Lebesgue Integration on R"

The treatment here is based loosely on that of Jones, Lebesgue Integration on Fuclidean

Space. We give an overview from the perspective of a user of the theory.

Riemann integration is based on subdividing the domain of f. This leads to the require-
ment of some “smoothness” of f for the Riemann integal to be defined: for z,y close, f(x)
and f(y) need to have something to do with each other. Lebesgue integration is based on

subdividing the range space of f: it is built on inverse images.

Typical Example. For a set £ C R", define the characteristic function of the set E to be

(z) = lifz e K
X =V 0ita ¢ E

Consider fol Xo(z)dx, where Q C R is the set of rational numbers:

1+ - - - =— 1 at rationals

<— (0 at irrationals

Riemann: The upper Riemann integral is the inf of the “upper sums”: fol Xo(z)dx = 1.

The lower Riemann integral is the sup of the “lower sums”: folx(@(x)da: = 0.

Since f_OlXQ(x)da: # folx(@(:v)d:c, Xo is not Riemann integrable.
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Lebesgue: Let A(F) denote the Lebesgue measure ( “size”) of E (to be defined). Then

/OXQ(ZL‘)d:E = 1-2(QnNJ0,1]) 4+ 0-A(Q°NJ0,1])
= 1-0+0-1=0.

First, we must develop the theory of Lebesgue measure to measure the “size” of sets.

Advantages of Lebesgue theory over Riemann theory:
1. Can integrate more functions (on finite intervals).

2. Good convergence theorems: lim, .o [ f(2)dz = [lim, o fo(z)dz under mild as-
sumptions.

3. Completeness of LP spaces.

Our first task is to construct Lebesgue measure on R". For A C R", we want to define
A(A), the Lebesgue measure of A, with 0 < A(A) < oo. This should be a version of n-
dimensional volume for general sets. However, it turns out that one can’t define A\(A) for all
subsets A C R"™ and maintain all the desired properties. We will define A(A) for “[Lebesgue]
measurable” subsets of R™ (very many subsets).

We define A(A) for increasingly complicated sets A C R". See Jones for proofs of the
unproved assertions made below.

Step 0. Define A(()) = 0.

Step 1. We call a set I C R™ a special rectangle if I = [a1,b;) X [az,b2) X -+ X [ay, by),
where —oo < a; < b; < oo. (Note: Jones leaves the right ends closed). Define
)\(I) = (b1 - al)(bg - 0,2) tet (bn - an).

Step 2. We call a set P C R" a special polygon if P is a finite union of special rectangles.

Fact: Every special polygon is a disjoint union of finitely many special rectangles.

N
For P = |J I, where the I;’s are disjoint (i.e., for j # k, I; N Iy = (), define
k=1

N

A(P) = > A(Ix). Note that a special polygon may be written as a disjoint union
k=1

of special rectangles in different ways.

Fact: A\(P) is independent of the way that P is written as a disjoint union of special
rectangles.
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Step 3. Let G C R" be a nonempty open set. Define
AG) = sup{\(P) : P is a special polygon, P C G}.
(Approximation by special polygons from the inside.)

Remark: Every nonempty open set in R” can be written as a countable disjoint union
of special rectangles.

Step 4. Let K C R™ be compact. Define
AMK) = inf{\(G) : G open, K C G}.
(Approximation by open sets from the outside.)

Fact: If K = P for a special polygon P, then A\(K) = A(P).

Now for A C R", A arbitrary, define

A (A) = inf{\(G): G open, A C G} (outer measure of A)
A(A) = sup{A(K) : K compact, K C A} (inner measure of A)

Facts: If A is open or compact, then A\,(A4) = A(A) = A\*(A). Hence for any A, \.(A4) <
N (A).

Step 5. A bounded set A C R" is said to be [Lebesgue] measurable if A\.(A4) = A*(A). In
this case we define A\(A) = A\ (A4) = A*(A4).

Step 6. An arbitrary set A C R” is said to be [Lebesgue] measurable if for each R > 0,
AN B(0, R) is measurable, where B(0, R) is the open ball of radius R with center at
the origin. If A is measurable, define A\(A) = supg.q A(AN B(0, R)).

Let £ denote the collection of all Lebesgue measurable subsets of R™.

Fact. L is a o-algebra of subsets of R”. That is, £ has the properties:
(i) 0, R™ e L.

(i) Ace L= A€ L.

(iii) If Ay, Ag, ... € L is a countable collection of subsets of R™ in £, then |J Ay € L.
k=1
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Fact. If § is any collection of subsets of a set X, then there is a smallest o-algebra A of
subsets of X containing S (i.e., with & C .A), namely, the intersection of all g-algebras of

subsets of X containing S. This smallest o-algebra A is called the o-algebra generated by
S.

Definition. The smallest o-algebra of subsets of R containing the open sets is called the
collection B of Borel sets. Closed sets are Borel sets.

Fact. Every open set is [Lebesgue] measurable. Thus B C L.
Fact. If A € £, then \,(A) = A(A) = X*(A).

Caution: However, \,(A) = \*(A) = oo does not imply A € L.

Properties of Lebesgue measure

A is a measure. This means:
1. A0) =0,

2. (VA€ L) \(A) > 0.

18

3. If Ay, Ay, ... € L are disjoint then A (U Ak) = > AMAx). (countable additivity)
k=1

b
Il
—

Consequences:

(i) If A, B € £ and A C B, then A(4) < \(B).

(i) If Ay, Ag,--- € L, then A (U Ak) < 37 AMAg). (countable subadditivity)
k=1 k=1

Remark: Both (i) and (ii) are true of outer measure \* on all subsets of R".

Sets of Measure Zero

Fact. If A*(A) =0, then 0 < A\, (A) < A*(A) =0,80 0 = A\(A) = A*(A), s0 A € L. Thus

every subset of a set of measure zero is also measurable (we say A is a complete measure).
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Characterization of Lebesgue measurable sets

Definition. A set is called a Gy if it is the intersection of a countable collection of open
sets. A set is called an F), if it is the union of a countable collection of closed sets. G sets
and F, sets are Borel sets.

Fact. A set A C R” is Lebesgue measurable iff 3 a Gs set G and an F, set F' for which
F CACGand A(G\F)=0. (Note: G\F =G N F°is a Borel set.)

Examples.
(0) If A= {a} is a single point, then A € £ and A\(A) = 0.

(1) If A= {ai,as,...} is countable, then A is measurable, and A(4) <377, A({a;}) = 0,
so M(A) = 0. For example, A\(Q) = 0.

(2) AR") = 00

(3) Open sets in R. Every nonempty open set G C R is a (finite or) countable disjoint
union of open intervals (a;,b;) (1 <j < Jorl<j<oo), and A(G) = >, Ma;, b;) =

>;(bj —aj).
(4) The Cantor Set is a closed subset of [0,1]. Let

G = <1 2) A(Gy) = »

3
(3)0G3). -

- (22)o (22 e
<

2k 1
note \(G —)
3k

Gy =

ete.

o
O
O ——
ol
oI ——
©|~1 =
©100 ——
—_

(middle thirds of remaining subintervals)

Let G = |J Gy, so G is an open subset of (0,1). Then

Define the Cantor set C' = [0,1]\G. Since A\(C) + A\(G) = X([0,1]) = 1, we have
A(C) =0.
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Fact. For z € [0,1], z € C iff x has a base 3 expansion with only 0’s and 2’s, i.e.,
x =), d;377 with each d; € {0,2}.

For example: 0 = (0.000---)3
L = (0.100---)3 = (0.0222--);
2 = (0.200---);
1 = (0.222---)3

% = (0.202020- - - )3 is in C, but it is not an endpoint of any interval in any Gy. Despite
the fact that A(C') = 0, C' is not countable. In fact, C' can be put in 1—1 correspondence
with [0, 1] (and thus also with R).

Invariance of Lebesgue measure

(1) Translation. For a fixed v € R and A C R", definez + A={z+y:y e A}
Fact. If r e R" and A € L, then z + A € £, and A(z + A) = A(A).
(2) If T: R — R" is linear and A € L, then T'(A) € L, and A(T'(A)) = |det T'| - A(A).

Measurable Functions

We consider functions f on R™ with values in the extended real numbers [—oo,00]. We
extend the usual arithmetic operations from R to [—o0, o0] by defining x + oo = +oo for
r € R; a-(+oo) = +oo for a > 0; a - (£oo) = Foo for a < 0; and 0 - (+oo) = 0. The
expressions 0o+ (—o0) and (—o0) + 0o are usually undefined, although we will need to make
some convention concerning these shortly. A function f : R™ — [—o00, 00] is called Lebesgue
measurable if for every t € R, f~!([—o0,t]) € L (in R").

Recall: Inverse images commute with unions, intersections, and complements:

A a

B =B

=UJr A,

=) /14a).

Fact. For any function f : R" — [—o00, o0], the collection of sets B C [—o00, 00| for which
f7YB] € L is itself a o-algebra of subsets of [—00, o0].

Note. The smallest o-algebra of subsets of [—00, 00| containing all sets of the form [—oo, ¢]
for t € R contains also {—o0}, {oco}, and all sets of the form [—o0,t), [t, 0], (t, 0], (a,b),
ete. It is the collection of all sets of the form B, BU {oco}, BU{—o00}, or BU{—00, 00} for
Borel subsets B of R.
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Comments. If f and g : R" — [—o0, 00| are measurable, then f + g, f - g, and |f] are
measurable. (Here we need to make a convention concerning co+(—o0) and (—oo)4o00. This

statement concerning measurability is true so long as we define both of these expressions
to be the same, arbitrary but fixed, number in [—o00,00]. For example, we may define
00 + (—00) = (—00) + 0o = 0.) Moreover, if {fi} is a sequence of measurable functions
fr : R" — [—o00, 0], then so are supy, fi(x), infy fr(z), limsup fr(z), liminfy fx(x). Thus
k

—_———

=infg>1sup;> f5(z)
if limy_ o fr(x) exists Vz, it is also measurable.

Definition. If ACR", A€ £, and f: A — [—00,00], we say that f is measurable (on A)
if, when we extend f to be 0 on A€, f is measurable on R". Equivalently, we require that
fxa is measurable for any extension of f.

Definition. If f : R” — C (not including co), we say f is Lebesgue measurable if Ref and
Imf are both measurable.

Fact. f: R" — C is measurable iff for every open set G C C, f~}[G] € L.

Integration

First consider integration of a non-negative function f : R® — [0, 00|, with f measurable.
Let N be a positive integer, and define

SN = ZkQ’N)\ ({z:k27V < f(2) < (k+1)27"}) + 00 A({z : f(2) = +00}).

In the last term on the right-hand-side, we use the convention oo - 0 = 0. The quantity Sy
can be regarded as a “lower Lebesgue sum” approximating the volume under the graph of f
by subdividing the range space [0, co] rather than by subdividing the domain R™ as in the
case of Riemann integration.

l

(k+1k):2:]fze-- Q
I iy
. ) *
[

@{x ckR27N < f(x) < (k+1)27N)
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Claim. SN S SNJrl.

Proof. We have

{w: k27N < f(z) < (k+1)27N}
={z:kR27V<fle)<(k+3) 27" u{z: (k+3) 27V < fla) < (k+1)27"}

and the union is disjoint. Thus

K27VA{x k27N < f(a) < (k+1)27V))
<k2 A ({w k27N < fla) < (k+5)27N))
+k+3) 27 A ({a: (k+3)27" < flo) <(k+1)277})

and the claim follows after summing and redefining indices. O

Definition. The Lebesgue integral of f is defined by:

This limit exists (in [0, 00]) by the monotonicity Sy < Sy.1.

Other notation for the integral is

/nf - Rnf(x)dx: / fd.

General Measurable Functions

Let f : R™ — [—00, o0] be measurable. Define

f(z) if f(z)>0 0 if f(z)>0
f+($):{ 0 if f(z)<0 f‘(x):{ —f(x) if f(z)<0 "

Then f, and f_ are non-negative and measurable, and (Vz) f(z) = fi(z) — f_(z). The
integral of f is only defined if at least one of [ fi < co or [ f- < oo holds, in which case

we define
AJzLﬂ—Lf-

Definition. A measurable function is called integrable if both [ fi < co and [ f- < oo.
Since |f| = fy + f—, this is equivalent to [ |f]| < oc.
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Properties of the Lebesgue Integral

(We will write f € L' to mean f is measurable and [ |f| < cc.)
(1) If f,g € L' and a,b € R, then af + bg € L', and [(af +bg)=a [ f+b[g.

We will write f = g a.e. (almost everywhere) to mean M{x : f(x) # g(z)} = 0.

(2) If f,ge L' and f =g a.e., then [ f= [g.

(3) If f >0 and [ f < oo, then f < oo a.e. Thus if f € L', then |f] < oo a.e.
In integration theory, one often identifies two functions if they agree a.e., e.g., xo = 0 a.e.

(4) If f >0 and [ f =0, then f =0 a.e. (This is not true if f can be both positive and
negative, e.g., [° —Lidx =0.)

—oo 1+x4

(5) If A is measurable, [ x4 = A(A).

Definition. If A is a measurable set and f : A — [—o0, 00| is measurable, then [, f =

f]R" fXA
(6) If A and B are disjoint and fxaup € L', then

Juu? = L5507

Definition. If f : R® — C is measurable, and both Ref and Imf € L', define fRn f=
fRn Ref +z’fRnImf.

(7) If f : R® — C is measurable, then Ref and Imf € L' iff |f| € L'. Moreover,
[ < JIAL

Comparison of Riemann and Lebesgue integrals

If f is bounded and defined on a bounded set and f is Riemann integrable, then f is Lebesgue
integrable and the two integrals are equal.

Theorem. If f is bounded and defined on a bounded set, then f is Riemann integrable iff
f is continuous a.e.

Note: The two theories vary in their treatment of infinities (in both domain and range). For

sinx

~“dw exists and is finite, but 2+ is

example, the improper Riemann integral limpg_. . fOR
Ex’ dxr = oo.

not Lebesgue integrable over [0, c0) since fooo }Si
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Convergence Theorems

Convergence theorems give conditions under which one can interchange a limit with an
integral. That is, if limy_ fx(z) = f(z) (maybe only a.e.), where f;, and f are measurable,
give conditions which guarantee that limy_. [ fx = [ f. This is not true in general:

Examples.
(1) Let fi = X[k,00)- Then fi > 0, lim f;, = 0, and [ fr =00, s0 lim [ fi # [lim f.

(2) Let fr = X(kh+1]- Then again lim f, = 0, and [ fr = 1, so lim [ fx # [ lim fy.

Monotone Convergence Theorem. (Jones calls this the “Increasing Convergence The-
orem”.) If 0 < f; < fo < -+ ae., f = limf; ae., and f; and f are measurable, then
limy .o [ fi = | f. Here all the limits are non-negative extended real numbers. Note that
lim f; exists a.e. by monotonicity.

Fatou’s Lemma. If f;, are nonnegative a.e. and measurable, then

/hlzn inf f;, < hm mf/fk

Lebesgue Dominated Convergence Theorem. Suppose {fi} is a sequence of complex-
valued (or extended-real-valued) measurable functions. Assume limy, fr = f a.e., and assume
that there exists a “dominating function,” i.e., an integrable function g such that |fx(z)| <

¢(z) a.e. Then
[ =t [

A corollary is the

Bounded Convergence Theorem. Let A be a measurable set of finite measure, and sup-
pose |fi| < M in A. Assume limy, f; exists a.e. Then limy [, fr = [, f. (Apply Dominated
Convergence Theorem with g = My 4.)

The following result illustrates how Fatou’s Lemma can be used together with a dominating
sequence to obtain convergence.

Extension of Lebesgue Dominated Convergence Theorem. Suppose g, > 0, g > 0

are all integrable, and [ g, — [ ¢, and gy — g a.e. Suppose f, f are all measurable, | fi| < gi

a.e. (which implies that fj, is integrable), and f; — f a.e. (which implies | f| < g a.e.). Then

J1fx = fI = 0 (which implies [ fr — [ f).

Proof. |fi — f| < |fxl +|f| < gr + g a.e. Apply Fatou to g + g — |fx — f| (which is > 0
e.). Then [liminf(gy + g — |fx — f]) <lUminf [(gx + g — |fx — f]). So [2g <lim [ gy +

fg—hmsupf|fk—f\_2fg—hmsupf\fk—f| Since [ g < oo, limsup [ |fy — f| < 0.
Thus [|fx — f| — 0. O
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Example — the Cantor Ternary Function.

The Cantor ternary function is a good example in differentiation and integration theory. It
is a nondecreasing continuous function f : [0,1] — [0, 1] defined as follows. Let C' be the
Cantor set. If x € C, say v = Y po dp37F with di € {0,2}, set f(z) = > oo, (3di) 27"
Recall that [0,1]\C' is the disjoint union of open intervals, the middle thirds which were
removed in the construction of C'. Define f to be a constant on each of these open intervals,
namely f = % on (%, %), f= i on (%, %) and f = % on (%, S), etc. The general definition is:
for z € [0, 1], write z = >3~ | d.37" where dj, € {0,1,2}, let K be the smallest k for which
d, = 1, and define f(z) = 27K + 37" (1d;) 27%. The graph of f looks like:

1__

3| -

4

1]

2

il

4
1 2 1
3 3

Let us calculate fol f(x)dx using our convergence theorems. Define a sequence of functions
fx, k> 1, inductively by:

fi =

1
(1
o= A s TG ete.

Then each f is a simple function, i.e., a finite linear combination of characteristic functions
of measurable sets. Note that if ¢ = Zjvzl ajXa, is a simple function, where A; € £ and

A(4;) < oo, then [¢ = Zj\le a;j\(A;). Also, fi(z) — f(z) for z € [0,1]\C, and fy(z) =0
for x € C(VEk). Since A\(C) =0, fr — f a.e. on [0,1]. So by the MCT or LDCT or BCT,

fol f(z)dx = limy_ fol fr(x)dz. Now
11 1 1 1 1
— .24 —._(1 — . (1
/fk 5 513 (1 +3) + 55 5 (L+3+5+7)

11
+~-~+3—k-?(1+3+5+-~-+(2’“—1)).
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Recall that
143454+ (25— 1) =4

°° 1 2 2\ ? 1
=1 22m—2:_ 142 z ol ==
/f 1m/f;rC 3m2m 6(+3+<3> + ) 5

(An easier way to see this is to note that f(1—x) = 1—f(x), so fo = 1—f1 f(z)dz.
But changing variables gives fo f(1 —x)dx = fo d:c SO fo dr = %)

So

“Multiple Integration” via Iterated Integrals

Suppose n = m + [, so R* = R™ x R!. For x € R", write z = (y,2), y € R™, 2 € Rl. Then
fR" fd\, = fR" f(x)d\,(x) = fR” fly, 2)dA,(y, z). Write dz for d\,(z), dy for d\,(y), dz
for d\i(z) (A, denotes Lebesgue measure on R"™). Consider the iterated integrals

/Ll{ Rnlf(y,z)dy}<iz and /Lm [jglf<y7z)d2} iy

(1) When do these iterated integrals agree?

Questions:

(2) When are they equal to [, f(x)dz?

There are two key theorems, usually used in tandem. The first is Tonelli’s Theorem, for
non-negative functions.

@ Tonelli’s Theorem. Suppose f > 0 is measurable on R". Then for a.e. z € R, the
function f,(y) = f(y, z) is measurable on R™ (as a function of y), and

/Rnf(x)dx = /R { - f(y,z)dy} dz.

It can happen in Tonelli’s Theorem that for some z, the “slice function” f, is not mea-
surable:

Example. Let A C R™ be non-measurable. Pick 2z, € R! and define f : R® — R by:

_ 0 (2# 2)
ﬂ%@_{xﬁw (c=2)

Then f is measurable on R™ (since \,({z : f(x) # 0}) =0). But f.,(v)=f(y,20) = xa(y)
is not measurable on R™. However, since the set of z’s for which [ f.(y)dy is undefined has
measure zero, the iterated integral still makes sense and is 0.
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@ Fubini’s Theorem. Suppose f is integrable on R" (i.e., f is measurable and [ |f] < o).
Then for a.e. z € R, the slice functions f.(y) are integrable on R™, and

[g@ac= [ [ swo) as

Typically one wants to calculate fRn f(z)dz by doing an iterated integral. One uses
Tonelli to verify the hypothesis of Fubini as follows:

(i) Since |f] is non-negative, Tonelli implies that one can calculate [g, |f| by doing either
iterated integral. If either one is < oo, then the hypotheses of Fubini have been verified:

Jon lF@)|dz = [ [ 1f(y, 2)|dz] dy < oo

(ii) Having verified now that [, |f| < co, Fubini implies that [, f can be calculated by
doing either iterated integral.

Example. Fubini’s Theorem can fail without the hypothesis that [ |f| < co. Define f on
(0,1) x (0,1) by
2 O<y<z<l

ren={ 17

—y O<z<y<l

Then fo fo y)dydz = fo (fo x2dy — f Y 2aly) dr = fo (x7'+1—21dr=1. Simi-
larly, fo fo y)dxdy = —1. Note that by Tonelli,
1 p1 1 1
/ If(x,y)ldAz(x,y)z/ / If(x,y)ldydafz/ <fv‘1+/ y‘zdy) dx = 0.
(0,1)x(0,1) 0o Jo 0 x
LP spaces

1 < p < . Fix a measurable subset A C R". Consider measurable functions f : A — C

1
for which [, |f[P < oco. Define || f[l, = ([, |f|?)?. On this set of functions, ||f|, is only a
seminorm:

Ifll, = 0O (but || ]|, = 0 does not imply f =0, only f(z) =0 a.e.)

lecflly = laf - [ £l
If+glly < 1fllo+ gl (Minkowski’s Inequality)

(Note: [|f][, =0 = fA |fIP=0= f =0 a.e. on A.) Define an equivalence relation on this
set, of functions:
f ~ g means f = g a.e. on A.

Set ]7: {g measurable on A : f = g a.e.} to be the equivalence class of f. Define ||f||p =
|| fl; this is independent of the choice of representative in f. Define

pA)Z{f:/A|f|p<oo}-
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Then || - ||, is a norm on LP(A). We usually abuse notation and write f € LP(A) to mean
feLr(A).

Example. We say f € LP(R") is “continuous” if 3¢ € LP(R") for which g : R* — C
is continuous and f = g a.e. Equivalently, there exists g € f such that g is continuous.
In this case, one typically works with the representative g of f which is continous. This

continuous representative is unique since two continuous functions which agree a.e. must be
equal everywhere.

p =o0. Let A C R" be measurable. Consider “essentially bounded” measurable functions
f:A—C,ie., for which 3M < oo so that |f(z)| < M a.e. on A. Define

| flloo = inf{M : |f(x)] < M a.e. on A},

the essential sup of |f|. If 0 < ||f]loc < o0, then for each € > 0, M{z € A : |f(z)| >
| flloc — €} > 0. As above, || - ||« is a seminorm on the set of essentially bounded measurable
functions, and [| - || is a norm on

L(A) = {/ : | floo < 00}

Fact. For f € L*(A), |f(x)| < ||f||« a.e. This is true since

{z: [f@)] > [ flleo} = U{af o)l > 1l + }

and each of these latter sets has measure 0. So the infimum is attained in the definition of

[/l

Fact. L>(R") is not separable (i.e., it does not have a countable dense subset).

Example. For each a € R, let fo(z) = Xjaat1(x). For a # B, ||fa — follo = 1. So
{B 1 (fa) : @ € R} is an uncountable collection of disjoint nonempty open subsets in L>(R).

Conjugate Exponents. If 1 <p < oo, 1 < ¢ < oo, and % + % = 1 (where é = 0), we say
: 2 3 o©
that p and ¢ are conjugate exponents. Examples: ‘ ‘ o 2 % 1

Holder’s Inequality. If 1 < p < o0, 1 < ¢ < oo, and % +% =1, then

1581150 Nl
(Note: if ['[fg] < oo, also | [ fgl < [|fgl < fll»- llgllg-)
Remark. The cases { gi (1)0 and Zi | are obvious. When p = 2, ¢ = 2, this is the

Cauchy-Schwarz inequality [ |fg] < ||fll2 - |lg]l2.
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Completeness

Theorem. (Riesz-Fischer) Let A C R" be measurable and 1 < p < co. Then LP(A) is
complete in the LP norm || - |,.

The completeness of L is a crucially important feature of the Lebesgue theory.

Locally L? Functions

Definition. Let G C R" be open. Define L} (G) to be the set of all equivalence classes of
measurable functions f on G such that for each compact set K C G, f|x € LP(K).

There is a metric on L  which makes it a complete metric space (but not a Banach space;
the metric is not given by a norm). The metric is constructed as follows. Let Kj, Ko, ...
be a “compact exhaustion” of G, i.e., a sequence of nonempty compact subsets of G with

o

K., C K;,,, (where Ky, denotes the interior of K1), and |J K,,, =G (e.g., K,,, = {z €
m=1
G : dist(z,G°) > L+ and |z| < m}). Then for any compact set K C G, K ¢ | K,, C
m=1

Ql K¢, .1, so 3m for which K C K,,. The distance in L} (G) is

<1 =gl
d = o—m m
(19 =2 2" gl

m=1

It is easy to see that d(f;, f) — 0 iff (V K™t  G)||f; — fllp.x — 0.

To see that d is a metric, one uses the fact that if (X, p) is a metric space, and we define

o(z,y) = 1_’&?’2), then o is a metric on X, and (X, p) is uniformly equivalent to (X, o). To

show that o satisfies the triangle inequality, one uses that ¢ — - is increasing on [0, 00).

1+
Note that o(x,y) < 1 for all z,y € X.

Continuous Functions not closed in L”

Let G C R™ be open and bounded. Consider Cy(G), the set of bounded continuous functions
on G. Clearly Cy(G) C LP(G). But Cy(G) is not closed in LP(G) if p < oo.

| [/%/.
Example. Take G = (0,1) and let f; have graph: o 1 1 . Then {f;} is Cauchy

in || - ||, for 1 < p < co. But there is no continuous function f for which ||f; — f||, — 0 as
J — o0.

S

Facts. Suppose 1 < p < oo and G°P** C R"™.

(1) The set of simple functions (finite linear combinations of characteristic functions of
measurable sets) with support in a bounded subset of G is dense in L*(G).
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(2) The set of step functions (finite linear combinations of characteristic functions of rect-
angles) with support in a bounded subset of G is dense in LP(G).

(3) C.(Q)isdense in LP(G), where C.(G) is the set of continuous functions f whose support
{z: f(x) # 0} is a compact subset of G.

(4) C°(G) is dense in LP(G), where C2°(G) is the set of C* functions whose support is a
compact subset of G. (Idea: mollify a given f € LP(G). We will discuss this when we
talk about convolutions.)

Consequence: For 1 < p < oo, LP(G) is separable (e.g., use (2), taking rectangles with
rational endpoints and linear combinations with rational coefficients).

Another consequence of the density of C.(R™) in LP(R™) for 1 < p < oo is the continuity
of translation. For f € LP(R") and y € R”, define f,(z) = f(x —y) (translate f by y).

Claim. If 1 <p < oo, the map y — f, from R™ into LP(R") is uniformly continuous.
Proof. Given ¢ > 0, choose g € C.(R") for which ||g — fl|, < §. Let

M = X{x:g(x) #0}) < 0.

By uniform continuity of g, 36 > 0 for which

[z —yl <= (Va)lg:(x) — gy(2)] < T
3(2M)»

Then for |z — y| <,

g — g7 = / 19: — 9,” < A : g:() # 0 or g,(2) #0}) <3 (2M>;> < (2M) 3,,(;M),

ie., |lg. _ngp < § Thus || f. _fpr <|If: _ngp+ ||gz_gy||10+ ||gy _fpr < §+§+§ =€
O

L?P convergence and pointwise a.e. convergence

p=o00. fr — f in L™ = on the complement of a set of measure 0, fr — f uniformly.
(Let Ay = {x : |fi(z) — f(z)] > ||fx — flloo}, and A = U Ay. Since each A\(Ay) = 0, also
AMA) =0. On A, (VE)|fru(x) — f(@)] < || fx = flloo, SO fk — f uniformly on A°¢.)

1 <p <oo. Let A C R" be measurable. Here f, — f in LP(A) (i.e., ||fx — f||, — 0) does
not imply that f — f a.e. Example: A = [0,1], fi = xp1, fo = X[o.1] fz = X[11]s
fa=X[o 1) ete.

f1 f2 f3 fa I5 f6 I
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Clearly || fxll, — 0, so fr — 0in LP, but for no « € [0, 1] does fr(x) — 0. So LP convergence
for 1 < p < 0o does not imply a.e. convergence. However:

Fact. If 1 <p < oo and fy — f in LP(A), then 3 a subsequence f;, for which f,, — f a.e.
as j — oQ.

Example. Suppose A C R" is measurable, 1 < p < oo, fi, f € LP(A), and f, — [ a.e.
Question: when does f, — f in LP(A) (i.e. |[fx — fll, — 0)? Answer: In this situation,

Jro = in LP(A) 3 ([ fill, — (/1]
Proof.
(=) I fx = fllp = O, then [[|fullp = [ Fllpl < 1fx = fllp, so ([ fellp = 1 F[lp-

(<) First, observe: If z,y > 0, then (x+y)? < 2P(2? +yP). (Proof: let z = max{z, y}; then
(x+y)P < (22)P = 2P2P < 2P(2P 4 yP).) We will use Fatou’s lemma with a “dominating
sequence.” We have

e — £ < (Sl 17D < 2257 + 1717).
Apply Fatou to 2P(|fi|? + |f?) — |fx — fIP = 0. By assumption, ||fi|[, — || fl[, so
1kl — [1f[P. We thus get
/ P(\fP+|fP) ~0 < lminf / (il + f17) — | — fP
- / (| f? + | £?) — lim sup / o= 1P

Thus limsup [ |fx — f|P <0. So ka_fﬂng‘fk_ﬂpﬁo_ So || f — fll, — 0.

Intuition for growth of functions in LP(R")

Fix n, fix p with 1 < p < 00, and fix a € R. Define
filz) 1 fa(x) 1
)= 7 X{z:|z )= 77— X{z:|z .
1 |417\“X{ |z|<1} 2 \SU|“X{ |[>1}

So f1 blows up near x = 0 for a > 0, but vanishes near co. And f, vanishes near 0 but
grows/decays near oo at a rate depending on a. To calculate the integrals of powers of f;
and fy, use polar coordinates on R™.

Polar Coordinates in R”

«— n — dim “volume element”

rS"t ={z:|z| =r} dV = r""Ydr do
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Here do is “surface area” measure on S™ .
Evaluating the integral in polar coordinates,

1 1 D 1
/ | fi(2)[Pdx = / [/ <—) 'r’"ldr} do = wn/ rher Ly,
R» Sn—1 0 ra 0

where w, = ¢(S"!). Thisis < 0 iff n —ap—1> —1,ie,a < 2. So fi e LPR) iffa < 7.
Similarly, f, € LF(R") iff a > 2.

Conclusion. For any p # ¢ with 1 < p, ¢ < 0o, LP(R") ¢ L4(R™).

However, for sets A of finite measure, we have:

Claim. If A\(A) < oo and 1 <p < g < oo, then LI(A) C LP(A), and

£l < AA) T £l

Proof. This is obvious when ¢ = co. So suppose 1 < p < ¢ < co. Let r = > Then

1 < r < oco. Let s be the conjugate exponent to 7, so 2 +1 = 1. Then § = 1-2=p (i — %)
By Holder,

1= [ 1 = [l < lall- 11521 = M) ( / \fl")q

= APG| £,
Now take p*™* roots. O

Remark. This is in sharp contrast to what happens in [?. For sequences {z;}%2,, the [*

norm is ||z« = supy, |x|, and for 1 < p < oo, the I? norm is ||z||, = (3>, |xk|p)%
Claim. For 1 <p < ¢ <oo, [’ C !9 In fact ||z, < |z,

Proof. This is obvious when ¢ = 0o. So suppose 1 < p < ¢ < oo. Then

lzllg =D lanl = D el Planl?
k k
< Nelli? Y lanl” < llzlig 2l = Nz,

Take ¢™ roots to get ||z, < ||z||,- O



