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1. Metric Spaces

1.1. Suppose that (X, d) is a metric space and put

d1(x, y) =
d(x, y)

1 + d(x, y)
for x, y ∈ X.

Show that d1 is a metric on X.

1.2. Show that a non-empty subset of a metric space is open if and only if it is a union
of open balls.

1.3. Show that the only subsets of R, equipped with the standard metric, which are
both open and closed, are R and ∅.

1.4. Suppose that A and B are two subsets of a metric space. Show that

A ∩B ⊂ A ∩B.

Show by an example that the inclusion may be strict.

1.5. Give an example of a metric space (X, d) where the closure of the open ball Br(x)
not necessarily coincides with the closed ball Br(x).

1.6. Suppose that (X, d) is a metric space and that A is a nonempty subset of A. Show
that if x is an accumulation point of A, then any neighbourhood of x contains
infinitely many points of A.

1.7. Suppose that (X, d) is a discrete metric space and that R is equipped with the
standard metric. Which functions from X to R are continuous? Which functions
from R to X are continuous?

1.8. Suppose that (X, dX) and (Y, dY ) are two metric spaces and let T : X → Y be
a mapping from X to Y . Show that T is continuous if and only if the inverse
image T−1(F ) of any closed subset F of Y is a closed subset of X.

1.9. Show that c0 is separable. Notice in contrast that `∞ is not separable.

1.10. Give an example of a sequence x ∈ c0 such that x does not belong to `p for any
number 1 ≤ p <∞.

1.11. Suppose that xn → x in `p and yn → y in `p
′
. Show that xnyn → xy in `1. Here,

the products between sequences are defined coordinate-wise.

1.12. (a) Show that c0 is a closed subset of `∞.

(b) Suppose that xn = (x
(n)
j )∞j=1 is a sequence in c0, which has the property

that x
(n)
j → xj as n → ∞ for j = 1, 2, ... . Does it follow that the se-

quence x = (xj)
∞
j=1 belongs to c0?
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1.13. Suppose that (xn) is a Cauchy sequence in a metric space and that a subsequence
of (xn) is convergent with limit x. Show that (xn) is convergent with the same
limit.

1.14. Show that any Cauchy sequence in a metric space is bounded.

1.15. Using the fact that R is complete, show that C is complete.

1.16. Show that c00 is not complete.

1.17. Show that R is not complete equipped with the metric

d(x, y) = | arctanx− arctan y|, x, y ∈ R.

1.18. Let X = C([0, 1]) and put

d1(x, y) =

∫ 1

0

|x(t)− y(t)| dt and d∞(x, y) = max
0≤t≤1

|x(t)− y(t)|

for x, y ∈ X. Also put xn(t) = nte−nt, 0 ≤ t ≤ 1 for n = 0, 1, ... .

(a) Is it true that (xn) is convergent in the metric space (X, d1)?

(b) Is it true that (xn) is convergent in the metric space (X, d∞)?

1.19. Let X = C([0, 1]) and put A = {x ∈ X : |x(t)| < 1 for 0 ≤ t ≤ 1}.

(a) Is A open in (X, d1)?

(b) Is A open in (X, d∞)?

Here, d1 and d∞ are the metrics defined in Exercise 1.18.

1.20. Show that any discrete metric space (X, d), such that X has infinitely many
elements, is not compact.

2. Normed Spaces

2.1. For which values of α is

(a) φ(x) = |x|α, x ∈ R, a norm on R?

(b) d(x, y) = |x− y|α, x, y ∈ R, a metric on R?

2.2. Show that any ball in a normed space is convex.

2.3. Show that the discrete metric on a vector space X 6= {0} cannot be obtained
from a norm.

2.4. Suppose that X and Y are two Banach spaces.
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(a) Verify that ‖(x, y)‖ = ‖x‖+ ‖y‖, (x, y) ∈ X × Y , is a norm on X × Y .

(b) Show that X × Y is a Banach space equipped with this norm.

2.5. Let aj, j = 1, 2, ... , be non-negative real numbers and suppose that 0 < α ≤ 1.
Show that

(a) (1 + a1)
α ≤ 1 + aα1 ;

(b) (a1 + a2)
α ≤ aα1 + aα2 ;

(c)
(∑n

j=1 aj
)α ≤∑n

j=1 a
α
j for n = 1, 2, ... ;

(d)
(∑∞

j=1 aj
)α ≤∑∞j=1 a

α
j if the series

∑∞
j=1 a

α
j is convergent.

2.6. Let ‖ · ‖p denote the norm in `p, 1 ≤ p ≤ ∞.

(a) Show that ‖x‖q ≤ ‖x‖p if 1 ≤ p ≤ q <∞.

(b) Show that ‖x‖∞ ≤ ‖x‖p if 1 ≤ p <∞ and moreover that ‖x‖∞ = limp→∞ ‖x‖p.
(c) Conclude that `p ⊂ `q for 1 ≤ p ≤ q ≤ ∞.

2.7. Suppose that X is a normed spaced and Y is a subspace of X. Show that the
closure Y of Y is a subspace of X.

2.8. Show that en = (δjn)∞j=1, n = 1, 2, ... , is a Schauder basis for `p for 1 ≤ p < ∞.
Here, δjn is the Kronecker delta defined by δjn = 1 if j = n and δjn = 0 otherwise.

2.9. Show that if a normed space has a Schauder basis, then the space is separable.

3. Theory of Integration

3.1. Show that the set K = {0} ∪ {n−1 : n = 1, 2, ...} is compact.

3.2. Let (rn)∞n=1 be an enumeration of the rational numbers in [0, 1] and put

In =
(
rn −

1

π2n2
, rn +

1

π2n2

)
for n = 1, 2, ... .

Is (In)∞n=1 an open covering of [0, 1]?

3.3. Construct a sequence (φn)∞n=1 of nonnegative step functions on [0, 1] such that
the numerical sequence (φn(x))∞n=1 is not convergent for any x ∈ [0, 1], while∫ 1

0

φn(x) dx −→ 0 as n→∞.

3.4. Suppose that f ∈ L1(R) ∩ C(R). Is it true that f(x)→ 0 as x→ ±∞?
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3.5. The so-called sinc function is defined by

f(x) =


sinx

x
for x 6= 0

1 for x = 0
.

Show that f /∈ L1(R). Notice, however, that f is generalized Riemann integrable.

3.6. Suppose that f ∈ L1(R). Show that the integral

F (x) =

∫ x

0

f(t) dt, x ∈ R,

is continuous on R.

3.7. Suppose that f ∈  L1(−π, π). Show that∫ π

−π
f(t)eint dt −→ 0 as n→ ±∞.

3.8. Calculate the limit

lim
n→∞

∫ 1

0

n3/2x

1 + n2x2
dx.

3.9. Calculate the limit

lim
n→∞

∫ 1

0

nx2

(1 + x2)n
dx.

3.10. Calculate the limit

lim
n→∞

∫ ∞
0

1

(xn + x4n)1/2n
dx.

3.11. Calculate the limit

lim
n→∞

∫ ∞
1

n

1 + xn
dx.

3.12. Let (rn)∞n=1 be an enumeration of the rational numbers in [0, 1].

(a) Show that the series

g(x) =
∞∑
n=1

1

n2
√
|x− rn|

, x ∈ [0, 1],

is convergent for a.e. x ∈ [0, 1].

(b) Show that g is unbounded on every subinterval of [0, 1].

(c) Show that g does not belong to L2(0, 1).
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3.13. Calculate the limit

lim
n→∞

n

(
π

4
−
∫ ∞
0

1

1 + x2 + xn
dx

)
.

3.14. Let (rn)∞n=1 be an enumeration of the rational numbers in (0, 1) and put

f(x) =
∑
rn<x

2−n, x ∈ [0, 1].

Show that f ∈ L1(0, 1) and calculate the integral
∫ 1

0
f(x) dx.

3.15. Find an unbounded function f on (0, 1) such that f ∈ Lp(0, 1) for 1 ≤ p <∞.

3.16. Suppose that f ∈ L∞(0, 1). Show that limp→∞ ‖f‖p = ‖f‖∞.

3.17. Put fn(x) = sinnx, x ∈ (−pi, π), n = 1, 2, ... , and M = {fn : n = 1, 2, ...}.

(a) Show that M is a closed and bounded subset of L2(−π, π).

(b) Is M compact?

4. Inner-product Spaces

4.1. Suppose that X is an inner-product space. Show that the parallelogram law :

‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2)

holds for all vectors x, y ∈ X.

4.2. Can the norm ‖x‖ = |x1|+ |x2| on R2 be obtained from an inner-product?

4.3. Suppose that X is an inner-product space and (xn) is a sequence in X. Show
that if xn → x and xn ⊥ y, then x ⊥ y.

4.4. Determine the orthogonal complement in `2 of the following subspaces of `2:

(a) Y = {x ∈ `2 : x2 = x4 = ... = 0}
(b) Y = span{e1, ... , ek}, where k ≥ 1 and (en)∞n=1 is the standard basis for `2.

4.5. Suppose that H is a Hilbert space and M is a non-empty subset of H. Show
that the set M⊥⊥ is the smallest closed subspace of H that contains M . More
precisely, show that M⊥⊥ is a closed subspace of H and moreover that M⊥⊥ ⊂ Y
for any closed subspace of H such that M ⊂ Y .

4.6. Suppose that H is a Hilbert space and let (en)∞n=1 be an infinite orthonormal
sequence in H. Put Y = span{e1, e2, ...}. Show that x ∈ Y if and only if

x =
∞∑
n=1

(x, en)en.
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4.7. Suppose that H is a Hilbert space and let M be a countable dense subset of H.
Show that the Gram–Schmidt process applied to M produces an orthonormal
basis for H.

4.8. Suppose that H is a separable Hilbert space with orthonormal basis (en)∞n=1.
Show that

(x, y) =
∞∑
n=1

(x, en)(y, en)

for all vectors x, y ∈ H.

4.9. Let X be an inner-product space and y ∈ X. Show that f(x) = (x, y), x ∈ X, is
a bounded linear functional on X with norm ‖y‖.

4.10. Show that ∣∣∣∣ ∞∑
j=1

2−j/2xj

∣∣∣∣ ≤ ‖x‖2
for any vector x ∈ `2. For which vectors x does equality occur in this inequality?

4.11. The unit ball in a normed space X is said to be strictly convex if

‖tx+ (1− t)y‖ < 1 whenever 0 < t < 1

for all distinct vectors x and y on the unit sphere of X. It can be shown that the
unit ball in Lp(a, b) is strictly convex for 1 < p <∞.

(a) Show that unit ball in a inner-product space X is strictly convex. In par-
ticular, the unit ball in L2(a, b) is strictly convex.

(b) Show that unit balls in L1(0, 1) and L∞(0, 1) are not strictly convex.

4.12. Let M = {x ∈ L1(0, 1) :
∫ 1

0
x(t) dt = 1}. Show that

(a) M is a closed, convex subset of L1(0, 1);

(b) M contains infinitely many elements with minimal norm, that is, there exist
infinitely many x ∈M with ‖x‖1 = infy∈M ‖y‖1.

4.13. Let M = {x ∈ L2(0, 1) :
∫ 1

0
x(t) dt = 1}. Show that

(a) M is a closed, convex subset of L2(0, 1);

(b) M contains a unique element x with minimal norm and determine this ele-
ment.

4.14. (a) Show that c00 is not closed in `2.

(b) Determine c⊥00 and c⊥⊥00 .

4.15. Let M = {x ∈ L2(0, 1) :
∫ 1

0
x(t) dt = 0}.

(a) Show that M is a closed subspace of L2(0, 1).

(b) Determine M⊥ and M⊥⊥.

(c) Given x ∈ L2(0, 1), determine the orthogonal decomposition x = y + z,
where y ∈M and z ∈M⊥.
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5. Linear Operators

5.1. Suppose that X and Y are two vector spaces and that T : X → Y is a linear
operator.

(a) Show that the null-space N(T ) of T is a subspace of X.

(b) Show that the range R(T ) is a subspace of Y .

5.2. Suppose that X and Y are two vector spaces and that T : X → Y is a linear
operator.

(a) Show that T (V ) is a subspace of Y for any subspace V of X.

(b) Show that T−1(W ) is a subspace of X for any subspace W of Y .

5.3. Show that the composition of two linear operators is linear.

5.4. Show that the inverse of a linear operator is linear.

5.5. (a) Show that

f(x) =

∫ b

a

x(t)y(t) dt, x ∈ C([a, b]),

where y ∈ C([a, b]) is a fixed function, is a bounded linear functional
on C([a, b]).

(b) Show that
g(x) = αx(a) + βx(b), x ∈ C([a, b]),

where α and β are two fixed numbers is a bounded linear functional on the
space C([a, b]).

5.6. Calculate the norm of the linear functional T on C([−1, 1]) defined by

Tx =

∫ 1

0

x(t) dt−
∫ 0

−1
x(t) dt, x ∈ C([−1, 1]).

5.7. Let S and T denote bounded linear operators on a normed space X.

(a) Show that ‖ST‖ ≤ ‖S‖‖T‖. Give an example where this inequality is strict.

(b) Show that ‖T n‖ ≤ ‖T‖n for n = 1, 2, ... . Here, T n denotes composition of T
with itself n− 1 times.

5.8. Suppose that T is a bounded linear operator from a normed space X onto a
normed space Y and furthermore that there exists a constant C > 0 such that

‖Tx‖ ≥ C‖x‖ for every vector x ∈ X.

Show that T is invertible and T−1 is bounded.
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5.9. Define T : C([0, 1])→ C([0, 1]) by

Tx(t) =

∫ t

0

x(s) ds, 0 ≤ t ≤ 1,

where x ∈ C([0, 1]).

(a) Show that T is bounded and calculate the norm of T .

(b) Show that T is injective.

(c) Determine the range R(T ) of T . Is R(T ) closed in C([0, 1])?

(d) Determine T−1 : R(T )→ C([0, 1]). Is T−1 bounded?

5.10. Let T denote the left-shift operator on `2.

(a) Is T injective?

(b) Is T surjective?

(c) Calculate the limits limn→∞ ‖T nx‖2, where x ∈ `2, and limn→∞ ‖T n‖.

5.11. The operator T : `∞ → `∞ is defined by Tx = (j−1xj)
∞
j=1, x ∈ `∞.

(a) Show that T is bounded and calculate the norm of T .

(b) Show that T is injective.

(c) Determine the range R(T ) of T . Is R(T ) is closed in `∞?

(d) Determine T−1 : R(T )→ `∞. Is T−1 bounded?

5.12. Define T : C1([0, 1])→ C by Tx = x′(0), x ∈ C1([0, 1]).

(a) Show that T is bounded and determine the norm of T .

(b) Does there exists a nonzero function x ∈ C1([0, 1]) such that |Tx| = ‖T‖‖x‖?

5.13. Suppose that X and Y are normed spaces such that dim(X) =∞ and Y 6= {0}.
Show that there exists at least one unbounded linear operator T : X → Y .

6. Dual Spaces

6.1. Suppose that t0 is a fixed number such that 0 ≤ t0 ≤ 1 and put

f(x) = x(t0), x ∈ C([0, 1]).

Show that f ∈ C([0, 1])′ and determine the norm of f .

6.2. Show that the dual space of c0 is `1.
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7. The Hahn–Banach Theorem, the Banach–Stein-

haus Theorem, the Open Mapping Theorem, the

Closed Graph Theorem

7.1. Consider the subspace Y = {x ∈ R3 : x3 = 0} of R3 and define the linear
functional f : Y → R by f(x) = a · x, x ∈ Y , where a = (a1, a2, 0)t ∈ R3 is a
fixed vector. Determine all norm-preserving linear extensions F of f to R3.

7.2. Let Y denote the subspace of C([0, 1]), consisting of constant functions. Give an
example of a bounded, linear functional on Y , which has infinitely many norm-
preserving linear extensions to C([0, 1]).

7.3. Let f be a bounded, linear functional on a closed subspace Y 6= {0} of a Hilbert
space H. Show that f has a unique norm-preserving linear extension F to H.

7.4. Let ρ be a seminorm on a vector space X. Show that there for any given
vector x0 ∈ X exists a linear functional f on X such that f(x0) = ρ(x0)
and |f(x)| ≤ ρ(x) for every vector x ∈ X.

7.5. Suppose that X is a normed space. Show that if f(x) = f(y) for every f ∈ X ′,
then x = y.

7.6. Show that any closed subspace of a reflexive Banach space is reflexive.

7.7. Show that a Banach space is reflexive if and only if its dual space is reflexive.

7.8. Suppose that X is a normed space and let M be any subset of X. Show that a
vector x ∈ X belongs to span(M) if and only if f(x) = 0 for every f ∈ X ′ such
that f = 0 on M .

7.9. Suppose that x ∈ `∞. Show that if the series
∑∞

j=1 xjyj is convergent for every

sequence y ∈ `2, then actually x ∈ `2.

7.10. Suppose that x ∈ `∞. Show that if the series
∑∞

j=1 xjyj is convergent for every

sequence y ∈ c0, then actually x ∈ `1.

7.11. Suppose that X is a Banach space and (xn) is a sequence in X such that (f(xn))
is bounded for every f ∈ X ′. Show that (xn) is bounded.

7.12. Investigate if the following operators are open.

(a) T : R2 → R defined by Tx = x1 for x ∈ R2;

(b) T : R2 → R2 defined by Tx = (x1, 0) for x ∈ R2.

7.13. Suppose that X and Y are two Banach spaces and T ∈ B(X, Y ) is injective.
Consider the operator T−1 : R(T ) → X. Show that T−1 is bounded if and only
if R(T ) is a closed subspace of Y .
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7.14. Suppose that X and Y are two normed spaces and T : X → Y is a closed
operator.

(a) Show that T (K) is closed in Y for every compact subset K of X.

(b) Show that T−1(K) is closed in X for every compact subset K of Y .

7.15. Show that if T : X → Y is a closed operator, where X and Y are two normed
spaces and Y is compact, then T is bounded.

7.16. Suppose that X and Y are two normed spaces, where X is compact. Show that
if T : X → Y is a bijective, closed operator, then T−1 is bounded.

7.17. Show that if T : X → Y is a closed operator, where X and Y are two normed
spaces, then the null space N(T ) of T is closed.

7.18. Suppose that X and Y are two normed spaces, S : X → Y is a closed operator,
and T : X → Y is a bounded operator. Show that S + T is closed.

8. Weak and Weak* Convergence

8.1. Show that if xn → x weakly in C([a, b]), then xn → x pointwise.

8.2. Suppose that xn → x weakly and yn → y weakly in a normed space X. Show
that αxn + βyn → αx+ βy weakly in X for all numbers α and β.

8.3. Put xn = (0, ... , 0, 1, ... , 1, 0, ...), n = 1, 2, ... , where the ones are placed in entry n
to 2n.

(a) Show that (xn) converges weakly to 0 in c0.

(b) Is the sequence convergent in c0?

8.4. The sequence (xn) ⊂ L2(R) is defined by

xn(t) =


√
n for − 1

2n
< t <

1

2n
0 otherwise

for n = 1, 2, ... .

(a) Show that (xn) converges weakly to 0 in L2(R).

(b) Is the sequence convergent in L2(R)?

8.5. Suppose that xn → x weakly in a normed space X. Show that

‖x‖ ≤ lim inf
n→∞

‖xn‖.
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8.6. Suppose that xn → x weakly in a normed spaceX. Show that x ∈ span{x1, x2, ...}.

8.7. Suppose that xn → x weakly in a normed space X. Show that there exists a se-
quence of linear combinations of the elements in the sequence (xn) that converges
to x in X.

8.8. Show that any closed subspace Y of a normed space X is weakly closed, that is,
if (xn) is a sequence in Y that converges weakly to x, then x ∈ Y .

8.9. Suppose that H is a Hilbert space. Show that xn → x in X if and only if xn → x
weakly in H and ‖xn‖ → ‖x‖.

8.10. Suppose that X and Y are two normed spaces and T is a bounded linear operator
from X to Y . Show that if xn → x weakly in X, then Txn → Tx weakly in Y .

8.11. A weak Cauchy sequence in a normed space X is a sequence (xn) such that (f(xn))
is a Cauchy sequence in K for every f ∈ X ′. Show that every weak Cauchy
sequence in X is bounded.

8.12. A normed space is said to be weakly complete if every weak Cauchy sequence is
weakly convergent. Show that if X is reflexive, then X is weakly complete.

9. The Banach Fixed Point Theorem

9.1. Consider the function f(x) = x/2 + x−1, x ≥ 1. Show that f is a contraction
and determine the contraction constant of f . Find the (unique) fixed point of f .

9.2. Consider the function f(x) = x+ x−1, x ≥ 1. Show that f

|f(x)− f(y)| < |x− y| for all x, y ≥ 1 such that x 6= y,

but that f has no fixed point.

9.3. (a) Write the following initial-value problem as an integral equation:{
x′ = f(x, t), t ≥ 0
x(0) = x0

.

(b) Write the following initial-value problem as an integral equation:
x′′ = f(x, t), t ≥ 0
x(0) = x0
x′(0) = x1

.

9.4. Define T : C([0, 1])→ C([0, 1]) by

Tx(t) =

∫ t

0

x(s) ds, 0 ≤ t ≤ 1,

where x ∈ C([0, 1]).
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(a) Show that T is not a contraction on C([0, 1]).

(b) Show that T 2 however is a contraction on C([0, 1]).

(c) Deduce that T has a unique fixed-point and determine this fixed-point.

9.5. Define T : L2(0, 1)→ L2(0, 1) by

Tx(t) =

∫ t

0

x(s) ds, 0 ≤ t ≤ 1,

where x ∈ C([0, 1]). Is T a contraction on L2(0, 1)?

9.6. Apply fixed-point iterations to the initial value problem{
x′ = 1 + x2, t ≥ 0
x(0) = 0

starting with x0 = 0. Verify that the coefficients for t, t2, ... , t5 in x3 are the same
as in the exact solution to the problem.

9.7. Consider the equation

x(t)− µ
∫ 1

0

et−sx(s) ds = f(t), 0 ≤ t ≤ 1,

where µ ∈ C and f ∈ C([0, 1]).

(a) For which µ ∈ C does the equation have a unique solution x ∈ C([0, 1]) for
every right-hand side f?

(b) Solve the equation for as many values of µ as possible.

9.8. Suppose that f ∈ C([0, 1]) and ‖f‖∞ ≤ 1. Show that the equation

x(t) + µ

∫ t

0

tx2(s) ds = f(t), 0 ≤ t ≤ 1,

has a unique solution x ∈ C([0, 1]) such that ‖x‖∞ ≤ 2 if 0 < µ < 1
4
.

10. Spectral Theory

10.1. Suppose that H is a separable Hilbert space with orthonormal basis (en)∞n=1.
Define the linear operator T first on (en)∞n=1 by

Ten = en+1, n = 1, 2, ... ,

then on H by linearity and continuity. Is T bounded? Show that T has no
eigenvectors.
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10.2. Find a bounded linear operator T : C([0, 1]) → C([0, 1]) whose spectrum is a
given interval [a, b].

10.3. The operator T : `2 → `2 is defined by Tx = (αjxj)
∞
j=1 for x = (xj)

∞
j=1 ∈ `2,

where the sequence (αj)
∞
j=1 is dense in [0, 1]. Find σp(T ) and σ(T ).

10.4. Show that if T is a bounded operator on a normed space X, then ‖RT (λ)‖ → 0
as λ→∞.

10.5. Suppose that X is a complex Banach space, T is a bounded operator on X, and p
is a polynomial. Show that the equation

p(T )x = y

has a unique solution x ∈ X for every vector y ∈ X if and only if p(λ) 6= 0 for
every λ ∈ σ(T ).

10.6. Suppose that X is a complex Banach space and T is a bounded operator on X.
Show that

rσ(αT ) = |α|rσ(T ) and rσ(T k) = rσ(T )k

for every α ∈ C and k = 1, 2, ... .

10.7. A bounded operator T on a complex Banach space X is said to be idempotent
if Tm = 0 for some positive integer m. Find the spectrum of a idempotent
operator T .

10.8. Suppose that X is a complex Banach space and T is a bounded operator on X.
Deduce from the Spectral Radius formula that rσ(T ) ≤ ‖T‖.

10.9. Suppose that S and T are two bounded operators on a complex Banach space X
that commute, i.e., ST = TS. Show that

rσ(ST ) ≤ rσ(S)rσ(T ).

10.10. Suppose that T is a normal operator on a Hilbert space H. Show that

rσ(T ) = ‖T‖.

10.11. Suppose that A is a normed algebra with unit e. Show that every element of A,
which has a left inverse and a right inverse, is in fact invertible. More precisely,
show that if x ∈ A and there exist y, z ∈ A such that yx = xz = e, then x is
invertible and y = z = x−1.

10.12. Suppose that A is a normed algebra with unit e. Show that if x ∈ A is invertible
and commutes with y ∈ A, then also x−1 and y commute.
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10.13. Suppose that A is a normed algebra. Show that if ‖x−e‖ < 1, then x is invertible
and

x−1 =
∞∑
n=0

(e− x)n.

10.14. Suppose that A is a normed algebra. Show that if (xn) and (yn) are Cauchy
sequences in A, then (xnyn) is also a Cauchy sequence in A. Show furthermore
that if xn → x and yn → y in A, then xnyn → xy in A.

10.15. The operator T : `2 → `2 is defined by Tx = (0, 0, x1, x2, ...) for x = (xj)
∞
j=1 ∈ `2.

Is T bounded and, if so, what is the norm of T? Is T self-adjoint?

10.16. Suppose that S and T are two bounded operators on a complex Hilbert space H.
Show that if S is self-adjoint, then the operator T ∗ST is also self-adjoint.

10.17. Suppose that T is a linear operator on a Hilbert space H such that

(Tx, y) = (x, Ty) for all x, y ∈ H.

Show that T is bounded.

10.18. Show that every compact, self-adjoint operator T : H → H on a complex Hilbert
space H has at least one eigenvalue.

10.19. Show that every real, symmetric n by n matrix with positive elements has at
least one positive eigenvalue.
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Hints

1.11. Somewhere you will need to use Hölder’s inequality

1.16. Consider the sequence xn = (1
1
, 1
2
, ... , 1

n
, 0, ...), n = 1, 2, ... .

1.18. Since xn(t)→ 0 for 0 ≤ t ≤ 1, a good candidate for a limit is x = 0.

2.5. (a) Study the function f(t) = 1 + tα − (1 + t)α, 0 ≤ t <∞.

(b) Use (a).

(c) Use induction.

2.6. (a) Use Exercise 2.5.

(b) For the second part of the exercise, use the fact that

1 ≤ ‖x‖p
‖x‖∞

=

( ∞∑
j=1

(
|xj|
‖x‖∞

)p)1/p

together with the inequality tp ≤ t, which holds for 0 ≤ t ≤ 1.

3.10. Split the integral into two integrals.

3.11. Begin by changing variables.

3.14. f(x) =
∑∞

n=1 2−nχ(rn,1)(x)

4.2. Check the parallelogram law.

4.10. Apply the Cauchy–Schwarz inequality.

4.11. (a) Use the triangle inequality.

4.12. (b) Use the fact that ‖x‖1 ≥
∣∣∫ 1

0
x(t) dt

∣∣ = 1 for any x ∈M .

5.7. (a) To find an example where the inequality is strict, consider projections in R2.

5.12. (a) To determine ‖T‖, it can be useful to consider the sequence of functions
(xn)∞n=1 defined by

xn(t) =
e−nt

n+ 1
, 0 ≤ t ≤ 1.

5.13. Use a Hamel basis of X to define T .

7.3. Use the Riesz representation theorem for H.

7.4. Define first f on span{x0} = {tx0 : t ∈ K}. Then use the Hahn–Banach theorem
to extend f to X.

7.7. Use Exercise 7.6
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7.9. Apply the Uniform Boundedness Principle to the sequence (fn) of linear func-
tionals on `2, defined by fn(y) =

∑n
j=1 xjyj, y ∈ `2 for n = 1, 2, ... .

7.11. Use the Uniform Boundedness Principle.

7.13. For the sufficiency part, use the Inverse Mapping theorem. For the necessity
part, show that if R(T ) 3 yn = Txn → y ∈ Y , then y = Tx ∈ R(T ).

7.14. (a) Show that if xn ∈ K for every n and yn = Txn → y, then y = Tx for
some x ∈ K. Use the compactness of K to extract a convergent subsequence
to (xn).

(b) Show that if yn = Txn ∈ K for every n and xn → x, then y = Tx ∈ K. Use
the compactness of K to extract a convergent subsequence to (yn).

7.15. It suffices according to Exercise 1.8 to show that T−1(F ) is closed in X for every
closed subset F of Y . Use Exercise 7.14 (b).

7.16. Use Exercise 7.14 (a).

8.1. Consider the functionals δt0 for a ≤ t0 ≤ b.

8.3. (a) The dual of c0 is isomorphic to `1.

(b) If (xn) were convergent in c0, then every sequence of coordinates would be
convergent.

8.5. Use the Banach-Steinhaus theorem.

8.6. Suppose that x /∈ span{x1, x2, ...} and use one of the corollaries to the Hahn–
Banach theorem to produce a contradiction.

8.7. Use Exercise 8.6.

8.8. Use Exercise 8.7.

8.9. The necessity part is basically known. For the sufficiency part, expand ‖x−xn‖2,
using the definition of the norm.

8.10. This comes down to showing that f(Txn) → f(Tx) for every f ∈ Y ′. To which
space does f ◦ T belong?

8.11. Use the Banach–Steinhaus theorem.

9.5. The Cauchy–Schwarz inequality might come in handy.

10.4. Show that if |λ| > ‖T‖, then

‖RT (λ)‖ ≤ (|λ| − ‖T‖)−1.

10.7. Use the Spectral Radius formula.
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10.9. Use the Spectral Radius formula.

10.17. One way of proving this is to use the Closed Graph theorem.

10.19. The trace of the matrix could be useful.
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Answers

1.12. (b) No

1.18. (a) Yes

(b) No

1.19. (a) No

(b) Yes

2.1. (a) α = 1

(b) 0 < α ≤ 1

3.2. No

3.4. No

3.8. 0

3.9. 0

3.10. 3

3.11. ln 2

3.13. −1
2

ln 2

3.14.
∑∞

n=1 2−n(1− rn)

3.17. (b) No

4.2. No

4.4. (a) Y ⊥ = {x ∈ `2 : x1 = x3 = ... = 0}
(b) Y ⊥ = {x ∈ `2 : x1 = ... = xk = 0}

4.10. xj = c2−j/2, j = 1, 2, ... , where c ∈ C

4.13. (b) x = 1

4.14. (b) c⊥00 = {0} and c⊥⊥00 = `2.

4.15. (b) M⊥ = {Konstanter} and M⊥⊥ = M .

(c) y = x and z = x− x, where x =
∫ 1

0
x(t) dt is the average of x over (0, 1).

5.6. 2

5.9. (a) ‖T‖ = 1
(c) R(T ) = {y ∈ C1([0, 1]) : y(0) = 0}. R(T ) is not closed in C([0, 1]).
(d) T−1y = y′ for y ∈ R(T ). T−1 is unbounded.
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5.10. (a) No

(b) Yes

(c) 0 and 1, respectively

5.11. (a) ‖T‖ = 1
(c) R(T ) = {y ∈ `∞ : (jyj)

∞
j=1 ∈ `∞}. R(T ) is not closed in `∞.

(d) T−1y = (jyj)
∞
j=1 for y ∈ R(T ). T−1 is unbounded.

5.12. (a) ‖T‖ = 1

(b) No

6.1. ‖f‖ = 1

7.1. F = f

7.2. Take f(y) = y(0), y ∈ Y . Then every t0 ∈ [0, 1] gives a linear, norm-preserving
extension F of f to C([0, 1]), defined by F (x) = x(t0), x ∈ C([0, 1]).

7.3. If f(y) = (y, a), y ∈ Y , for some a ∈ Y , then F (x) = (x, a), x ∈ H, is the unique
linear extension of f to H such that ‖F‖ = ‖f‖.

7.12. (a) Yes

(b) No

8.3. (b) No

8.4. (b) No

9.1. The contraction constant is 1
2

and the fixed point is
√

2.

9.3. (a) x(t) = x0 +

∫ t

0

f(x(s), s) ds, t ≥ 0

(b) x(t) = x0 + tx1 +

∫ t

0

(t− s)f(x(s), s) ds, t ≥ 0

9.5. Yes

10.1. Yes

10.3. σp(T ) = σ(T ) = [0, 1]

10.7. σ(T ) = {0}

10.15. T is bounded and ‖T‖ = 1. T is not self-adjoint.
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