊂
⋃k

j=1 Bε(Txj). Then choose N so large that ‖Txj −Tnxj‖ < ε
for every j if n ≥ N . If x ∈ BH and ‖Tx − Txj‖ < ε, we now obtain

‖Tx − Tnx‖ ≤ ‖Tx − Txj‖ + ‖Txj − Tnxj‖ + ‖Pn(Txj − Tx)‖ < 3ε.

This holds for every x ∈ BH , so it follows that ‖T − Tn‖ ≤ 3ε if n ≥ N .

Corollary 18.3.6. If T ∈ K(H), then also T ∗ ∈ K(H).

Proof. Since T is compact, there exist finite rank operators Tn, n = 1, 2, ... , such
that Tn → T . Obviously, every operator T ∗

n has finite rank. It also follows from
Theorem 17.2.1 that ‖T ∗ − T ∗

n‖ = ‖T − Tn‖, from which it follows that T ∗
n → T ∗,

and hence that T ∗ is compact since every operator Tn is compact.
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Spectral Theory for Selfadjoint, Compact

Operators on Hilbert Spaces

In this chapter, H denotes a complex Hilbert space.

19.1. Eigenvalues and Eigenvectors

Definition 19.1.1. Let T ∈ B(H).

(a) A number λ ∈ C is said to be an eigenvalue of T if ker(T − λI) 6= {0}.

(b) The set of eigenvalues of T is called the point spectrum of T and is de-
noted σp(T ).

(c) If λ ∈ σp(T ), the space ker(T − λI) is called the eigenspace of T and the
non-zero elements in ker(T − λI) are the eigenvectors corresponding to λ.

Remark 19.1.2.

(a) If λ ∈ σp(T ) and x ∈ ker(T − λI), then Tx = λx.

(b) Suppose that λ ∈ σp(T ) and that x ∈ ker(T − λI) satisfies ‖x‖ = 1. Since T
is bounded, it follows that |λ| = ‖λx‖ = ‖Tx‖ ≤ ‖T‖. This shows that all
the eigenvalues of T belong to the disk {z ∈ C : |z| ≤ ‖T‖}.

(c) As we will see in Example 19.1.3 (a) and (c), the point spectrum σp(T ) of a
operator T may be empty.

Example 19.1.3.

(a) The operator T : ℓ2 → ℓ2, defined by Tx = (0, x1, x2, ...) for x ∈ ℓ2, has no
eigenvalues. Indeed, suppose that Tx = λx, i.e.,

(0, x1, x2, ...) = λ(x1, x2, x3, ...).

If λ = 0, then it follows that x = 0, so ker(T ) = {0}. If λ 6= 0, it follows
that x1 = 0 and xj+1 = xj/λ for j = 1, 2, ... , which again shows that x = 0,
and hence that ker(T − λI) = {0}.

(b) Consider the operator T : ℓ2 → ℓ2, defined by Tx = (x1

1 , x2

2 , ...) for x ∈ ℓ2.
Suppose that Tx = λx, i.e.,

(x1

1
, x2

2
, ...) = λ(x1, x2, ...).

If λ = 0, it follows that x = 0. If λ 6= 0, then either x = 0 or λ = 1
j

and xj is arbitrary for some value of j and xj = 0 for all other values of j.
Thus, the eigenvalues of T are λ = 1

j , j = 1, 2, ... , with the corresponding

eigenvectors tej , t 6= 0, where e1, e2, ... , is the standard basis of ℓ2.

85



86 Chapter 19 Spectral Theory for Selfadjoint, Compact Operators on Hilbert Spaces

(c) Let T : C[0, 1] → C[0, 1] be defined by Tx(t) =
∫ t

0
x(τ) dτ, 0 ≤ t ≤ 1,

for x ∈ C[0, 1]; here, we consider C[0, 1] as a subspace to L2(0, 1). Suppose
that Tx = λx, i.e.,

∫ t

0

x(τ) dτ = λx(t) for 0 ≤ t ≤ 1. (1)

After differentiating, we obtain the differential equation x = λx′, 0 ≤ t ≤ 1.
If λ = 0, this shows that x = 0. If λ 6= 0, it follows from (1) that every
solution satisfies the initial condition x(0) = 0. It is easy to see that the only
solution to this problem is x = 0. Thus, T has no eigenvalues. �

19.2. Spectrum for Normal, Self-adjoint, and Unitary Opera-

tors

Theorem 19.2.1. An operator T ∈ B(H) is normal if and only if ‖Tx‖ = ‖T ∗x‖
for every x ∈ H.

Proof. The necessity part follows directly from the definition of an normal opera-
tor: For x ∈ H,

‖Tx‖2 = (Tx, Tx) = (x, T ∗Tx) = (x, TT ∗x) = (T ∗x, T ∗x) = ‖T ∗x‖2.

We leave the proof of the sufficiency part as an exercise to the reader.

Theorem 19.2.2. Suppose that T ∈ B(H). Then the following properties hold :

(a) If T is normal, then ker(T − λI) = ker(T ∗ − λI). In particular, there
holds σp(T

∗) = σp(T ).

(b) If T is self-adjoint, then σp(T ) ⊂ R.

(c) If T is unitary, then σp(T ) ⊂ {z ∈ C : |z| = 1}.
Proof.

(a) It follows from Theorem 19.2.1 and Theorem 17.2.1 (a) that

‖(T − λI)x‖ = ‖(T − λI)∗x‖ = ‖(T ∗ − λI)x‖
for every λ ∈ C and every x ∈ H, which proves the assertion.

(b) If x 6= 0 and x ∈ ker(T − λI), then λx = Tx = T ∗x = λx, which shows
that λ = λ, i.e., λ ∈ R.

(c) If x 6= 0 and x ∈ ker(T − λI), then ‖x‖2 = (T ∗Tx, x) = ‖Tx‖2 = |λ|2‖x‖2,
which shows that |λ| = 1.

Corollary 19.2.3. If T ∈ B(H) is normal and λ, µ ∈ σp(T ), where λ 6= µ,
then ker(T − λI) ⊥ ker(T − µI).

Proof. Suppose that x ∈ ker(T − λI) and y ∈ ker(T − µI). Then

λ(x, y) = (Tx, y) = (x, T ∗y) = (x, µy) = µ(x, y).

This implies that (x, y) = 0 since λ 6= µ.
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19.3. The Spectrum of Compact Operators

Theorem 19.3.1. Suppose that T ∈ K(H) and λ ∈ σp(T ) \ {0}. Then the eigen-
space ker(T − λI) is finite-dimensional.

Proof. To obtain a contradiction, we assume that dim(ker(T − λI)) = ∞ and
choose an orthonormal sequence (en)∞n=1 in ker(T − λI). If m 6= n, then

‖Tem − Ten‖2 = ‖λ(em − en)‖2 = |λ|2‖em − en‖2 = 2|λ|2 > 0,

which shows that (Ten)∞n=1 does not contain a convergent despite the fact that T
is compact and (en)∞n=1 is bounded. It follows that ker(T − λI) has to be finite-
dimensional.

Theorem 19.3.2. Suppose that T ∈ K(H). Then σp(T ) is countable with 0 as the
only possible accumulation point.

Proof. Suppose that σp(T ) is infinite and let λ1, λ2, ... ∈ σp(T ) \ {0} with corre-
sponding eigenvectors e1, e2, ... . Put Hn = span{e1, e2, ... en}, n = 1, 2, ... . Ac-
cording to Riesz’ lemma (Theorem 8.6.1), there exist vectors xn ∈ SHn

such
that dist(xn, Hn−1) ≥ 1

2 for n = 2, 3, ... . Since xn = αnen + yn, where yn ∈ Xn−1,
it follows that

(T − λnI)xn = (T − λnI)yn ∈ Xn−1.

Hence, if m > n, then
∥∥∥T

(xm

λm

)
− T

(xn

λn

)∥∥∥ =
∥∥∥xm + (T − λm)

(xm

λm

)
− T

(xn

λn

)∥∥∥ ≥ 1

2
.

It follows that the sequence (T (λ−1
n xn))∞n=2 has no convergent subsequences, so the

sequence (λ−1
n xn)∞n=2 does not contain any bounded subsequences. This in turn

implies that |λn|−1 = |λn|−1‖xn‖ → ∞, i.e., λn → 0. The only accumulation point
of σp(T ) is thus 0. This then implies that the set {λ ∈ σp(T ) : 1

m ≤ |λ| ≤ ‖T‖} is
finite for m = 1, 2, ... , so σp(T ) is countable.

Theorem 19.3.3. Let T ∈ K(H) be a self-adjoint operator such that T 6= 0. Then
either ‖T‖ ∈ σp(T ) or −‖T‖ ∈ σp(T ). In particular, σp(T ) 6= ∅.

Proof. We will use Rayleigh’s principle (Theorem 17.3.7). First choose a se-
quence (xn)∞n=1 ∈ BH such that |(Txn, xn)| → ‖T‖. By passing to a subsequence,
we may assume that (Txn, xn) → λ, where |λ| = ‖T‖. Since T ∗ = T and (Txn, xn)
is real for every n (Lemma 17.3.6), we have

‖(T − λI)xn‖2 = ‖Txn‖2 + λ2 − 2λ(Txn, xn) ≤ ‖T‖2 + λ2 − 2λ(Txn, xn)

= 2λ2 − 2λ(Txn, xn),

that is ‖(T − λI)xn‖ → 0. Again passing to a subsequence, we may assume that
Txn → y ∈ H. It now follows that

λxn = (λI − T )xn + Txn → y.

Since |λ| = ‖T‖ 6= 0, we have y 6= 0. Finally,

λy = λ lim
n→∞

Txn = lim
n→∞

T (λxn) = Ty,

which shows that y ∈ ker(T − λI) and that λ ∈ σp(T ).
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19.4. A Spectral Theorem for Compact, Self-adjoint Opera-

tors

Suppose that T ∈ K(H) is self-adjoint with eigenvalues λ1, λ2, ... , ordered so
that |λ1| ≥ |λ2| ≥ ... . Let Pj be the orthogonal projection on Ej = ker(T − λjI)
for j = 1, 2, ... .

Theorem 19.4.1. With the assumptions and notation above, T =
∑

j λjPj.

Proof. We will prove the theorem in the case when σp(T ) is infinite and leave the
remaining case as an exercise to the reader. For n = 1, 2, ... , let Yn = E1 ⊕ ...⊕En.
If Tn = T |Y ⊥

n
, then Tn : Y ⊥

n → Y ⊥
n ; indeed, if x ∈ Y ⊥

n and y ∈ Ej , where 1 ≤ j ≤ n,
then

(Tnx, y) = (Tx, y) = (x, T ∗y) = (x, λjy) = λj(x, y) = 0.

Since T is self-adjoint and compact, the same properties hold for Tn. For x ∈ H,
we let xn =

∑n
j=1 Pjx denote the orthogonal projection of x on Yn. Then

∥∥∥∥Tx −
n∑

j=1

λjPjx

∥∥∥∥ = ‖T (x − xn)‖ = ‖Tn(x − xn)‖ ≤ ‖Tn‖‖x − xn‖ ≤ |λn+1|‖x‖.

Hence, ‖T −
∑n

j=1 λjPj‖ ≤ |λn+1| → 0, so T =
∑∞

j=1 λjPj .

Corollary 19.4.2. If x ∈ H, then x = y +
∑

j Pjx, where y ∈ ker(T ).

Proof. If y is defined by y = x −
∑

j Pjx, then

Ty = Tx −
∑

j

Pjx = Tx −
∑

j

λjPjx = 0,

which shows that y ∈ ker(T ).

It follows from the corollary that if ker(T ) is separable, then there exists an or-
thonormal basis for H consisting of eigenvectors of T .


