
Lebesgue Integration on Rn

The treatment here is based loosely on that of Jones, Lebesgue Integration on Euclidean

Space. We give an overview from the perspective of a user of the theory.
Riemann integration is based on subdividing the domain of f . This leads to the require-

ment of some “smoothness” of f for the Riemann integal to be defined: for x, y close, f(x)
and f(y) need to have something to do with each other. Lebesgue integration is based on
subdividing the range space of f : it is built on inverse images.
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Typical Example. For a set E ⊂ Rn, define the characteristic function of the set E to be

χE(x) =

{
1 if x ∈ E
0 if x /∈ E

.

Consider
∫ 1

0
χQ(x)dx, where Q ⊂ R is the set of rational numbers:

1

0 1
�

�

0 at irrationals

1 at rationals

Riemann: The upper Riemann integral is the inf of the “upper sums”:
∫ 1

0
χQ(x)dx = 1.

The lower Riemann integral is the sup of the “lower sums”:
∫ 1

0
χQ(x)dx = 0.

Since
∫ 1

0
χQ(x)dx 6=

∫ 1

0
χQ(x)dx, χQ is not Riemann integrable.
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66 Lebesgue Integration on Rn

Lebesgue: Let λ(E) denote the Lebesgue measure ( “size”) of E (to be defined). Then

∫ 1

0

χQ(x)dx = 1 · λ(Q ∩ [0, 1]) + 0 · λ(Qc ∩ [0, 1])

= 1 · 0 + 0 · 1 = 0.

First, we must develop the theory of Lebesgue measure to measure the “size” of sets.

Advantages of Lebesgue theory over Riemann theory:

1. Can integrate more functions (on finite intervals).

2. Good convergence theorems: limn→∞

∫
fn(x)dx =

∫
limn→∞ fn(x)dx under mild as-

sumptions.

3. Completeness of Lp spaces.

Our first task is to construct Lebesgue measure on Rn. For A ⊂ Rn, we want to define
λ(A), the Lebesgue measure of A, with 0 ≤ λ(A) ≤ ∞. This should be a version of n-
dimensional volume for general sets. However, it turns out that one can’t define λ(A) for all

subsets A ⊂ Rn and maintain all the desired properties. We will define λ(A) for “[Lebesgue]
measurable” subsets of Rn (very many subsets).

We define λ(A) for increasingly complicated sets A ⊂ Rn. See Jones for proofs of the
unproved assertions made below.

Step 0. Define λ(∅) = 0.

Step 1. We call a set I ⊂ Rn a special rectangle if I = [a1, b1) × [a2, b2) × · · · × [an, bn),
where −∞ < aj < bj < ∞. (Note: Jones leaves the right ends closed). Define
λ(I) = (b1 − a1)(b2 − a2) · · · (bn − an).

Step 2. We call a set P ⊂ Rn a special polygon if P is a finite union of special rectangles.

Fact: Every special polygon is a disjoint union of finitely many special rectangles.

For P =
N⋃

k=1

Ik, where the Ik’s are disjoint (i.e., for j 6= k, Ij ∩ Ik = ∅), define

λ(P ) =
N∑

k=1

λ(Ik). Note that a special polygon may be written as a disjoint union

of special rectangles in different ways.

Fact: λ(P ) is independent of the way that P is written as a disjoint union of special
rectangles.
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Step 3. Let G ⊂ Rn be a nonempty open set. Define

λ(G) = sup{λ(P ) : P is a special polygon, P ⊂ G}.

(Approximation by special polygons from the inside.)

Remark: Every nonempty open set in Rn can be written as a countable disjoint union
of special rectangles.

Step 4. Let K ⊂ Rn be compact. Define

λ(K) = inf{λ(G) : G open, K ⊂ G}.

(Approximation by open sets from the outside.)

Fact: If K = P for a special polygon P , then λ(K) = λ(P ).

Now for A ⊂ Rn, A arbitrary, define

λ∗(A) = inf{λ(G) : G open, A ⊂ G} (outer measure of A)

λ∗(A) = sup{λ(K) : K compact, K ⊂ A} (inner measure of A)

Facts: If A is open or compact, then λ∗(A) = λ(A) = λ∗(A). Hence for any A, λ∗(A) ≤
λ∗(A).

Step 5. A bounded set A ⊂ Rn is said to be [Lebesgue] measurable if λ∗(A) = λ∗(A). In
this case we define λ(A) = λ∗(A) = λ∗(A).

Step 6. An arbitrary set A ⊂ Rn is said to be [Lebesgue] measurable if for each R > 0,
A ∩ B(0, R) is measurable, where B(0, R) is the open ball of radius R with center at
the origin. If A is measurable, define λ(A) = supR>0 λ(A ∩ B(0, R)).

Let L denote the collection of all Lebesgue measurable subsets of Rn.

Fact. L is a σ-algebra of subsets of Rn. That is, L has the properties:

(i) ∅, Rn ∈ L.

(ii) A ∈ L ⇒ Ac ∈ L.

(iii) If A1, A2, . . . ∈ L is a countable collection of subsets of Rn in L, then
∞⋃

k=1

Ak ∈ L.
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Fact. If S is any collection of subsets of a set X, then there is a smallest σ-algebra A of
subsets of X containing S (i.e., with S ⊂ A), namely, the intersection of all σ-algebras of
subsets of X containing S. This smallest σ-algebra A is called the σ-algebra generated by
S.

Definition. The smallest σ-algebra of subsets of Rn containing the open sets is called the
collection B of Borel sets. Closed sets are Borel sets.

Fact. Every open set is [Lebesgue] measurable. Thus B ⊂ L.

Fact. If A ∈ L, then λ∗(A) = λ(A) = λ∗(A).

Caution: However, λ∗(A) = λ∗(A) =∞ does not imply A ∈ L.

Properties of Lebesgue measure

λ is a measure. This means:

1. λ(∅) = 0.

2. (∀A ∈ L) λ(A) ≥ 0.

3. If A1, A2, . . . ∈ L are disjoint then λ

(
∞⋃

k=1

Ak

)
=

∞∑
k=1

λ(Ak). (countable additivity)

Consequences:

(i) If A, B ∈ L and A ⊂ B, then λ(A) ≤ λ(B).

(ii) If A1, A2, · · · ∈ L, then λ

(
∞⋃

k=1

Ak

)
≤

∞∑
k=1

λ(Ak). (countable subadditivity)

Remark: Both (i) and (ii) are true of outer measure λ∗ on all subsets of Rn.

Sets of Measure Zero

Fact. If λ∗(A) = 0, then 0 ≤ λ∗(A) ≤ λ∗(A) = 0, so 0 = λ∗(A) = λ∗(A), so A ∈ L. Thus
every subset of a set of measure zero is also measurable (we say λ is a complete measure).
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Characterization of Lebesgue measurable sets

Definition. A set is called a Gδ if it is the intersection of a countable collection of open
sets. A set is called an Fσ if it is the union of a countable collection of closed sets. Gδ sets
and Fσ sets are Borel sets.

Fact. A set A ⊂ Rn is Lebesgue measurable iff ∃ a Gδ set G and an Fσ set F for which
F ⊂ A ⊂ G and λ(G\F ) = 0. (Note: G\F = G ∩ F c is a Borel set.)

Examples.

(0) If A = {a} is a single point, then A ∈ L and λ(A) = 0.

(1) If A = {a1, a2, . . .} is countable, then A is measurable, and λ(A) ≤
∑∞

j=1 λ({aj}) = 0,
so λ(A) = 0. For example, λ(Q) = 0.

(2) λ(Rn) =∞.

(3) Open sets in R. Every nonempty open set G ⊂ R is a (finite or) countable disjoint

union of open intervals (aj , bj) (1 ≤ j ≤ J or 1 ≤ j < ∞), and λ(G) =
∑

j λ(aj, bj) =∑
j(bj − aj).

(4) The Cantor Set is a closed subset of [0, 1]. Let

G1 =

(
1

3
,
2

3

)
, λ(G1) =

1

3

G2 =

(
1

9
,
2

9

)
∪

(
7

9
,
8

9

)
, λ(G2) =

2

9

G3 =

(
1

27
,

2

27

)
∪ · · · ∪

(
25

27
,
26

27

)
, λ(G3) =

4

27

etc.

(
note λ(Gk) =

2k−1

3k

)

[
0

]
1
9

[
2
9

]
1
3

[
2
3

]
7
9

[
8
9

]
1

(middle thirds of remaining subintervals)

Let G =
∞⋃

k=1

Gk, so G is an open subset of (0, 1). Then

λ(G) =
1

3
+

2

9
+

4

27
+ · · · =

1

3

(
1 +

2

3
+

(
2

3

)2

+ · · ·

)
=

1

3

1

(1− 2
3
)

= 1.

Define the Cantor set C = [0, 1]\G. Since λ(C) + λ(G) = λ([0, 1]) = 1, we have
λ(C) = 0.
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Fact. For x ∈ [0, 1], x ∈ C iff x has a base 3 expansion with only 0’s and 2’s, i.e.,
x =

∑∞
j=1 dj3

−j with each dj ∈ {0, 2}.

For example: 0 = (0.000 · · · )3

1
3

= (0.100 · · · )3 = (0.0222 · · · )3

2
3

= (0.200 · · · )3

1 = (0.222 · · · )3

3
4

= (0.202020 · · · )3 is in C, but it is not an endpoint of any interval in any Gk. Despite
the fact that λ(C) = 0, C is not countable. In fact, C can be put in 1−1 correspondence
with [0, 1] (and thus also with R).

Invariance of Lebesgue measure

(1) Translation. For a fixed x ∈ Rn and A ⊂ Rn, define x + A = {x + y : y ∈ A}.

Fact. If x ∈ Rn and A ∈ L, then x + A ∈ L, and λ(x + A) = λ(A).

(2) If T : Rn → Rn is linear and A ∈ L, then T (A) ∈ L, and λ(T (A)) = |det T | · λ(A).

Measurable Functions

We consider functions f on Rn with values in the extended real numbers [−∞,∞]. We
extend the usual arithmetic operations from R to [−∞,∞] by defining x ±∞ = ±∞ for
x ∈ R; a · (±∞) = ±∞ for a > 0; a · (±∞) = ∓∞ for a < 0; and 0 · (±∞) = 0. The
expressions ∞+(−∞) and (−∞)+∞ are usually undefined, although we will need to make
some convention concerning these shortly. A function f : Rn → [−∞,∞] is called Lebesgue

measurable if for every t ∈ R, f−1([−∞, t]) ∈ L (in Rn).

Recall: Inverse images commute with unions, intersections, and complements:

f−1[Bc] = f−1[B]c, f−1

[
⋃

α

Aα

]
=
⋃

α

f−1[Aα], f−1

[
⋂

α

Aα

]
=
⋂

α

f [Aα].

Fact. For any function f : Rn → [−∞,∞], the collection of sets B ⊂ [−∞,∞] for which
f−1[B] ∈ L is itself a σ-algebra of subsets of [−∞,∞].

Note. The smallest σ-algebra of subsets of [−∞,∞] containing all sets of the form [−∞, t]
for t ∈ R contains also {−∞}, {∞}, and all sets of the form [−∞, t), [t,∞], (t,∞], (a, b),
etc. It is the collection of all sets of the form B, B ∪ {∞}, B ∪ {−∞}, or B ∪ {−∞,∞} for
Borel subsets B of R.
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Comments. If f and g : Rn → [−∞,∞] are measurable, then f + g, f · g, and |f | are
measurable. (Here we need to make a convention concerning∞+(−∞) and (−∞)+∞. This

statement concerning measurability is true so long as we define both of these expressions
to be the same, arbitrary but fixed, number in [−∞,∞]. For example, we may define
∞ + (−∞) = (−∞) +∞ = 0.) Moreover, if {fk} is a sequence of measurable functions
fk : Rn → [−∞,∞], then so are supk fk(x), infk fk(x), lim sup

k

fk(x),

︸ ︷︷ ︸
=infk≥1 supj≥k fj(x)

lim infk fk(x). Thus

if limk→∞ fk(x) exists ∀x, it is also measurable.

Definition. If A ⊂ Rn, A ∈ L, and f : A→ [−∞,∞], we say that f is measurable (on A)
if, when we extend f to be 0 on Ac, f is measurable on Rn. Equivalently, we require that
fχA is measurable for any extension of f .

Definition. If f : Rn → C (not including ∞), we say f is Lebesgue measurable if Ref and
Imf are both measurable.

Fact. f : Rn → C is measurable iff for every open set G ⊂ C, f−1[G] ∈ L.

Integration

First consider integration of a non-negative function f : Rn → [0,∞], with f measurable.
Let N be a positive integer, and define

SN =
∞∑

k=0

k2−Nλ
(
{x : k2−N ≤ f(x) < (k + 1)2−N}

)
+∞ · λ({x : f(x) = +∞}).

In the last term on the right-hand-side, we use the convention ∞ · 0 = 0. The quantity SN

can be regarded as a “lower Lebesgue sum” approximating the volume under the graph of f
by subdividing the range space [0,∞] rather than by subdividing the domain Rn as in the
case of Riemann integration.
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Claim. SN ≤ SN+1.

Proof. We have

{x : k2−N ≤ f(x) < (k + 1)2−N}

=
{
x : k2−N ≤ f(x) <

(
k + 1

2

)
2−N

}
∪
{
x :
(
k + 1

2

)
2−N ≤ f(x) < (k + 1)2−N

}

and the union is disjoint. Thus

k2−Nλ({x : k2−N ≤ f(x) < (k + 1)2−N})

≤ k2−Nλ
({

x : k2−N ≤ f(x) <
(
k + 1

2

)
2−N

})

+
(
k + 1

2

)
2−Nλ

({
x :
(
k + 1

2

)
2−N ≤ f(x) < (k + 1)2−N

})

and the claim follows after summing and redefining indices. �

Definition. The Lebesgue integral of f is defined by:

∫

Rn

f = lim
N→∞

SN .

This limit exists (in [0,∞]) by the monotonicity SN ≤ SN+1.

Other notation for the integral is

∫

Rn

f =

∫

Rn

f(x)dx =

∫

Rn

fdλ.

General Measurable Functions

Let f : Rn → [−∞,∞] be measurable. Define

f+(x) =

{
f(x) if f(x) ≥ 0

0 if f(x) < 0
, f−(x) =

{
0 if f(x) > 0

−f(x) if f(x) ≤ 0
.

Then f+ and f− are non-negative and measurable, and (∀x) f(x) = f+(x) − f−(x). The
integral of f is only defined if at least one of

∫
f+ < ∞ or

∫
f− < ∞ holds, in which case

we define ∫

Rn

f =

∫

Rn

f+ −

∫

Rn

f−.

Definition. A measurable function is called integrable if both
∫

f+ < ∞ and
∫

f− < ∞.
Since |f | = f+ + f−, this is equivalent to

∫
|f | <∞.
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Properties of the Lebesgue Integral

(We will write f ∈ L1 to mean f is measurable and
∫
|f | <∞.)

(1) If f, g ∈ L1 and a, b ∈ R, then af + bg ∈ L1, and
∫

(af + bg) = a
∫

f + b
∫

g.

We will write f = g a.e. (almost everywhere) to mean λ{x : f(x) 6= g(x)} = 0.

(2) If f, g ∈ L1 and f = g a.e., then
∫

f =
∫

g.

(3) If f ≥ 0 and
∫

f <∞, then f <∞ a.e. Thus if f ∈ L1, then |f | <∞ a.e.

In integration theory, one often identifies two functions if they agree a.e., e.g., χQ = 0 a.e.

(4) If f ≥ 0 and
∫

f = 0, then f = 0 a.e. (This is not true if f can be both positive and
negative, e.g.,

∫∞

−∞
x

1+x4 dx = 0.)

(5) If A is measurable,
∫

χA = λ(A).

Definition. If A is a measurable set and f : A → [−∞,∞] is measurable, then
∫

A
f =∫

Rn fχA.

(6) If A and B are disjoint and fχA∪B ∈ L1, then

∫

A∪B

f =

∫

A

f +

∫

B

f.

Definition. If f : Rn → C is measurable, and both Ref and Imf ∈ L1, define
∫

Rn f =∫
RnRef + i

∫
Rn Imf .

(7) If f : Rn → C is measurable, then Ref and Imf ∈ L1 iff |f | ∈ L1. Moreover,
|
∫

f | ≤
∫
|f |.

Comparison of Riemann and Lebesgue integrals

If f is bounded and defined on a bounded set and f is Riemann integrable, then f is Lebesgue
integrable and the two integrals are equal.

Theorem. If f is bounded and defined on a bounded set, then f is Riemann integrable iff
f is continuous a.e.

Note: The two theories vary in their treatment of infinities (in both domain and range). For

example, the improper Riemann integral limR→∞

∫ R

0
sinx

x
dx exists and is finite, but sinx

x
is

not Lebesgue integrable over [0,∞) since
∫∞

0

∣∣ sinx
x

∣∣ dx =∞.
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Convergence Theorems

Convergence theorems give conditions under which one can interchange a limit with an
integral. That is, if limk→∞ fk(x) = f(x) (maybe only a.e.), where fk and f are measurable,
give conditions which guarantee that limk→∞

∫
fk =

∫
f . This is not true in general:

Examples.

(1) Let fk = χ[k,∞). Then fk ≥ 0, lim fk = 0, and
∫

fk =∞, so lim
∫

fk 6=
∫

lim fk.

(2) Let fk = χ[k,k+1]. Then again lim fk = 0, and
∫

fk = 1, so lim
∫

fk 6=
∫

lim fk.

Monotone Convergence Theorem. (Jones calls this the “Increasing Convergence The-
orem”.) If 0 ≤ f1 ≤ f2 ≤ · · · a.e., f = lim fk a.e., and fk and f are measurable, then
limk→∞

∫
fk =

∫
f . Here all the limits are non-negative extended real numbers. Note that

lim fk exists a.e. by monotonicity.

Fatou’s Lemma. If fk are nonnegative a.e. and measurable, then

∫
lim inf

k→∞
fk ≤ lim inf

k→∞

∫
fk.

Lebesgue Dominated Convergence Theorem. Suppose {fk} is a sequence of complex-
valued (or extended-real-valued) measurable functions. Assume limk fk = f a.e., and assume
that there exists a “dominating function,” i.e., an integrable function g such that |fk(x)| ≤
g(x) a.e. Then ∫

f = lim
k→∞

∫
fk.

A corollary is the

Bounded Convergence Theorem. Let A be a measurable set of finite measure, and sup-
pose |fk| ≤ M in A. Assume limk fk exists a.e. Then limk

∫
A

fk =
∫

A
f . (Apply Dominated

Convergence Theorem with g = MχA.)

The following result illustrates how Fatou’s Lemma can be used together with a dominating
sequence to obtain convergence.

Extension of Lebesgue Dominated Convergence Theorem. Suppose gk ≥ 0, g ≥ 0
are all integrable, and

∫
gk →

∫
g, and gk → g a.e. Suppose fk, f are all measurable, |fk| ≤ gk

a.e. (which implies that fk is integrable), and fk → f a.e. (which implies |f | ≤ g a.e.). Then∫
|fk − f | → 0 (which implies

∫
fk →

∫
f).

Proof. |fk − f | ≤ |fk| + |f | ≤ gk + g a.e. Apply Fatou to gk + g − |fk − f | (which is ≥ 0
a.e.). Then

∫
lim inf(gk + g − |fk − f |) ≤ lim inf

∫
(gk + g − |fk − f |). So

∫
2g ≤ lim

∫
gk +∫

g − lim sup
∫
|fk − f | = 2

∫
g − lim sup

∫
|fk − f |. Since

∫
g < ∞, lim sup

∫
|fk − f | ≤ 0.

Thus
∫
|fk − f | → 0. �
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Example — the Cantor Ternary Function.

The Cantor ternary function is a good example in differentiation and integration theory. It
is a nondecreasing continuous function f : [0, 1] → [0, 1] defined as follows. Let C be the
Cantor set. If x ∈ C, say x =

∑∞
k=1 dk3

−k with dk ∈ {0, 2}, set f(x) =
∑∞

k=1

(
1
2
dk

)
2−k.

Recall that [0, 1]\C is the disjoint union of open intervals, the middle thirds which were
removed in the construction of C. Define f to be a constant on each of these open intervals,
namely f = 1

2
on
(

1
2
, 2

3

)
, f = 1

4
on
(

1
9
, 2

9

)
and f = 3

4
on
(

7
9
, 8

9

)
, etc. The general definition is:

for x ∈ [0, 1], write x =
∑∞

k=1 dk3
−k where dk ∈ {0, 1, 2}, let K be the smallest k for which

dk = 1, and define f(x) = 2−K +
∑K−1

k=1

(
1
2
dk

)
2−k. The graph of f looks like:

1
4

1
2

q

3
4

1

1
3

2
3

1

Let us calculate
∫ 1

0
f(x)dx using our convergence theorems. Define a sequence of functions

fk, k ≥ 1, inductively by:

f1 = 1
2
χ( 1

3
, 2
3
)

f2 = f1 + 1
4
χ( 1

9
, 2
9
) + 3

4
χ( 7

9
, 8
9
), etc.

Then each fk is a simple function, i.e., a finite linear combination of characteristic functions
of measurable sets. Note that if ϕ =

∑N

j=1 ajχAj
is a simple function, where Aj ∈ L and

λ(Aj) < ∞, then
∫

ϕ =
∑N

j=1 ajλ(Aj). Also, fk(x) → f(x) for x ∈ [0, 1]\C, and fk(x) = 0
for x ∈ C(∀ k). Since λ(C) = 0, fk → f a.e. on [0, 1]. So by the MCT or LDCT or BCT,∫ 1

0
f(x)dx = limk→∞

∫ 1

0
fk(x)dx. Now

∫
fk =

1

3
·
1

2
+

1

32
·

1

22
(1 + 3) +

1

33
·

1

23
(1 + 3 + 5 + 7)

+ · · ·+
1

3k
·

1

2k
(1 + 3 + 5 + · · ·+ (2k − 1)).
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Recall that

1 + 3 + 5 + · · ·+ (2j − 1) = j2.

So

∫
f = lim

k

∫
fk =

∞∑

m=1

1

3m

1

2m
22m−2 =

1

6

(
1 +

2

3
+

(
2

3

)2

+ · · ·

)
=

1

6

(
1

1− 2
3

)
=

1

2
.

(An easier way to see this is to note that f(1−x) = 1−f(x), so
∫ 1

0
f(1−x)dx = 1−

∫ 1

0
f(x)dx.

But changing variables gives
∫ 1

0
f(1− x)dx =

∫ 1

0
f(x)dx, so

∫ 1

0
f(x)dx = 1

2
.)

“Multiple Integration” via Iterated Integrals

Suppose n = m + l, so Rn = Rm × Rl. For x ∈ Rn, write x = (y, z), y ∈ Rm, z ∈ Rl. Then∫
Rn fdλn =

∫
Rn f(x)dλn(x) =

∫
Rn f(y, z)dλn(y, z). Write dx for dλn(x), dy for dλm(y), dz

for dλl(z) (λn denotes Lebesgue measure on Rn). Consider the iterated integrals

∫

Rl

[∫

Rm

f(y, z)dy

]
dz and

∫

Rm

[∫

Rl

f(y, z)dz

]
dy.

Questions:

(1) When do these iterated integrals agree?

(2) When are they equal to
∫

Rn f(x)dx?

There are two key theorems, usually used in tandem. The first is Tonelli’s Theorem, for
non-negative functions.

©1 Tonelli’s Theorem. Suppose f ≥ 0 is measurable on Rn. Then for a.e. z ∈ Rl, the
function fz(y) ≡ f(y, z) is measurable on Rm (as a function of y), and

∫

Rn

f(x)dx =

∫

Rl

[∫

Rm

f(y, z)dy

]
dz.

It can happen in Tonelli’s Theorem that for some z, the “slice function” fz is not mea-
surable:

Example. Let A ⊂ Rm be non-measurable. Pick z0 ∈ Rl and define f : Rn → R by:

f(y, z) =

{
0 (z 6= z0)

χA(y) (z = z0)
.

Then f is measurable on Rn (since λn({x : f(x) 6= 0}) = 0). But fz0
(y)=f(y, z0) = χA(y)

is not measurable on Rm. However, since the set of z’s for which
∫

fz(y)dy is undefined has
measure zero, the iterated integral still makes sense and is 0.
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©2 Fubini’s Theorem. Suppose f is integrable on Rn (i.e., f is measurable and
∫
|f | <∞).

Then for a.e. z ∈ Rl, the slice functions fz(y) are integrable on Rm, and
∫

Rn

f(x)dx =

∫

Rl

[∫

Rm

f(y, z)dy

]
dz.

Typically one wants to calculate
∫

Rn f(x)dx by doing an iterated integral. One uses
Tonelli to verify the hypothesis of Fubini as follows:

(i) Since |f | is non-negative, Tonelli implies that one can calculate
∫

Rn |f | by doing either
iterated integral. If either one is <∞, then the hypotheses of Fubini have been verified:∫

Rn |f(x)|dx =
∫ [∫

|f(y, z)|dz
]
dy <∞.

(ii) Having verified now that
∫

Rn |f | < ∞, Fubini implies that
∫

Rn f can be calculated by
doing either iterated integral.

Example. Fubini’s Theorem can fail without the hypothesis that
∫
|f | < ∞. Define f on

(0, 1)× (0, 1) by

f(x, y) =

{
x−2 0 < y ≤ x < 1
−y−2 0 < x < y < 1

.

Then
∫ 1

0

∫ 1

0
f(x, y)dydx =

∫ 1

0

(∫ x

0
x−2dy −

∫ 1

x
y−2dy

)
dx =

∫ 1

0
(x−1 + 1− x−1) dx = 1. Simi-

larly,
∫ 1

0

∫ 1

0
f(x, y)dxdy = −1. Note that by Tonelli,

∫

(0,1)×(0,1)

|f(x, y)|dλ2(x, y) =

∫ 1

0

∫ 1

0

|f(x, y)|dydx =

∫ 1

0

(
x−1 +

∫ 1

x

y−2dy

)
dx =∞.

Lp spaces

1 ≤ p <∞. Fix a measurable subset A ⊂ Rn. Consider measurable functions f : A → C

for which
∫

A
|f |p < ∞. Define ‖f‖p =

(∫
A
|f |p
) 1

p . On this set of functions, ‖f‖p is only a
seminorm:

‖f‖p ≥ 0 (but ‖f‖p = 0 does not imply f = 0, only f(x) = 0 a.e.)

‖αf‖p = |α| · ‖f‖p

‖f + g‖p ≤ ‖f‖p + ‖g‖p (Minkowski’s Inequality)

(Note: ‖f‖p = 0 ⇒
∫

A
|f |p = 0 ⇒ f = 0 a.e. on A.) Define an equivalence relation on this

set of functions:
f ∼ g means f = g a.e. on A.

Set f̃ = {g measurable on A : f = g a.e.} to be the equivalence class of f . Define ‖f̃‖p =

‖f‖p; this is independent of the choice of representative in f̃ . Define

Lp(A) = {f̃ :

∫

A

|f |p <∞}.
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Then ‖ · ‖p is a norm on Lp(A). We usually abuse notation and write f ∈ Lp(A) to mean

f̃ ∈ Lp(A).

Example. We say f ∈ Lp(Rn) is “continuous” if ∃ g ∈ Lp(Rn) for which g : Rn → C

is continuous and f = g a.e. Equivalently, there exists g ∈ f̃ such that g is continuous.
In this case, one typically works with the representative g of f̃ which is continous. This
continuous representative is unique since two continuous functions which agree a.e. must be
equal everywhere.

p =∞. Let A ⊂ Rn be measurable. Consider “essentially bounded” measurable functions
f : A→ C, i.e., for which ∃M <∞ so that |f(x)| ≤M a.e. on A. Define

‖f‖∞ = inf{M : |f(x)| ≤M a.e. on A},

the essential sup of |f |. If 0 < ‖f‖∞ < ∞, then for each ǫ > 0, λ{x ∈ A : |f(x)| >
‖f‖∞− ǫ} > 0. As above, ‖ · ‖∞ is a seminorm on the set of essentially bounded measurable
functions, and ‖ · ‖∞ is a norm on

L∞(A) = {f̃ : ‖f‖∞ <∞}.

Fact. For f ∈ L∞(A), |f(x)| ≤ ‖f‖∞ a.e. This is true since

{x : |f(x)| > ‖f‖∞} =
∞⋃

m=1

{x : |f(x)| > ‖f‖∞ +
1

m
},

and each of these latter sets has measure 0. So the infimum is attained in the definition of
‖f‖∞.

Fact. L∞(Rn) is not separable (i.e., it does not have a countable dense subset).

Example. For each α ∈ R, let fα(x) = χ[α,α+1](x). For α 6= β, ‖fα − fβ‖∞ = 1. So
{B 1

3

(fα) : α ∈ R} is an uncountable collection of disjoint nonempty open subsets in L∞(R).

Conjugate Exponents. If 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, and 1
p

+ 1
q

= 1 (where 1
∞
≡ 0), we say

that p and q are conjugate exponents . Examples:
p 1 2 3 ∞
q ∞ 2 3

2
1

.

Hölder’s Inequality. If 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, and 1
p

+ 1
q

= 1, then

∫
|fg| ≤ ‖f‖p · ‖g‖q.

(Note: if
∫
|fg| <∞, also |

∫
fg| ≤

∫
|fg| ≤ ‖f‖p · ‖g‖q.)

Remark. The cases

{
p = 1
q =∞

and

{
p =∞
q = 1

are obvious. When p = 2, q = 2, this is the

Cauchy-Schwarz inequality
∫
|fg| ≤ ‖f‖2 · ‖g‖2.
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Completeness

Theorem. (Riesz-Fischer) Let A ⊂ Rn be measurable and 1 ≤ p ≤ ∞. Then Lp(A) is
complete in the Lp norm ‖ · ‖p.

The completeness of Lp is a crucially important feature of the Lebesgue theory.

Locally Lp Functions

Definition. Let G ⊂ Rn be open. Define Lp
loc(G) to be the set of all equivalence classes of

measurable functions f on G such that for each compact set K ⊂ G, f |K ∈ Lp(K).

There is a metric on Lp
loc which makes it a complete metric space (but not a Banach space;

the metric is not given by a norm). The metric is constructed as follows. Let K1, K2, . . .
be a “compact exhaustion” of G, i.e., a sequence of nonempty compact subsets of G with

Km ⊂ K◦
m+1 (where K◦

m+1 denotes the interior of Km+1), and
∞⋃

m=1

Km = G (e.g., Km = {x ∈

G : dist(x, Gc) ≥ 1
m

and |x| ≤ m}). Then for any compact set K ⊂ G, K ⊂
∞⋃

m=1

Km ⊂

∞⋃
m=1

K◦
m+1, so ∃m for which K ⊂ Km. The distance in Lp

loc(G) is

d(f, g) =
∞∑

m=1

2−m ‖f − g‖p,Km

1 + ‖f − g‖p,Km

.

It is easy to see that d(fj, f)→ 0 iff (∀Kcompact ⊂ G)‖fj − f‖p,K → 0.
To see that d is a metric, one uses the fact that if (X, p) is a metric space, and we define

σ(x, y) = p(x,y)
1+p(x,y)

, then σ is a metric on X, and (X, p) is uniformly equivalent to (X, σ). To

show that σ satisfies the triangle inequality, one uses that t 7→ t
1+t

is increasing on [0,∞).
Note that σ(x, y) < 1 for all x, y ∈ X.

Continuous Functions not closed in Lp

Let G ⊂ Rn be open and bounded. Consider Cb(G), the set of bounded continuous functions
on G. Clearly Cb(G) ⊂ Lp(G). But Cb(G) is not closed in Lp(G) if p <∞.

Example. Take G = (0, 1) and let fj have graph:
�
��

������
0

1

1
2

1

1
2
− 1

j

. Then {fj} is Cauchy
in ‖ · ‖p for 1 ≤ p < ∞. But there is no continuous function f for which ‖fj − f‖p → 0 as
j →∞.

Facts. Suppose 1 ≤ p <∞ and Gopen ⊂ Rn.

(1) The set of simple functions (finite linear combinations of characteristic functions of
measurable sets) with support in a bounded subset of G is dense in Lp(G).
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(2) The set of step functions (finite linear combinations of characteristic functions of rect-
angles) with support in a bounded subset of G is dense in Lp(G).

(3) Cc(G) is dense in Lp(G), where Cc(G) is the set of continuous functions f whose support
{x : f(x) 6= 0} is a compact subset of G.

(4) C∞
c (G) is dense in Lp(G), where C∞

c (G) is the set of C∞ functions whose support is a
compact subset of G. (Idea: mollify a given f ∈ Lp(G). We will discuss this when we
talk about convolutions.)

Consequence: For 1 ≤ p < ∞, Lp(G) is separable (e.g., use (2), taking rectangles with
rational endpoints and linear combinations with rational coefficients).

Another consequence of the density of Cc(R
n) in Lp(Rn) for 1 ≤ p <∞ is the continuity

of translation. For f ∈ Lp(Rn) and y ∈ Rn, define fy(x) = f(x− y) (translate f by y).

Claim. If 1 ≤ p <∞, the map y 7→ fy from Rn into Lp(Rn) is uniformly continuous.

Proof. Given ǫ > 0, choose g ∈ Cc(R
n) for which ‖g − f‖p < ǫ

3
. Let

M = λ({x : g(x) 6= 0}) <∞.

By uniform continuity of g, ∃ δ > 0 for which

|z − y| < δ ⇒ (∀x)|gz(x)− gy(x)| <
ǫ

3(2M)
1

p

.

Then for |z − y| < δ,

‖gz − gy‖
p
p =

∫
|gz − gy|

p ≤ λ({x : gz(x) 6= 0 or gy(x) 6= 0})

(
ǫ

3(2M)
1

p

)p

≤ (2M)
ǫp

3p(2M)
,

i.e., ‖gz − gy‖p ≤
ǫ
3
. Thus ‖fz − fy‖p ≤ ‖fz − gz‖p + ‖gz − gy‖p + ‖gy − fy‖p < ǫ

3
+ ǫ

3
+ ǫ

3
= ǫ.

�

Lp convergence and pointwise a.e. convergence

p =∞. fk → f in L∞ ⇒ on the complement of a set of measure 0, fk → f uniformly.

(Let Ak = {x : |fk(x) − f(x)| > ‖fk − f‖∞}, and A =
∞⋃

k=1

Ak. Since each λ(Ak) = 0, also

λ(A) = 0. On Ac, (∀ k)|fk(x)− f(x)| ≤ ‖fk − f‖∞, so fk → f uniformly on Ac.)

1 ≤ p <∞. Let A ⊂ Rn be measurable. Here fk → f in Lp(A) (i.e., ‖fk − f‖p → 0) does
not imply that fk → f a.e. Example: A = [0, 1], f1 = χ[0,1], f2 = χ[0, 1

2
], f3 = χ[ 1

2
,1],

f4 = χ[0, 1
4
], · · · etc.

1

f1

1

f2 f3

1

f4 f5 f6 f7
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Clearly ‖fk‖p → 0, so fk → 0 in Lp, but for no x ∈ [0, 1] does fk(x)→ 0. So Lp convergence
for 1 ≤ p <∞ does not imply a.e. convergence. However:

Fact. If 1 ≤ p <∞ and fk → f in Lp(A), then ∃ a subsequence fkj
for which fkj

→ f a.e.
as j →∞.

Example. Suppose A ⊂ Rn is measurable, 1 ≤ p < ∞, fk, f ∈ Lp(A), and fk → f a.e.
Question: when does fk → f in Lp(A) (i.e. ‖fk − f‖p → 0)? Answer: In this situation,
fk → f in Lp(A) iff ‖fk‖p → ‖f‖p.

Proof.

(⇒) If ‖fk − f‖p → 0, then |‖fk‖p − ‖f‖p| ≤ ‖fk − f‖p, so ‖fk‖p → ‖f‖p.

(⇐) First, observe: If x, y ≥ 0, then (x+y)p ≤ 2p(xp +yp). (Proof: let z = max{x, y}; then
(x+y)p ≤ (2z)p = 2pzp ≤ 2p(xp +yp).) We will use Fatou’s lemma with a “dominating
sequence.” We have

|fk − f |p ≤ (|fk|+ |f |)
p ≤ 2p(|fk|

p + |f |p).

Apply Fatou to 2p(|fk|
p + |f |p) − |fk − f |p ≥ 0. By assumption, ‖fk‖p → ‖f‖p, so∫

|fk|
p →

∫
|f |p. We thus get
∫

2p(|f |p + |f |p)− 0 ≤ lim inf

∫
2p(|fk|

p + |f |p)− |fk − f |p

=

∫
2p(|f |p + |f |p)− lim sup

∫
|fk − f |p.

Thus lim sup
∫
|fk − f |p ≤ 0. So ‖fk − f‖pp =

∫
|fk − f |p → 0. So ‖fk − f‖p → 0.

�

Intuition for growth of functions in Lp(Rn)

Fix n, fix p with 1 ≤ p <∞, and fix a ∈ R. Define

f1(x) =
1

|x|a
χ{x:|x|<1} f2(x) =

1

|x|a
χ{x:|x|>1}.

So f1 blows up near x = 0 for a > 0, but vanishes near ∞. And f2 vanishes near 0 but
grows/decays near ∞ at a rate depending on a. To calculate the integrals of powers of f1

and f2, use polar coordinates on Rn.

Polar Coordinates in Rn

rSn−1 = {x : |x| = r} .
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← n− dim “volume element”
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dV = rn−1dr dσ
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Here dσ is “surface area” measure on Sn−1.
Evaluating the integral in polar coordinates,

∫

Rn

|f1(x)|pdx =

∫

Sn−1

[∫ 1

0

(
1

ra

)p

rn−1dr

]
dσ = ωn

∫ 1

0

rn−ap−1dr,

where ωn = σ(Sn−1). This is <∞ iff n− ap− 1 > −1, i.e., a < n
p
. So f1 ∈ Lp(Rn) iff a < n

p
.

Similarly, f2 ∈ Lp(Rn) iff a > n
p
.

Conclusion. For any p 6= q with 1 ≤ p, q ≤ ∞, Lp(Rn) 6⊂ Lq(Rn).

However, for sets A of finite measure, we have:

Claim. If λ(A) <∞ and 1 ≤ p < q ≤ ∞, then Lq(A) ⊂ Lp(A), and

‖f‖p ≤ λ(A)
1

p
− 1

q ‖f‖q.

Proof. This is obvious when q = ∞. So suppose 1 ≤ p < q < ∞. Let r = q

p
. Then

1 < r <∞. Let s be the conjugate exponent to r, so 1
r
+ 1

s
= 1. Then 1

s
= 1− p

q
= p

(
1
p
− 1

q

)
.

By Hölder,

‖f‖pp =

∫

A

|f |p =

∫
χA|f |

p ≤ ‖χA‖s · ‖ |f |
p‖r = λ(A)

1

s

(∫
|f |q
) p

q

= λ(A)p( 1

p
− 1

q )‖f‖pq.

Now take pth roots. �

Remark. This is in sharp contrast to what happens in lp. For sequences {xk}
∞
k=1, the l∞

norm is ‖x‖∞ = supk |xk|, and for 1 ≤ p <∞, the lp norm is ‖x‖p = (
∑

k |xk|
p)

1

p .

Claim. For 1 ≤ p < q ≤ ∞, lp ⊂ lq. In fact ‖x‖q ≤ ‖x‖p.

Proof. This is obvious when q =∞. So suppose 1 ≤ p < q <∞. Then

‖x‖qq =
∑

k

|xk|
q =

∑

k

|xk|
q−p|xk|

p

≤ ‖x‖q−p
∞

∑
|xk|

p ≤ ‖x‖q−p
p ‖x‖

p
p = ‖x‖qp.

Take qth roots to get ‖x‖q ≤ ‖x‖p. �


