
4. Assignment 4 (Lecture 17–23 + earlier stuff)

4.1. (a) Consider the function f(x) = 1
4
x + x−1, x ≥ 1. Show that f is a con-

traction and determine the contraction constant of f . Find the (unique)
fixed point of f .

(b) Is f(x) = 1
4
x+ x−1, x ≥ 2 a contraction?

4.2. Assume that xn → x weakly in C([a, b]), equipped with the ‖·‖∞ norm. Show
that xn → x pointwise on [a, b]. Conversely, find yn ∈ C([a, b]) such that
yn → 0 pointwise on [a, b] but not weakly in C([a, b]).

4.3. The sequence (xn)∞n=1 ⊂ L2(R) is defined by

xn(t) =

{
1√
n
, for n ≤ t ≤ 2n,

0, otherwise.

(a) Show that (xn)∞n=1 converges weakly to 0 in L2(R).

(b) Show that the sequence does not converge in L2(R) (to any x ∈ L2(R)).

4.4. Let Y denote the subspace of L1(−1, 1) consisting of constant functions. For
the bounded linear functional

f(x) = 1
2

∫ 1

0

x(t) dt on Y ,

find infinitely many norm-preserving linear extensions of f to C([0, 1]).

4.5. Show that any closed vector subspace Y of a normed space X is weakly se-
quentially closed, i.e. if (xn)∞n=1 is a sequence in Y that converges weakly to
x, then x ∈ Y . Give an example of a sequence in a Hilbert space H, that
shows that the unit sphere S := {x ∈ H : ‖x‖ = 1} is not weakly sequentially
closed.

4.6. Let X = C([−1, 1]), equipped with the norm ‖ · ‖∞. Given 0 ≤ h ∈ L1(−1, 1)

with
∫ 1

−1 h(t) dt = 1, show that the “averaging” functionals fn ∈ X ′, given by

fn(x) = n

∫ 1/n

−1/n
h(nt)x(t) dt, x ∈ X,

converge weak∗ in X ′ to the Dirac functional δ0 : x 7→ x(0). What are fn for
h(t) ≡ 1

2
?

4.7. Apply fixed-point iterations to the initial value problem{
x′(t) = 1 + x(t)2, t ≥ 0
x(0) = 0

starting with x0(t) = 0. Verify that the coefficients for t, t2, ... , t5 in x3(t) are
the same as in the exact solution to the problem.
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4.8. Suppose that X is a normed space and S ⊂ X is such that f(S) is bounded
for every f ∈ X ′. Show that S is bounded.

4.9. Suppose that H is a Hilbert space. Show that xn → x in H if and only if
xn → x weakly in H and ‖xn‖ → ‖x‖.

∗-Problems:

4.10. Suppose that x ∈ `∞. Show that if the series
∑∞

j=1 xjyj is convergent for every

sequence y ∈ c0, then actually x ∈ `1.

4.11. Let X be a Banach space such that its dual X ′ is reflexive. Assume that
Y 6= X ′′ is a closed linear subspace of the bidual X ′′. Show that there exists
f ∈ X ′ such that f 6= 0 but F (f) = 0 for all F ∈ Y . If J : X → X ′′ is the
canonical embedding, can Y = J(X)? Any conclusion about X?

4.12. Suppose that f ∈ C([0, 1]) and ‖f‖∞ ≤ 1. For 0 < µ < 1
4
, show that the

equation

x(t) + µ

∫ t

0

tx2(s) ds = f(t), 0 ≤ t ≤ 1,

has a unique solution x ∈ C([0, 1]) such that ‖x‖∞ ≤ 2.

4.13. Let (tn)∞n=1 be a sequence in [0, 1] and consider the Dirac functionals

δtn : x 7→ x(tn)

in the dual X ′ of X = (C([0, 1]), ‖ ·‖∞). Show that a subsequence {δtnk
}∞k=1 of

{δtn}∞n=1 converges weak* to some functional f ∈ X ′. What is f? What does
this tell us about the set F = {δt : t ∈ [0, 1]} of all Dirac functionals in X ′?

5. Assignment 5 (Lecture 24–30 + earlier stuff)

Some of the problems have several parts and count as normal problems or as ∗-
problems, depending on whether you solve the ∗-part or not.

5.1. Investigate if the following operators are open. Justify carefully your claims.

(a) T : R2 → R defined by Tx = x1 for x ∈ R2.

(b) T : R2 → R2 defined by Tx = (x1, 0) for x ∈ R2.

5.2. Let T : H → H be a bounded linear operator on a complex Hilbert space H.
Show that the operator I + T ∗T is injective.

5.3. Suppose that X and Y are two normed spaces, S : X → Y is a closed (not
necessarily bounded) linear operator and T : X → Y is a bounded linear
operator. Show that the operator S + T is closed.
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5.4. Suppose that S and T are two bounded linear operators on a complex Banach
space X that commute, i.e. ST = TS. Show that the spectral radii satisfy

r(ST ) ≤ r(S)r(T ).

Point out where in your arguments you use that ST = TS.

5.5. Consider the linear operator T : `p → `p, defined by Tx = (0, x1,
1
2
x2,

1
3
x3, ...)

for x = (x1, x2, ...) ∈ `p, p ∈ [1,∞]. Show that T has no eigenvalues and its
spectrum consists of exactly one point. To which part of the spectrum does
this point belong?

5.6. Consider the bounded linear operator T : (C([0, 1]), ‖·‖∞)→ (C([0, 1]), ‖·‖∞),
given by

Tx(t) = tx(t), t ∈ [0, 1].

(a) Determine the resolvent set ρ(T ) and the resolvent RT (λ) for λ ∈ ρ(T ).

(b) Determine the point spectrum σp(T ) and the residual spectrum σr(T ).

5.7. The operator T : `2 → `2 is defined by Tx = (αjxj)
∞
j=1 for x = (xj)

∞
j=1 ∈ `2,

where the sequence (αj)
∞
j=1 is a dense subset of [0, 1].

(a) Show that T is self-adjoint.

(b) Find the point spectrum σp(T ) and show that [0, 1] ⊂ σ(T ).

(c) (For a “∗”) Show that the spectrum σ(T ) = [0, 1] and that T is not
compact.

5.8. Consider the integral operator T : L2(0, 1)→ L2(0, 1), defined for x ∈ L2(0, 1)
by

Tx(t) =

∫ 1

0

K(t, s)x(s) ds, with kernel K(t, s) = 3(2
√
ts+ 1).

This operator is compact and self-adjoint (you do not need to prove that).

(a) Determine the range R(T ), the null space N(T ), the spectrum σ(T ) and
the norm ‖T‖ of T .

(b) (For a “∗”) Hilbert–Schmidt diagonalize T , i.e. write Tx as a linear com-
bination of T ’s eigenfunctions. Determine the operator P := T 2−6T + I
and its range R(P ).

5.9. Consider the operator T : `p → `p, p ∈ (1,∞), defined for x = (x1, x2, ...) ∈ `p
by Tx = (x1,

1
2
(x2 + x3),

1
3
(x3 + x4),

1
4
(x4 + x5), ...).

(a) Find the operator adjoint T ′ : `p
′ → `p

′
.

(b) Assuming that T is compact, find out for which y = (y1, y2, ...) ∈ `p does
the equation x = Tx+ y have a solution x ∈ `p.

(c) (For a “∗”) Show that T is compact.
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∗-Problems:

5.10. Suppose that X and Y are two Banach spaces and T ∈ B(X, Y ) is injective.
Consider the operator T−1 : R(T ) → X. Show that T−1 is bounded if and
only if the range R(T ) is a closed subspace of Y .

5.11. (a) In Exercise 5.6, how does the point spectrum σp(T ) change if T is replaced
by the operator Sx(t) = f(t)x(t), t ∈ [0, 1], for a fixed f ∈ C([0, 1])?
Consider e.g. f(t) = min{t, 1

2
} and try to make a more general conclusion.

(b) In Exercise 5.6, replace C([0, 1]) by L2(0, 1) and answer the same ques-
tions.

4



Hints

4.1. Estimate |f(x)− f(y)|. Do not forget to check that f : X → X for a suitable
set X ⊂ R.

4.2. Consider the functionals δt(x) := x(t) for a ≤ t ≤ b. For the second part, you
need a bounded linear functional f on C([a, b]) such that f(yn) 6→ 0. Which
sequences of pointwise converging functions did we have in the lectures?

4.3. In (a), recall the definition of weak convergence and what is the dual of L2(R).
Justify why various integrals tend to zero. Using the characteristic function
χ[n,2n] in the integral may help but is not necessary. In (b), which is the only
possible candidate x for the norm limit in L2(R)? Why?

4.4. If x(t) ≡ c is a constant function, what is f(x)? Are there other functionals g
such that g(x) = f(x) for constant x? Check that the norm is really preserved.

4.5. Recall the definition of weak convergence. Assume that x /∈ Y and use one
of the corollaries to the Hahn–Banach theorem to obtain a contradiction. For
the last part, what property should that sequence have? We had such an
example in several lectures.

4.6. Use the definition of weak∗-convergence.

4.7. Direct calculation. This is more of a Calculus exercise, but it gives you a
concrete example of what is going on. It also indicates how some numerical
methods may work.

4.8. If S were not bounded, then pick an unbounded sequence (xn)∞n=1 ⊂ S. Use
the canonical embedding J : X → X ′′ and the Uniform boundedness principle
to obtain a contradiction.

4.9. The necessity part is easy and follows from the definition of weak convergence
and the continuity of bounded linear functionals. Provide the details. Recall
the Riesz representation theorem. For the sufficiency part, expand ‖x− xn‖2
using the definition of the norm in H.

4.10. For n = 1, 2, ..., consider the linear functionals fn(y) =
∑n

j=1 xjyj on c0,
where y = (y1, y2, ...) ∈ c0. What is the dual of c0? Which theorem can you
then apply?

4.11. Recall the definition of the canonical embedding. Apply one of the conse-
quences of the Hahn–Banach theorem to Y , together with the reflexivity of
X ′. Remember that J is an isometry, so J(X) is closed in X ′′. This exercise
is quite straightforward, but you need to keep track of all the involved objects
in suitable spaces and recall the definitions.

4.12. Write the equation as x = Tx for a suitable operator T . Show that T is a
contraction on a suitable subset X of C([0, 1]), equipped with the ‖·‖∞ norm.
Remember that you need T : X → X.
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4.13. Recall that the interval [0, 1] is compact. What do we know about sequences
in compact sets? Use that functions in X are continuous. A special choice of
x(t) can also be used. For the last part, note that F is not compact, but ...

5.1. Are the images T (G) of open sets G ⊂ R2 open in the respective target space?

5.2. Assume that (I + T ∗T )x = 0 and take the inner product with x.

5.3. You need to show that if xn → x in X and (S + T )(xn) → y in Y , then
y = (S + T )x. Using the boundedness of T , figure out if Sxn converge. Use
that S is closed.

5.4. Use the Spectral radius formula.

5.5. Recall the definition of eigenvalues. Use the Spectral radius formula and make
sure that you use the correct formula for T n. Estimate its norm, do not guess!

5.6. For y ∈ C([0, 1]), solve explicitely the equation Tx(t)− λx(t) = y(t), i.e. find
x(t). You need to make sure that you do not divide by zero. For which λ ∈ C
does the solution x belong to C([0, 1])? Recall the definition of the resolvent
set. Justify that the resolvent is bounded from C([0, 1]) to C([0, 1]). For σp(T )
and σr(T ), what is the null space N(T − λI) and the range R(T − λI)?

5.7. Recall the definition of eigenvalues. Use the density of the sequence (αj)
∞
j=1

and general properties of the spectrum to obtain one inclusion for the spec-
trum σ(T ). For the other inclusion, find the inverse (resolvent) (T − λI)−1

for λ ∈ C \ [0, 1]. Justify that it is bounded from `2 to `2. What do we know
about eigenvalues of compact self-adjoint operators? Is this true for T?

5.8. To find the eigenvalues, write out what Tx = λx means in this concrete case
and observe that for λ 6= 0, x has to be of special form for this to hold
pointwise on the interval (0, 1). Compare the coefficients on both sides of the
identity Tx = λx to get a system of 2-3 linear equations with λ as one of the
unknowns.

5.9. Do not solve the equation x = Tx+ y by hand. Use the Fredholm alternative
and study the homogeneous equation z = T ′z for z ∈ `p′ . For compactness,
show that T is a limit of suitable finite rank operators Tn.

5.10. Show that if R(T ) 3 yn = Txn → y ∈ Y , then y = Tx ∈ R(T ). What does
Txn → y tell us about the sequence (xn)∞n=1? The Inverse mapping theorem
may also be useful. Verify the assumptions carefully.

5.11. In (a), when can you find x ∈ C([0, 1]) such that (S − λI)x(t) = 0 for all
t ∈ [0, 1]? In (b), which useful properties does T have as an operator on the
Hilbert space L2(0, 1)?

6


	Assignment 4 (Lecture 17–23 + earlier stuff)
	Assignment 5 (Lecture 24–30 + earlier stuff)
	Hints

