
4. Assignment 4 (Lecture 17–23 + earlier stuff)

4.1. Suppose that X and Y are two normed spaces and T : X → Y is a bounded
linear operator. Show that if xn → x weakly in X, then Txn → Tx weakly in
Y .

4.2. The sequence (xn)∞n=1 ⊂ L2(R) is defined by

xn(t) =

{
1√
n
, for n ≤ t ≤ 2n,

0, otherwise.

(a) Show that (xn)∞n=1 converges weakly to 0 in L2(R).

(b) Show that the sequence does not converge in L2(R).

4.3. (a) Assume that xn → x weakly in C([a, b]), equipped with the ‖ · ‖∞ norm.
Show that xn → x pointwise on [a, b].

(b) Let Y denote the subspace of C([a, b]) consisting of constant functions.
Both spaces are equipped with the ‖ · ‖∞ norm. Give an example of
a bounded linear functional on Y , which has infinitely many norm-
preserving linear extensions to C([a, b]).

4.4. (a) Consider the function f(x) = 1
4
x + x−1, x ≥ 1. Show that f is a con-

traction and determine the contraction constant of f . Find the (unique)
fixed point of f .

(b) Is f(x) = 1
4
x+ x−1, x ≥ 2 a contraction?

4.5. Show that any closed vector subspace Y of a normed space X is weakly se-
quentially closed, i.e. if (xn)∞n=1 is a sequence in Y that converges weakly to x,
then x ∈ Y .

4.6. Let X = C([−1, 1]), equipped with the norm ‖ · ‖∞. Given 0 ≤ h ∈ L1(−1, 1)

with
∫ 1

−1 h(t) dt = 1, show that the “averaging” functionals fn ∈ X ′, given by

fn(x) = n

∫ 1/n

−1/n
h(nt)x(t) dt, x ∈ X,

converge weak∗ in X ′ to the Dirac functional δ0 : x 7→ x(0). What are fn for
h(t) ≡ 1

2
?

4.7. Apply fixed-point iterations to the initial value problem{
x′(t) = 1 + x(t)2, t ≥ 0
x(0) = 0

starting with x0(t) = 0. Verify that the coefficients for t, t2, ... , t5 in x3(t) are
the same as in the exact solution to the problem.

4.8. Suppose that X is a Banach space and S ⊂ X is such that f(S) is bounded
for every f ∈ X ′. Show that S is bounded.
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4.9. Suppose that H is a Hilbert space. Show that xn → x in H if and only if
xn → x weakly in H and ‖xn‖ → ‖x‖.

∗-Problems:

4.10. Suppose that x ∈ `∞. Show that if the series
∑∞

j=1 xjyj is convergent for every

sequence y ∈ c0, then actually x ∈ `1.

4.11. Let X be a Banach space such that its dual X ′ is reflexive. Assume that
Y 6= X ′′ is a closed linear subspace of the bidual X ′′. Show that there exists
f ∈ X ′ such that f 6= 0 but F (f) = 0 for all F ∈ Y . If J : X → X ′′ is the
canonical embedding, can Y = J(X)? Any conclusion about X?

4.12. Suppose that f ∈ C([0, 1]) and ‖f‖∞ ≤ 1. For 0 < µ < 1
4
, show that the

equation

x(t) + µ

∫ t

0

tx2(s) ds = f(t), 0 ≤ t ≤ 1,

has a unique solution x ∈ C([0, 1]) such that ‖x‖∞ ≤ 2.

4.13. Let (tn)∞n=1 be a sequence in [0, 1]. Assume that the Dirac functionals

δtn : x 7→ x(tn)

converge weak* to some functional f in the dual X ′ of X = (C([0, 1]), ‖ · ‖∞).
Show that f(x) = x(t0) for some t0 ∈ [0, 1]. What does this tell us about the
set F = {δt : t ∈ [0, 1]} of all Dirac functionals in X ′?

5. Assignment 5 (Lecture 24–30 + earlier stuff)

Some of the problems have several parts and count as normal problems or as ∗-
problems, depending on whether you solve the ∗-part or not.

5.1. Investigate if the following operators are open. Justify carefully your claims.

(a) T : R2 → R defined by Tx = x1 for x ∈ R2.

(b) T : R2 → R2 defined by Tx = (x1, 0) for x ∈ R2.

5.2. Show that if T : X → Y is a closed (not necessarily bounded) linear operator,
where X and Y are two normed spaces, then the null space N(T ) := {x ∈ X :
T (x) = 0} of T is closed.
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5.3. Let T : H → H be a bounded linear operator on a complex Hilbert space H.

(a) Show that N(T ) ⊥ R(T ∗).

(b) Show that the operator I + T ∗T is injective.

5.4. Suppose that X and Y are two normed spaces, S : X → Y is a closed (not
necessarily bounded) linear operator and T : X → Y is a bounded linear
operator. Show that the operator S + T is closed.

5.5. Suppose that S and T are two bounded linear operators on a complex Banach
space X that commute, i.e. ST = TS. Show that the spectral radii satisfy

r(ST ) ≤ r(S)r(T ).

Point out where in your arguments you use that ST = TS.

5.6. Consider the linear operator T : `p → `p, defined by Tx = (0, x1,
1
2
x2,

1
3
x3, ...)

for x = (x1, x2, ...) ∈ `p, p ∈ [1,∞]. This operator is compact (you do not
need to prove that). Show that T has no eigenvalues and its spectrum consists
of exactly one point.

5.7. Consider the bounded linear operator T : (C([0, 1]), ‖·‖∞)→ (C([0, 1]), ‖·‖∞),
given by

Tx(t) = tx(t), t ∈ [0, 1].

(a) Determine the resolvent set ρ(T ) and the resolvent RT (λ) for λ ∈ ρ(T ).

(b) Determine the point spectrum σp(T ) and the residual spectrum σr(T ).

5.8. The operator T : `2 → `2 is defined by Tx = (αjxj)
∞
j=1 for x = (xj)

∞
j=1 ∈ `2,

where the sequence (αj)
∞
j=1 is a dense subset of [0, 1].

(a) Show that T is self-adjoint.

(b) Find the point spectrum σp(T ) and show that [0, 1] ⊂ σ(T ).

(c) (For a “∗”) Show that the spectrum σ(T ) = [0, 1] and that T is not
compact.

5.9. Consider the integral operator T : L2(0, 1)→ L2(0, 1), defined for x ∈ L2(0, 1)
by

Tx(t) =

∫ 1

0

K(t, s)x(s) ds, with kernel K(t, s) = 3(2
√
ts+ 1).

This operator is compact and self-adjoint (you do not need to prove that).

(a) Determine the range R(T ), the null space N(T ), the spectrum σ(T ) and
the norm ‖T‖ of T .

(b) (For a “∗”) Hilbert–Schmidt diagonalize T , i.e. write Tx as a linear com-
bination of T ’s eigenfunctions. Determine the operator P := T 2−6T + I
and its range R(P ).
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5.10. Consider the operator T : `p → `p, p ∈ (1,∞), defined for x = (x1, x2, ...) ∈ `p
by Tx = (x1,

1
2
(x2 + x3),

1
3
(x3 + x4),

1
4
(x4 + x5), ...).

(a) Find the operator adjoint T ′ : `p
′ → `p

′
.

(b) Assuming that T is compact, show that the equation x = Tx+ y has for
y = (y1, y2, ...) ∈ `p a solution x ∈ `p if and only if y1 = 0.

(c) (For a “∗”) Show that T is compact.

∗-Problems:

5.11. Suppose that X and Y are two Banach spaces and T ∈ B(X, Y ) is injective.
Consider the operator T−1 : R(T ) → X. Show that T−1 is bounded if and
only if the range R(T ) is a closed subspace of Y .

5.12. (a) In Exercise 5.7, how does the point spectrum σp(T ) change if T is replaced
by the operator Sx(t) = f(t)x(t), t ∈ [0, 1], for a fixed f ∈ C([0, 1])?
Consider e.g. f(t) = min{t, 1

2
} and try to make a more general conclusion.

(b) In Exercise 5.7, replace C([0, 1]) by L2(0, 1) and answer the same ques-
tions.
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Hints

4.1. You need to show that f(Txn) → f(Tx) for every f ∈ Y ′. To which space
does the composition f ◦ T belong?

4.2. In (a), recall the definition of weak convergence and what is the dual of L2(R).
Justify why various integrals tend to zero. Using the characteristic function
χ[n,2n] in the integral may help but is not necessary. In (b), which is the only
possible candidate x for the norm limit in L2(R)? Why?

4.3. In both (a) and (b), consider the functionals δt(x) := x(t) for a ≤ t ≤ b.
What are their norms? If x is a constant function, what can you say about
δt(x) for different t?

4.4. Estimate |f(x)− f(y)|. Do not forget to check that f : X → X for a suitable
set X ⊂ R.

4.5. Recall the definition of weak convergence. Assume that x /∈ Y and use one of
the corollaries to the Hahn–Banach theorem to obtain a contradiction.

4.6. Use the definition of weak∗-convergence.

4.7. Direct calculation. This is more of a Calculus exercise, but it gives you a
concrete example of what is going on. It also indicates how some numerical
methods may work.

4.8. If S were not bounded, then pick an unbounded sequence (xn)∞n=1 ⊂ S. Use
the canonical embedding J : X → X ′′ and the Uniform boundedness principle
to obtain a contradiction.

4.9. The necessity part is easy and follows from the definition of weak convergence
and the continuity of bounded linear functionals. Provide the details. Recall
the Riesz representation theorem. For the sufficiency part, expand ‖x− xn‖2
using the definition of the norm in H.

4.10. For n = 1, 2, ..., consider the linear functionals fn(y) =
∑n

j=1 xjyj on c0, where
y = (y1, y2, ...) ∈ c0. Show that fn are bounded. Apply the Banach–Steinhaus
theorem. What is the dual of c0?

4.11. Recall the definition of the canonical embedding. Apply one of the conse-
quences of the Hahn–Banach theorem to Y , together with the reflexivity of
X ′. Remember that J is an isometry, so J(X) is closed in X ′′. This exercise
is quite straightforward, but you need to keep track of all the involved objects
in suitable spaces and recall the definitions.

4.12. Write the equation as x = Tx for a suitable operator T . Show that T is a
contraction on a suitable subset X of C([0, 1]), equipped with the ‖·‖∞ norm.
Remember that you need T : X → X. Use Banach’s fixed point theorem.

4.13. Recall that the interval [0, 1] is compact. What do we know about sequences
in compact sets? (Alternatively, a special choice of x(t) can be used.) Use
that functions in X are continuous. For the last question, find an inspiration
in Problem 4.5.
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5.1. Are the images T (G) of open sets G ⊂ R2 open in the respective target space?

5.2. You need to show that if xn ∈ N(T ) and xn → x in X, then x ∈ N(T ). What
does this mean in terms of T (x)? Use the definition of closed operators.

5.3. In (a), use the definition of Hilbert space adjoint. In (b), assume (I+T ∗T )x =
0, take the inner product with x and use it to deduce that ‖x‖ = 0.

5.4. You need to show that if xn → x in X and (S + T )(xn) → y in Y , then
y = (S + T )x. Using the boundedness of T , figure out if Sxn converge (add
and subtract Txn). Use that S is closed.

5.5. Use the Spectral radius formula.

5.6. Recall the definition of eigenvalues. Use the Spectral radius formula and make
sure that you use the correct formula for T n. Estimate its norm, do not guess!
Or use the Fredholm alternative.

5.7. For y ∈ C([0, 1]), solve explicitely the equation Tx(t)− λx(t) = y(t), i.e. find
x(t). You need to make sure that you do not divide by zero. For which λ ∈ C
does the solution x belong to C([0, 1])? Recall the definition of the resolvent
set. Justify that the resolvent is bounded from C([0, 1]) to C([0, 1]). For σp(T )
and σr(T ), what is the null space N(T − λI) and the range R(T − λI)?

5.8. Recall the definition of eigenvalues. Use the density of the sequence (αj)
∞
j=1

and general properties of the spectrum to obtain one inclusion for the spec-
trum σ(T ). For the other inclusion, find the inverse (resolvent) (T − λI)−1

for λ ∈ C \ [0, 1]. Justify that it is bounded from `2 to `2. What do we know
about eigenvalues of compact self-adjoint operators? Is this true for T?

5.9. To find the eigenvalues, write out what Tx = λx means in this concrete case
and observe that for λ 6= 0, x has to be of special form for this to hold
pointwise on the interval (0, 1). Compare the coefficients on both sides of the
identity Tx = λx to get a system of 2-3 linear equations with λ as one of the
unknowns.

5.10. Use the Fredholm alternative and study the homogeneous equation z = T ′z
for z ∈ `p′ . Do not solve the equation x = Tx+ y by hand. For compactness,
show that T is a limit of suitable finite rank operators Tn.

5.11. Show that if R(T ) 3 yn = Txn → y ∈ Y , then y = Tx ∈ R(T ). What does
Txn → y tell us about the sequence (xn)∞n=1 when T−1 is bounded? Use that
X is a Banach space and that T is bounded. The Inverse mapping theorem
may also be useful. Verify the assumptions carefully.

5.12. In (a), when can you find x ∈ C([0, 1]) such that (S − λI)x(t) = 0 for all
t ∈ [0, 1]? In (b), which useful properties does T have as an operator on the
Hilbert space L2(0, 1)?

6


	Assignment 4 (Lecture 17–23 + earlier stuff)
	Assignment 5 (Lecture 24–30 + earlier stuff)
	Hints

