BENGT OVE TURESSON

FUNCTIONAL ANALYSIS EXERCISES

2016

LINKÖPINGS UNIVERSITET

© B.O. Turesson

Contents

1.	Metric Spaces	1
2.	. Normed Spaces	
3.	Theory of Integration	3
4.	Inner-product Spaces	5
5.	Linear Operators	7
6.	Dual Spaces	8
7.	The Hahn–Banach Theorem, the Banach–Steinhaus Theorem, to Open Mapping Theorem, the Closed Graph Theorem	he 9
8.	Weak and Weak* Convergence	10
9.	The Banach Fixed Point Theorem	11
10).Spectral Theory	12
Hints		
Answers		

1. Metric Spaces

1.1. Suppose that (X, d) is a metric space and put

$$d_1(x,y) = \frac{d(x,y)}{1 + d(x,y)}$$
 for $x, y \in X$.

Show that d_1 is a metric on X.

- 1.2. Show that a non-empty subset of a metric space is open if and only if it is a union of open balls.
- 1.3. Show that the only subsets of \mathbf{R} , equipped with the standard metric, which are both open and closed, are \mathbf{R} and \emptyset .
- 1.4. Suppose that A and B are two subsets of a metric space. Show that

$$\overline{A \cap B} \subset \overline{A} \cap \overline{B}$$
.

Show by an example that the inclusion may be strict.

- 1.5. Give an example of a metric space (X, d) where the closure of the open ball $B_r(x)$ not necessarily coincides with the closed ball $\overline{B}_r(x)$.
- 1.6. Suppose that (X, d) is a metric space and that A is a nonempty subset of A. Show that if x is an accumulation point of A, then any neighbourhood of x contains infinitely many points of A.
- 1.7. Suppose that (X, d) is a discrete metric space and that \mathbf{R} is equipped with the standard metric. Which functions from X to \mathbf{R} are continuous? Which functions from \mathbf{R} to X are continuous?
- 1.8. Suppose that (X, d_X) and (Y, d_Y) are two metric spaces and let $T: X \to Y$ be a mapping from X to Y. Show that T is continuous if and only if the inverse image $T^{-1}(F)$ of any closed subset F of Y is a closed subset of X.
- 1.9. Show that \mathbf{c}_0 is separable. Notice in contrast that ℓ^{∞} is not separable.
- 1.10. Give an example of a sequence $x \in \mathbf{c}_0$ such that x does not belong to ℓ^p for any number $1 \le p < \infty$.
- 1.11. Suppose that $x_n \to x$ in ℓ^p and $y_n \to y$ in $\ell^{p'}$. Show that $x_n y_n \to xy$ in ℓ^1 . Here, the products between sequences are defined coordinate-wise.
- 1.12. (a) Show that \mathbf{c}_0 is a closed subset of ℓ^{∞} .
 - (b) Suppose that $x_n = (x_j^{(n)})_{j=1}^{\infty}$ is a sequence in \mathbf{c}_0 , which has the property that $x_j^{(n)} \to x_j$ as $n \to \infty$ for $j = 1, 2, \ldots$. Does it follow that the sequence $x = (x_j)_{j=1}^{\infty}$ belongs to \mathbf{c}_0 ?

- 1.13. Suppose that (x_n) is a Cauchy sequence in a metric space and that a subsequence of (x_n) is convergent with limit x. Show that (x_n) is convergent with the same limit.
- 1.14. Show that any Cauchy sequence in a metric space is bounded.
- 1.15. Using the fact that \mathbf{R} is complete, show that \mathbf{C} is complete.
- 1.16. Show that \mathbf{c}_{00} is not complete.
- 1.17. Show that **R** is not complete equipped with the metric

$$d(x, y) = |\arctan x - \arctan y|, \quad x, y \in \mathbf{R}.$$

1.18. Let X = C([0,1]) and put

$$d_1(x,y) = \int_0^1 |x(t) - y(t)| dt$$
 and $d_{\infty}(x,y) = \max_{0 \le t \le 1} |x(t) - y(t)|$

for $x, y \in X$. Also put $x_n(t) = nte^{-nt}, \ 0 \le t \le 1$ for $n = 0, 1, \dots$

- (a) Is it true that (x_n) is convergent in the metric space (X, d_1) ?
- (b) Is it true that (x_n) is convergent in the metric space (X, d_∞) ?
- 1.19. Let X = C([0,1]) and put $A = \{x \in X : |x(t)| < 1 \text{ for } 0 \le t \le 1\}.$
 - (a) Is A open in (X, d_1) ?
 - (b) Is A open in (X, d_{∞}) ?

Here, d_1 and d_{∞} are the metrics defined in Exercise 1.18.

1.20. Show that any discrete metric space (X, d), such that X has infinitely many elements, is not compact.

2. Normed Spaces

- 2.1. For which values of α is
 - (a) $\phi(x) = |x|^{\alpha}$, $x \in \mathbf{R}$, a norm on \mathbf{R} ?
 - (b) $d(x,y) = |x y|^{\alpha}$, $x, y \in \mathbf{R}$, a metric on \mathbf{R} ?
- 2.2. Show that any ball in a normed space is convex.
- 2.3. Show that the discrete metric on a vector space $X \neq \{0\}$ cannot be obtained from a norm.
- 2.4. Suppose that X and Y are two Banach spaces.

- (a) Verify that ||(x,y)|| = ||x|| + ||y||, $(x,y) \in X \times Y$, is a norm on $X \times Y$.
- (b) Show that $X \times Y$ is a Banach space equipped with this norm.
- 2.5. Let a_j , j = 1, 2, ..., be non-negative real numbers and suppose that $0 < \alpha \le 1$. Show that
 - (a) $(1+a_1)^{\alpha} \leq 1+a_1^{\alpha}$;
 - (b) $(a_1 + a_2)^{\alpha} \le a_1^{\alpha} + a_2^{\alpha};$
 - (c) $\left(\sum_{j=1}^{n} a_{j}\right)^{\alpha} \leq \sum_{j=1}^{n} a_{j}^{\alpha}$ for n = 1, 2, ...;
 - (d) $\left(\sum_{j=1}^{\infty} a_j\right)^{\alpha} \leq \sum_{j=1}^{\infty} a_j^{\alpha}$ if the series $\sum_{j=1}^{\infty} a_j^{\alpha}$ is convergent.
- 2.6. Let $\|\cdot\|_p$ denote the norm in ℓ^p , $1 \le p \le \infty$.
 - (a) Show that $||x||_q \le ||x||_p$ if $1 \le p \le q < \infty$.
 - (b) Show that $||x||_{\infty} \le ||x||_p$ if $1 \le p < \infty$ and moreover that $||x||_{\infty} = \lim_{p \to \infty} ||x||_p$.
 - (c) Conclude that $\ell^p \subset \ell^q$ for $1 \le p \le q \le \infty$.
- 2.7. Suppose that X is a normed spaced and Y is a subspace of X. Show that the closure \overline{Y} of Y is a subspace of X.
- 2.8. Show that $e_n = (\delta_{jn})_{j=1}^{\infty}$, n = 1, 2, ..., is a Schauder basis for ℓ^p for $1 \le p < \infty$. Here, δ_{jn} is the *Kronecker delta* defined by $\delta_{jn} = 1$ if j = n and $\delta_{jn} = 0$ otherwise.
- 2.9. Show that if a normed space has a Schauder basis, then the space is separable.

3. Theory of Integration

- 3.1. Show that the set $K = \{0\} \cup \{n^{-1} : n = 1, 2, ...\}$ is compact.
- 3.2. Let $(r_n)_{n=1}^{\infty}$ be an enumeration of the rational numbers in [0, 1] and put

$$I_n = \left(r_n - \frac{1}{\pi^2 n^2}, r_n + \frac{1}{\pi^2 n^2}\right)$$
 for $n = 1, 2, \dots$

Is $(I_n)_{n=1}^{\infty}$ an open covering of [0,1]?

3.3. Construct a sequence $(\phi_n)_{n=1}^{\infty}$ of nonnegative step functions on [0, 1] such that the numerical sequence $(\phi_n(x))_{n=1}^{\infty}$ is not convergent for any $x \in [0, 1]$, while

3

$$\int_0^1 \phi_n(x) dx \longrightarrow 0 \quad \text{as } n \to \infty.$$

3.4. Suppose that $f \in L^1(\mathbf{R}) \cap C(\mathbf{R})$. Is it true that $f(x) \to 0$ as $x \to \pm \infty$?

3.5. The so-called *sinc function* is defined by

$$f(x) = \begin{cases} \frac{\sin x}{x} & \text{for } x \neq 0 \\ 1 & \text{for } x = 0 \end{cases}.$$

Show that $f \notin L^1(\mathbf{R})$. Notice, however, that f is generalized Riemann integrable.

3.6. Suppose that $f \in L^1(\mathbf{R})$. Show that the integral

$$F(x) = \int_0^x f(t) dt, \quad x \in \mathbf{R},$$

is continuous on \mathbf{R} .

3.7. Suppose that $f \in L^1(-\pi, \pi)$. Show that

$$\int_{-\pi}^{\pi} f(t)e^{int} dt \longrightarrow 0 \quad \text{as } n \to \pm \infty.$$

3.8. Calculate the limit

$$\lim_{n \to \infty} \int_0^1 \frac{n^{3/2} x}{1 + n^2 x^2} \, dx.$$

3.9. Calculate the limit

$$\lim_{n\to\infty} \int_0^1 \frac{nx^2}{(1+x^2)^n} \, dx.$$

3.10. Calculate the limit

$$\lim_{n \to \infty} \int_0^\infty \frac{1}{(x^n + x^{4n})^{1/2n}} \, dx.$$

3.11. Calculate the limit

$$\lim_{n\to\infty} \int_1^\infty \frac{n}{1+x^n} \, dx.$$

- 3.12. Let $(r_n)_{n=1}^{\infty}$ be an enumeration of the rational numbers in [0,1].
 - (a) Show that the series

$$g(x) = \sum_{n=1}^{\infty} \frac{1}{n^2 \sqrt{|x - r_n|}}, \quad x \in [0, 1],$$

is convergent for a.e. $x \in [0, 1]$.

- (b) Show that g is unbounded on every subinterval of [0,1].
- (c) Show that g does not belong to $L^2(0,1)$.

3.13. Calculate the limit

$$\lim_{n\to\infty} n\left(\frac{\pi}{4} - \int_0^\infty \frac{1}{1+x^2+x^n} \, dx\right).$$

3.14. Let $(r_n)_{n=1}^{\infty}$ be an enumeration of the rational numbers in (0,1) and put

$$f(x) = \sum_{r_n < x} 2^{-n}, \quad x \in [0, 1].$$

Show that $f \in L^1(0,1)$ and calculate the integral $\int_0^1 f(x) dx$.

- 3.15. Find an unbounded function f on (0,1) such that $f \in L^p(0,1)$ for $1 \le p < \infty$.
- 3.16. Suppose that $f \in L^{\infty}(0,1)$. Show that $\lim_{p\to\infty} ||f||_p = ||f||_{\infty}$.
- 3.17. Put $f_n(x) = \sin nx$, $x \in (-pi, \pi)$, n = 1, 2, ..., and $M = \{f_n : n = 1, 2, ...\}$.
 - (a) Show that M is a closed and bounded subset of $L^2(-\pi,\pi)$.
 - (b) Is M compact?

4. Inner-product Spaces

4.1. Suppose that X is an inner-product space. Show that the parallelogram law:

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$$

holds for all vectors $x, y \in X$.

- 4.2. Can the norm $||x|| = |x_1| + |x_2|$ on \mathbb{R}^2 be obtained from an inner-product?
- 4.3. Suppose that X is an inner-product space and (x_n) is a sequence in X. Show that if $x_n \to x$ and $x_n \perp y$, then $x \perp y$.
- 4.4. Determine the orthogonal complement in ℓ^2 of the following subspaces of ℓ^2 :
 - (a) $Y = \{x \in \ell^2 : x_2 = x_4 = \dots = 0\}$
 - (b) $Y = \text{span}\{e_1, \dots, e_k\}$, where $k \geq 1$ and $(e_n)_{n=1}^{\infty}$ is the standard basis for ℓ^2 .
- 4.5. Suppose that H is a Hilbert space and M is a non-empty subset of H. Show that the set $M^{\perp\perp}$ is the smallest closed subspace of H that contains M. More precisely, show that $M^{\perp\perp}$ is a closed subspace of H and moreover that $M^{\perp\perp} \subset Y$ for any closed subspace of H such that $M \subset Y$.
- 4.6. Suppose that H is a Hilbert space and let $(e_n)_{n=1}^{\infty}$ be an infinite orthonormal sequence in H. Put $Y = \text{span}\{e_1, e_2, ...\}$. Show that $x \in \overline{Y}$ if and only if

$$x = \sum_{n=1}^{\infty} (x, e_n) e_n.$$

- 4.7. Suppose that H is a Hilbert space and let M be a countable dense subset of H. Show that the Gram–Schmidt process applied to M produces an orthonormal basis for H.
- 4.8. Suppose that H is a separable Hilbert space with orthonormal basis $(e_n)_{n=1}^{\infty}$. Show that

$$(x,y) = \sum_{n=1}^{\infty} (x,e_n)\overline{(y,e_n)}$$

for all vectors $x, y \in H$.

- 4.9. Let X be an inner-product space and $y \in X$. Show that $f(x) = (x, y), x \in X$, is a bounded linear functional on X with norm ||y||.
- 4.10. Show that

$$\left| \sum_{j=1}^{\infty} 2^{-j/2} x_j \right| \le ||x||_2$$

for any vector $x \in \ell^2$. For which vectors x does equality occur in this inequality?

4.11. The unit ball in a normed space X is said to be strictly convex if

$$||tx + (1-t)y|| < 1$$
 whenever $0 < t < 1$

for all distinct vectors x and y on the unit sphere of X. It can be shown that the unit ball in $L^p(a,b)$ is strictly convex for 1 .

- (a) Show that unit ball in a inner-product space X is strictly convex. In particular, the unit ball in $L^2(a,b)$ is strictly convex.
- (b) Show that unit balls in $L^1(0,1)$ and $L^{\infty}(0,1)$ are not strictly convex.
- 4.12. Let $M = \{x \in L^1(0,1) : \int_0^1 x(t) dt = 1\}$. Show that
 - (a) M is a closed, convex subset of $L^1(0,1)$;
 - (b) M contains infinitely many elements with minimal norm, that is, there exist infinitely many $x \in M$ with $||x||_1 = \inf_{y \in M} ||y||_1$.
- 4.13. Let $M = \{x \in L^2(0,1) : \int_0^1 x(t) dt = 1\}$. Show that
 - (a) M is a closed, convex subset of $L^2(0,1)$;
 - (b) M contains a unique element x with minimal norm and determine this element.
- 4.14. (a) Show that \mathbf{c}_{00} is not closed in ℓ^2 .
 - (b) Determine \mathbf{c}_{00}^{\perp} and $\mathbf{c}_{00}^{\perp\perp}$.
- 4.15. Let $M = \{x \in L^2(0,1) : \int_0^1 x(t) dt = 0\}.$
 - (a) Show that M is a closed subspace of $L^2(0,1)$.
 - (b) Determine M^{\perp} and $M^{\perp\perp}$.
 - (c) Given $x \in L^2(0,1)$, determine the orthogonal decomposition x = y + z, where $y \in M$ and $z \in M^{\perp}$.

5. Linear Operators

- 5.1. Suppose that X and Y are two vector spaces and that $T: X \to Y$ is a linear operator.
 - (a) Show that the null-space N(T) of T is a subspace of X.
 - (b) Show that the range R(T) is a subspace of Y.
- 5.2. Suppose that X and Y are two vector spaces and that $T: X \to Y$ is a linear operator.
 - (a) Show that T(V) is a subspace of Y for any subspace V of X.
 - (b) Show that $T^{-1}(W)$ is a subspace of X for any subspace W of Y.
- 5.3. Show that the composition of two linear operators is linear.
- 5.4. Show that the inverse of a linear operator is linear.
- 5.5. (a) Show that

$$f(x) = \int_a^b x(t)y(t) dt, \quad x \in C([a, b]),$$

where $y \in C([a, b])$ is a fixed function, is a bounded linear functional on C([a, b]).

(b) Show that

$$g(x) = \alpha x(a) + \beta x(b), \quad x \in C([a, b]),$$

where α and β are two fixed numbers is a bounded linear functional on the space C([a,b]).

5.6. Calculate the norm of the linear functional T on C([-1,1]) defined by

$$Tx = \int_0^1 x(t) dt - \int_{-1}^0 x(t) dt, \quad x \in C([-1, 1]).$$

- 5.7. Let S and T denote bounded linear operators on a normed space X.
 - (a) Show that $||ST|| \le ||S|| ||T||$. Give an example where this inequality is strict.
 - (b) Show that $||T^n|| \le ||T||^n$ for n = 1, 2, ... Here, T^n denotes composition of T with itself n 1 times.
- 5.8. Suppose that T is a bounded linear operator from a normed space X onto a normed space Y and furthermore that there exists a constant C > 0 such that

7

$$||Tx|| \ge C||x||$$
 for every vector $x \in X$.

Show that T is invertible and T^{-1} is bounded.

5.9. Define $T: C([0,1]) \to C([0,1])$ by

$$Tx(t) = \int_0^t x(s) \, ds, \quad 0 \le t \le 1,$$

where $x \in C([0,1])$.

- (a) Show that T is bounded and calculate the norm of T.
- (b) Show that T is injective.
- (c) Determine the range R(T) of T. Is R(T) closed in C([0,1])?
- (d) Determine $T^{-1}: R(T) \to C([0,1])$. Is T^{-1} bounded?
- 5.10. Let T denote the left-shift operator on ℓ^2 .
 - (a) Is T injective?
 - (b) Is T surjective?
 - (c) Calculate the limits $\lim_{n\to\infty} ||T^n x||_2$, where $x\in\ell^2$, and $\lim_{n\to\infty} ||T^n||$.
- 5.11. The operator $T: \ell^{\infty} \to \ell^{\infty}$ is defined by $Tx = (j^{-1}x_j)_{j=1}^{\infty}, \ x \in \ell^{\infty}$.
 - (a) Show that T is bounded and calculate the norm of T.
 - (b) Show that T is injective.
 - (c) Determine the range R(T) of T. Is R(T) is closed in ℓ^{∞} ?
 - (d) Determine $T^{-1}: R(T) \to \ell^{\infty}$. Is T^{-1} bounded?
- 5.12. Define $T: C^1([0,1]) \to \mathbf{C}$ by $Tx = x'(0), x \in C^1([0,1])$.
 - (a) Show that T is bounded and determine the norm of T.
 - (b) Does there exists a nonzero function $x \in C^1([0,1])$ such that |Tx| = ||T|| ||x||?
- 5.13. Suppose that X and Y are normed spaces such that $\dim(X) = \infty$ and $Y \neq \{0\}$. Show that there exists at least one unbounded linear operator $T: X \to Y$.

6. Dual Spaces

6.1. Suppose that t_0 is a fixed number such that $0 \le t_0 \le 1$ and put

$$f(x) = x(t_0), \quad x \in C([0, 1]).$$

Show that $f \in C([0,1])'$ and determine the norm of f.

6.2. Show that the dual space of \mathbf{c}_0 is ℓ^1 .

7. The Hahn-Banach Theorem, the Banach-Steinhaus Theorem, the Open Mapping Theorem, the Closed Graph Theorem

- 7.1. Consider the subspace $Y = \{x \in \mathbf{R}^3 : x_3 = 0\}$ of \mathbf{R}^3 and define the linear functional $f: Y \to \mathbf{R}$ by $f(x) = a \cdot x$, $x \in Y$, where $a = (a_1, a_2, 0)^t \in \mathbf{R}^3$ is a fixed vector. Determine all norm-preserving linear extensions F of f to \mathbf{R}^3 .
- 7.2. Let Y denote the subspace of C([0,1]), consisting of constant functions. Give an example of a bounded, linear functional on Y, which has infinitely many norm-preserving linear extensions to C([0,1]).
- 7.3. Let f be a bounded, linear functional on a closed subspace $Y \neq \{0\}$ of a Hilbert space H. Show that f has a unique norm-preserving linear extension F to H.
- 7.4. Let ρ be a seminorm on a vector space X. Show that there for any given vector $x_0 \in X$ exists a linear functional f on X such that $f(x_0) = \rho(x_0)$ and $|f(x)| \leq \rho(x)$ for every vector $x \in X$.
- 7.5. Suppose that X is a normed space. Show that if f(x) = f(y) for every $f \in X'$, then x = y.
- 7.6. Show that any closed subspace of a reflexive Banach space is reflexive.
- 7.7. Show that a Banach space is reflexive if and only if its dual space is reflexive.
- 7.8. Suppose that X is a normed space and let M be any subset of X. Show that a vector $x \in X$ belongs to $\overline{\text{span}(M)}$ if and only if f(x) = 0 for every $f \in X'$ such that f = 0 on M.
- 7.9. Suppose that $x \in \ell^{\infty}$. Show that if the series $\sum_{j=1}^{\infty} x_j y_j$ is convergent for every sequence $y \in \ell^2$, then actually $x \in \ell^2$.
- 7.10. Suppose that $x \in \ell^{\infty}$. Show that if the series $\sum_{j=1}^{\infty} x_j y_j$ is convergent for every sequence $y \in \mathbf{c}_0$, then actually $x \in \ell^1$.
- 7.11. Suppose that X is a Banach space and (x_n) is a sequence in X such that $(f(x_n))$ is bounded for every $f \in X'$. Show that (x_n) is bounded.
- 7.12. Investigate if the following operators are open.
 - (a) $T: \mathbf{R}^2 \to \mathbf{R}$ defined by $Tx = x_1$ for $x \in \mathbf{R}^2$;
 - (b) $T: \mathbf{R}^2 \to \mathbf{R}^2$ defined by $Tx = (x_1, 0)$ for $x \in \mathbf{R}^2$.
- 7.13. Suppose that X and Y are two Banach spaces and $T \in B(X,Y)$ is injective. Consider the operator $T^{-1}: R(T) \to X$. Show that T^{-1} is bounded if and only if R(T) is a closed subspace of Y.

- 7.14. Suppose that X and Y are two normed spaces and $T: X \to Y$ is a closed operator.
 - (a) Show that T(K) is closed in Y for every compact subset K of X.
 - (b) Show that $T^{-1}(K)$ is closed in X for every compact subset K of Y.
- 7.15. Show that if $T: X \to Y$ is a closed operator, where X and Y are two normed spaces and Y is compact, then T is bounded.
- 7.16. Suppose that X and Y are two normed spaces, where X is compact. Show that if $T: X \to Y$ is a bijective, closed operator, then T^{-1} is bounded.
- 7.17. Show that if $T: X \to Y$ is a closed operator, where X and Y are two normed spaces, then the null space N(T) of T is closed.
- 7.18. Suppose that X and Y are two normed spaces, $S: X \to Y$ is a closed operator, and $T: X \to Y$ is a bounded operator. Show that S+T is closed.

8. Weak and Weak* Convergence

- 8.1. Show that if $x_n \to x$ weakly in C([a, b]), then $x_n \to x$ pointwise.
- 8.2. Suppose that $x_n \to x$ weakly and $y_n \to y$ weakly in a normed space X. Show that $\alpha x_n + \beta y_n \to \alpha x + \beta y$ weakly in X for all numbers α and β .
- 8.3. Put $x_n = (0, \dots, 0, 1, \dots, 1, 0, \dots), n = 1, 2, \dots$, where the ones are placed in entry n to 2n.
 - (a) Show that (x_n) converges weakly to 0 in \mathbf{c}_0 .
 - (b) Is the sequence convergent in c_0 ?
- 8.4. The sequence $(x_n) \subset L^2(\mathbf{R})$ is defined by

$$x_n(t) = \begin{cases} \sqrt{n} & \text{for } -\frac{1}{2n} < t < \frac{1}{2n} \\ 0 & \text{otherwise} \end{cases}$$

for n = 1, 2, ...

- (a) Show that (x_n) converges weakly to 0 in $L^2(\mathbf{R})$.
- (b) Is the sequence convergent in $L^2(\mathbf{R})$?
- 8.5. Suppose that $x_n \to x$ weakly in a normed space X. Show that

$$||x|| \le \liminf_{n \to \infty} ||x_n||.$$

- 8.6. Suppose that $x_n \to x$ weakly in a normed space X. Show that $x \in \overline{\operatorname{span}\{x_1, x_2, ...\}}$.
- 8.7. Suppose that $x_n \to x$ weakly in a normed space X. Show that there exists a sequence of linear combinations of the elements in the sequence (x_n) that converges to x in X.
- 8.8. Show that any closed subspace Y of a normed space X is weakly closed, that is, if (x_n) is a sequence in Y that converges weakly to x, then $x \in Y$.
- 8.9. Suppose that H is a Hilbert space. Show that $x_n \to x$ in X if and only if $x_n \to x$ weakly in H and $||x_n|| \to ||x||$.
- 8.10. Suppose that X and Y are two normed spaces and T is a bounded linear operator from X to Y. Show that if $x_n \to x$ weakly in X, then $Tx_n \to Tx$ weakly in Y.
- 8.11. A weak Cauchy sequence in a normed space X is a sequence (x_n) such that $(f(x_n))$ is a Cauchy sequence in K for every $f \in X'$. Show that every weak Cauchy sequence in X is bounded.
- 8.12. A normed space is said to be *weakly complete* if every weak Cauchy sequence is weakly convergent. Show that if X is reflexive, then X is weakly complete.

9. The Banach Fixed Point Theorem

- 9.1. Consider the function $f(x) = x/2 + x^{-1}$, $x \ge 1$. Show that f is a contraction and determine the contraction constant of f. Find the (unique) fixed point of f.
- 9.2. Consider the function $f(x) = x + x^{-1}$, $x \ge 1$. Show that f

$$|f(x) - f(y)| < |x - y|$$
 for all $x, y \ge 1$ such that $x \ne y$,

but that f has no fixed point.

9.3. (a) Write the following initial-value problem as an integral equation:

$$\begin{cases} x' = f(x,t), & t \ge 0 \\ x(0) = x_0 \end{cases}.$$

(b) Write the following initial-value problem as an integral equation:

$$\begin{cases} x'' = f(x,t), & t \ge 0 \\ x(0) = x_0 & & . \\ x'(0) = x_1 & & . \end{cases}$$

9.4. Define $T: C([0,1]) \to C([0,1])$ by

$$Tx(t) = \int_0^t x(s) \, ds, \quad 0 \le t \le 1,$$

where $x \in C([0,1])$.

- (a) Show that T is not a contraction on C([0,1]).
- (b) Show that T^2 however is a contraction on C([0,1]).
- (c) Deduce that T has a unique fixed-point and determine this fixed-point.
- 9.5. Define $T: L^2(0,1) \to L^2(0,1)$ by

$$Tx(t) = \int_0^t x(s) \, ds, \quad 0 \le t \le 1,$$

where $x \in C([0,1])$. Is T a contraction on $L^2(0,1)$?

9.6. Apply fixed-point iterations to the initial value problem

$$\begin{cases} x' = 1 + x^2, & t \ge 0 \\ x(0) = 0 \end{cases}$$

starting with $x_0 = 0$. Verify that the coefficients for $t, t^2, ..., t^5$ in x_3 are the same as in the exact solution to the problem.

9.7. Consider the equation

$$x(t) - \mu \int_0^1 e^{t-s} x(s) ds = f(t), \quad 0 \le t \le 1,$$

where $\mu \in \mathbf{C}$ and $f \in C([0,1])$.

- (a) For which $\mu \in \mathbf{C}$ does the equation have a unique solution $x \in C([0,1])$ for every right-hand side f?
- (b) Solve the equation for as many values of μ as possible.
- 9.8. Suppose that $f \in C([0,1])$ and $||f||_{\infty} \leq 1$. Show that the equation

$$x(t) + \mu \int_0^t tx^2(s) ds = f(t), \quad 0 \le t \le 1,$$

has a unique solution $x \in C([0,1])$ such that $||x||_{\infty} \le 2$ if $0 < \mu < \frac{1}{4}$.

10. Spectral Theory

10.1. Suppose that H is a separable Hilbert space with orthonormal basis $(e_n)_{n=1}^{\infty}$. Define the linear operator T first on $(e_n)_{n=1}^{\infty}$ by

$$Te_n = e_{n+1}, \quad n = 1, 2, \dots,$$

then on H by linearity and continuity. Is T bounded? Show that T has no eigenvectors.

- 10.2. Find a bounded linear operator $T: C([0,1]) \to C([0,1])$ whose spectrum is a given interval [a,b].
- 10.3. The operator $T: \ell^2 \to \ell^2$ is defined by $Tx = (\alpha_j x_j)_{j=1}^{\infty}$ for $x = (x_j)_{j=1}^{\infty} \in \ell^2$, where the sequence $(\alpha_j)_{j=1}^{\infty}$ is dense in [0,1]. Find $\sigma_p(T)$ and $\sigma(T)$.
- 10.4. Show that if T is a bounded operator on a normed space X, then $||R_T(\lambda)|| \to 0$ as $\lambda \to \infty$.
- 10.5. Suppose that X is a complex Banach space, T is a bounded operator on X, and p is a polynomial. Show that the equation

$$p(T)x = y$$

has a unique solution $x \in X$ for every vector $y \in X$ if and only if $p(\lambda) \neq 0$ for every $\lambda \in \sigma(T)$.

10.6. Suppose that X is a complex Banach space and T is a bounded operator on X. Show that

$$r_{\sigma}(\alpha T) = |\alpha| r_{\sigma}(T)$$
 and $r_{\sigma}(T^k) = r_{\sigma}(T)^k$

for every $\alpha \in \mathbf{C}$ and $k = 1, 2, \dots$

- 10.7. A bounded operator T on a complex Banach space X is said to be *idempotent* if $T^m = 0$ for some positive integer m. Find the spectrum of a idempotent operator T.
- 10.8. Suppose that X is a complex Banach space and T is a bounded operator on X. Deduce from the Spectral Radius formula that $r_{\sigma}(T) \leq ||T||$.
- 10.9. Suppose that S and T are two bounded operators on a complex Banach space X that commute, i.e., ST = TS. Show that

$$r_{\sigma}(ST) \le r_{\sigma}(S)r_{\sigma}(T).$$

10.10. Suppose that T is a normal operator on a Hilbert space H. Show that

$$r_{\sigma}(T) = ||T||.$$

- 10.11. Suppose that A is a normed algebra with unit e. Show that every element of A, which has a left inverse and a right inverse, is in fact invertible. More precisely, show that if $x \in A$ and there exist $y, z \in A$ such that yx = xz = e, then x is invertible and $y = z = x^{-1}$.
- 10.12. Suppose that A is a normed algebra with unit e. Show that if $x \in A$ is invertible and commutes with $y \in A$, then also x^{-1} and y commute.

10.13. Suppose that A is a normed algebra. Show that if ||x-e|| < 1, then x is invertible and

$$x^{-1} = \sum_{n=0}^{\infty} (e - x)^n.$$

- 10.14. Suppose that A is a normed algebra. Show that if (x_n) and (y_n) are Cauchy sequences in A, then (x_ny_n) is also a Cauchy sequence in A. Show furthermore that if $x_n \to x$ and $y_n \to y$ in A, then $x_ny_n \to xy$ in A.
- 10.15. The operator $T: \ell^2 \to \ell^2$ is defined by $Tx = (0, 0, x_1, x_2, ...)$ for $x = (x_j)_{j=1}^{\infty} \in \ell^2$. Is T bounded and, if so, what is the norm of T? Is T self-adjoint?
- 10.16. Suppose that S and T are two bounded operators on a complex Hilbert space H. Show that if S is self-adjoint, then the operator T^*ST is also self-adjoint.
- 10.17. Suppose that T is a linear operator on a Hilbert space H such that

$$(Tx, y) = (x, Ty)$$
 for all $x, y \in H$.

Show that T is bounded.

- 10.18. Show that every compact, self-adjoint operator $T: H \to H$ on a complex Hilbert space H has at least one eigenvalue.
- 10.19. Show that every real, symmetric n by n matrix with positive elements has at least one positive eigenvalue.

Hints

- 1.11. Somewhere you will need to use Hölder's inequality
- 1.16. Consider the sequence $x_n = (\frac{1}{1}, \frac{1}{2}, \dots, \frac{1}{n}, 0, \dots), \ n = 1, 2, \dots$
- 1.18. Since $x_n(t) \to 0$ for $0 \le t \le 1$, a good candidate for a limit is x = 0.
- 2.5. (a) Study the function $f(t) = 1 + t^{\alpha} (1+t)^{\alpha}, \ 0 \le t < \infty$.
 - (b) Use (a).
 - (c) Use induction.
- 2.6. (a) Use Exercise 2.5.
 - (b) For the second part of the exercise, use the fact that

$$1 \le \frac{\|x\|_p}{\|x\|_{\infty}} = \left(\sum_{j=1}^{\infty} \left(\frac{|x_j|}{\|x\|_{\infty}}\right)^p\right)^{1/p}$$

together with the inequality $t^p \leq t$, which holds for $0 \leq t \leq 1$.

- 3.10. Split the integral into two integrals.
- 3.11. Begin by changing variables.
- 3.14. $f(x) = \sum_{n=1}^{\infty} 2^{-n} \chi_{(r_n,1)}(x)$
- 4.2. Check the parallelogram law.
- 4.10. Apply the Cauchy–Schwarz inequality.
- 4.11. (a) Use the triangle inequality.
- 4.12. (b) Use the fact that $||x||_1 \ge \left| \int_0^1 x(t) dt \right| = 1$ for any $x \in M$.
- 5.7. (a) To find an example where the inequality is strict, consider projections in \mathbb{R}^2 .
- 5.12. (a) To determine ||T||, it can be useful to consider the sequence of functions $(x_n)_{n=1}^{\infty}$ defined by

$$x_n(t) = \frac{e^{-nt}}{n+1}, \quad 0 \le t \le 1.$$

- 5.13. Use a Hamel basis of X to define T.
- 7.3. Use the Riesz representation theorem for H.
- 7.4. Define first f on span $\{x_0\} = \{tx_0 : t \in \mathbf{K}\}$. Then use the Hahn–Banach theorem to extend f to X.
- 7.7. Use Exercise 7.6

- 7.9. Apply the Uniform Boundedness Principle to the sequence (f_n) of linear functionals on ℓ^2 , defined by $f_n(y) = \sum_{j=1}^n x_j y_j, \ y \in \ell^2$ for n = 1, 2, ...
- 7.11. Use the Uniform Boundedness Principle.
- 7.13. For the sufficiency part, use the Inverse Mapping theorem. For the necessity part, show that if $R(T) \ni y_n = Tx_n \to y \in Y$, then $y = Tx \in R(T)$.
- 7.14. (a) Show that if $x_n \in K$ for every n and $y_n = Tx_n \to y$, then y = Tx for some $x \in K$. Use the compactness of K to extract a convergent subsequence to (x_n) .
 - (b) Show that if $y_n = Tx_n \in K$ for every n and $x_n \to x$, then $y = Tx \in K$. Use the compactness of K to extract a convergent subsequence to (y_n) .
- 7.15. It suffices according to Exercise 1.8 to show that $T^{-1}(F)$ is closed in X for every closed subset F of Y. Use Exercise 7.14 (b).
- 7.16. Use Exercise 7.14 (a).
- 8.1. Consider the functionals δ_{t_0} for $a \leq t_0 \leq b$.
- 8.3. (a) The dual of \mathbf{c}_0 is isomorphic to ℓ^1 .
 - (b) If (x_n) were convergent in \mathbf{c}_0 , then every sequence of coordinates would be convergent.
- 8.5. Use the Banach-Steinhaus theorem.
- 8.6. Suppose that $x \notin \overline{\operatorname{span}\{x_1, x_2, ...\}}$ and use one of the corollaries to the Hahn–Banach theorem to produce a contradiction.
- 8.7. Use Exercise 8.6.
- 8.8. Use Exercise 8.7.
- 8.9. The necessity part is basically known. For the sufficiency part, expand $||x-x_n||^2$, using the definition of the norm.
- 8.10. This comes down to showing that $f(Tx_n) \to f(Tx)$ for every $f \in Y'$. To which space does $f \circ T$ belong?
- 8.11. Use the Banach–Steinhaus theorem.
- 9.5. The Cauchy–Schwarz inequality might come in handy.
- 10.4. Show that if $|\lambda| > ||T||$, then

$$||R_T(\lambda)|| \le (|\lambda| - ||T||)^{-1}.$$

10.7. Use the Spectral Radius formula.

- 10.9. Use the Spectral Radius formula.
- 10.17. One way of proving this is to use the Closed Graph theorem.
- 10.19. The trace of the matrix could be useful.

Answers

- 1.12. (b) No
- 1.18. (a) Yes
 - (b) No
- 1.19. (a) No
 - (b) Yes
- 2.1. (a) $\alpha = 1$
 - (b) $0 < \alpha \le 1$
- 3.2. No
- 3.4. No
- 3.8. 0
- 3.9. 0
- 3.10. 3
- $3.11. \ln 2$
- 3.13. $-\frac{1}{2} \ln 2$
- 3.14. $\sum_{n=1}^{\infty} 2^{-n} (1 r_n)$
- 3.17. (b) No
- 4.2. No
- 4.4. (a) $Y^{\perp} = \{x \in \ell^2 : x_1 = x_3 = \dots = 0\}$
 - (b) $Y^{\perp} = \{x \in \ell^2 : x_1 = \dots = x_k = 0\}$
- 4.10. $x_j = c2^{-j/2}, \ j = 1, 2, \dots$, where $c \in \mathbf{C}$
- 4.13. (b) x = 1
- 4.14. (b) $\mathbf{c}_{00}^{\perp} = \{0\}$ and $\mathbf{c}_{00}^{\perp \perp} = \ell^2$.
- 4.15. (b) $M^{\perp} = \{\text{Konstanter}\}\ \text{and}\ M^{\perp \perp} = M.$
 - (c) $y = \overline{x}$ and $z = x \overline{x}$, where $\overline{x} = \int_0^1 x(t) dt$ is the average of x over (0, 1).
- 5.6. 2
- 5.9. (a) ||T|| = 1
 - (c) $R(T) = \{y \in C^1([0,1]) : y(0) = 0\}$. R(T) is not closed in C([0,1]). (d) $T^{-1}y = y'$ for $y \in R(T)$. T^{-1} is unbounded.

- 5.10. (a) No
 - (b) Yes
 - (c) 0 and 1, respectively
- 5.11. (a) ||T|| = 1
 - (c) $R(T) = \{ y \in \ell^{\infty} : (jy_j)_{j=1}^{\infty} \in \ell^{\infty} \}.$ R(T) is not closed in ℓ^{∞} . (d) $T^{-1}y = (jy_j)_{j=1}^{\infty}$ for $y \in R(T)$. T^{-1} is unbounded.
- 5.12. (a) ||T|| = 1
 - (b) No
- 6.1. ||f|| = 1
- 7.1. F = f
- 7.2. Take $f(y) = y(0), y \in Y$. Then every $t_0 \in [0,1]$ gives a linear, norm-preserving extension F of f to C([0,1]), defined by $F(x) = x(t_0), x \in C([0,1])$.
- 7.3. If $f(y) = (y, a), y \in Y$, for some $a \in Y$, then $F(x) = (x, a), x \in H$, is the unique linear extension of f to H such that ||F|| = ||f||.
- 7.12. (a) Yes
 - (b) No
- 8.3. (b) No
- 8.4. (b) No
- 9.1. The contraction constant is $\frac{1}{2}$ and the fixed point is $\sqrt{2}$.
- 9.3. (a) $x(t) = x_0 + \int_0^t f(x(s), s) ds, \ t \ge 0$

(b)
$$x(t) = x_0 + tx_1 + \int_0^t (t - s)f(x(s), s) ds, \ t \ge 0$$

- 9.5. Yes
- 10.1. Yes
- 10.3. $\sigma_p(T) = \sigma(T) = [0, 1]$
- 10.7. $\sigma(T) = \{0\}$
- 10.15. T is bounded and ||T|| = 1. T is not self-adjoint.