
Linköping Institute of Technology 2018–09–10
Department of Mathematics/Division of Optimization
Kaj Holmberg

Lab Information

1 Information about snowplan

Snowplan version 3 is code in python for solving a simplified snow removal problem. The
problem to be solved is called a “k -postman problem”, because it is a postman problem
where all arcs are covered (at least once), but not by one postman but several. A “postman”
corrresponds to a snow removal vehicle in this context.

Snowplan works with a subproblem, which is a “rural postman problem” for each vehicle.
These problems are solved using a code from Vineopt, rupov. The network is read in
Vineopt format, and the main task of Snowplan is to find a good division of arcs between
different vehicles, i.e. an allocation of arcs to vehicles.

Two important vectors used by the code are order, which is the order in which the vehicles
are considered, and vehdo, which states for each arc which vehicles should clean it.

The main program snowplan contains the following parts.

1. The network is read.

2. A starting order is constructed.

3. A starting allocation of arcs to vehicles is done.

4. The rural postman problem is solved for each vehicle.

5. Optional: Those arcs passed by a vehicle are considered to be cleaned by this vehicle,
if they were not cleaned before, even if they were allocated to another vehicle.

6. Optional: The solution is improved by moving cycles from one tour to another one.

7. The order for vehicles is changed.

8. The allocation of arcs to vehicles is changed.

9. Steps 4 - 9 are repeated several times.

10. The allocation of vehicles to arcs is written on a file (as arc sets) in a format that
Vineopt can read.

The total cost, which is the sum of the costs for each vehicle’s tour plus the fixed costs for
the vehicles, is computed at each iteration. Moreover the time for solution is computed,
which is the maximal of the vehicles’ times. The objective function value is then computed
as a weighted sum of the cost and the time.

Simulated annealing is used to accept a move to a new point (for vehdo), i.e. better points
are always accepted and worse points are accepted with a certain probability.

1



Steps 3,7 and 8 can be done in various ways, so one has to choose among the alternative.
One also has to choose which of the optional steps 5 and 6 to do. These choices are
governed by parameters set by the user.

Note that the method uses the randomness, so two runs with identical settings will not
give exactly the same results.

1.1 Starting Snowplan

The program is started by opening a terminal window, setting the search paths by writing
module add ext/MAI and module add math/optlab and then write dine 6.

You then get the interactive window with possibilities to read a network and parameters,
and change parameters and solve the problem. One can also give names to network file
and parameter file on the command line:

dine 6 network1 param1.par

reads the network network1 and the parameter file param1.par.

dine 6 network1 param1.par 1

directly solves the problem. You will then see how the objective function iteratively
changes. A blue line gives the original objective function value in each iteration, while
green crosses gives values after the improvement phase, and the red dashed curve gives the
best value at each iteration. A light blue line gives the lower limit.

dine 6 network1 param1.par 2

will solve the problem and then exit Snowplan. To see the results, you must study the
output on the terminal.

Every time a problem is solved, a line is added to the file fkres.txt, with the network name,
parameter file, date, size of problem and the objective function value and solution time.
This file is never deleted, so it is recommended to rename it when you have made all the
runs that you want to compare. A similar file, fpkres.txt, created in the same way, but
includes (compact) information about all parameters.

Also created are multiple result files in the data directory (# stands for a number that
increased each time):
network1-param1_#.png : A picture of the best allocation in png-format.
network1-param1_#.ps: A picture of the best allocation in postscript-format.
network1-param1_#.val: Lower bounds, and for each iteration the objective function value
before and after improvement, as well as the best value so far.
(Please check and remove these files sometimes.)

2



1.2 Parameters

The program uses several parameters that control the solution method, and these can be
loaded from a file. An example of the proposed values are given in the file spar-def.par. If
one finds better values of the parameters, saved them on another file (with the extension
.par).

You can also set the parameters in the program’s interface; see the picture below.

When you have changed any parameter, you should click on the button “Update” to the
settings to be saved. If you forgot what the different values stand for, you can click on
the button “Info”. You also get informative output in the terminal when changing any
parameter.

In order to calculate a lower bound, click on “Lowb” or “Chin lowb”.

When you click on “Solve” the problem is solved. If you want to do one iteration at a time,
you should instead click on “Step”.

If you click on “Run Vineopt”, Vineopt is started, and the current allocation (linksets) is
loaded and displayed. You can then change the allocation, and save it via the menu “Sets”,
“Save Link sets for Snowplan”. Then exit Vineopt, and click “Read linkset from Vineopt” in
Snowplan, to make Snowplan read the allocation made in Vineopt. One can then proceed
from that allocation (if startvar = 0). One can also set startvar = 2, which automatically
loads the allocation from Vineopt when clicking “Solve”.

The button “See alloc” shows the allocation in a colored graph. (This feature uses an
external program, and may fail if program is not installed.)

1.3 Program function

Snowplan first finds a tour for the first vehicle which covers all arcs which are allocated
for vehicle 1. If the parameter makedone=1, all arcs passed by vehicle 1 are marked as

3



done, i.e. the allocation for these arcs is not folloed. This means that the following vehicles
have less work to do. If one changes the order in which tours for vehicles are decided, a
different solution could be generated.

Therefore the vector order can be changed to get different solutions. There are several
different approaches to (randomly) change order.

In the same way, there are several approaches to change the vector vehdo, in order to
change the allocation of arcs to vehicles.

The following parameters can be given the following values in the parameter file. If you
do not give any value, the parameters get default values, given below in brackets.

Parameter Description
nov Number of vehicles, ≥ 1 (4)
fixvehcost Fixed cost for a vehicle, ≥ 0 (200)
wcost Weight of cost in the objective function, ≥ 0 (1.0)
wtime Weight of time in the objective function, ≥ 0 (1.0)
maxiter Number of main iterations, ≥ 1 (30)
logfil Controls output from rupov (to the screen or to the file), 0,1 (1)
pri Amount of output (0 less, 1 more), 0,1 (0)
markdone Mark the passed arcs as completed 0,1 (1)
startvar Variant for starting allocation, 0− 16, (15)
movevar Variant for changing allocation, 0− 7 (3)
moalloc Number of steps for vehdo to be moved, ≥ 0 (1)
impvar Variant for the improvement heuristic, 0− 3 (3)
dorevsol Change the allocation to follow the solution, 0,1 (1)
chordvar Variant for changing order, 1− 5 (5)
moord Number of steps for order to be moved, ≥ 0 (1)
cymvar Variant for moving cycles, 1− 4 (4)
cymimp Move cycles only if this provides improvement, 0,1 (0)
targetcost Terminate when the cost is below this, ≥ 0 (0.0)
targettime Terminate when the time is below this, ≥ 0 (0.0)
starttemp Starting temperature in simulated annealing, ≥ 0 (1000)
intiter Number of iterations with the same temperature in simulated annealing, ≥ 1 (7)
rcold Cooling factor in simulated annealing, > 0, < 1 (0.3)

The file spar-def.par contains the default values for each of these parameters. Some param-
eters influence the methods behavior a lot, others less. It is difficult to find values which
are the best for all problems. One can try change some of the values to make the method
work good for some problems. Some values can generate good solutions, but cause the
method to run for a long time for large problems. (Observe that very small problems may
have too few degrees of freedom in order for the calibration of parameters to give a good
result.) For large/difficult problems, it is tempting to run only a few iterations, but this
kind of method will not give a good solution in that case. Difficult problems will always
take a long time to solve, so one needs to be patient.

After each run the linksets are saved on the file linksets#.set, where # stands for a number
that increased every time a file is saved.

4



1.3.1 startalloc

This function creates an allocation for vehicles, i.e. the vector vehdo, where vehdo(j) = the
vehicle to clean arc j.

It is controlled by the parameter startvar :
startvar = 0: Start from the current solution.
startvar = 1: Create a random allocation.
startvar = 2: Read a linkset that has been saved in Vineopt and use as a starting allocation.
startvar = 3: Let vehicle 1 to do everything.
startvar = 4: Sort by x for a starting node, begin with the first vehicle, select the nearest
arcs, then proceed to the next vehicle.
startvar = 5: Like in 4, but sort by x for an ending node.
startvar = 6: Like in 4, but sort by x for a middle point.
startvar = 7: Like in 4, but sort by y for a starting node.
startvar = 8: Like in 4, but sort by y for an ending node.
startvar = 9: Like in 4, but sort by y for a middle point.
startvar = 10: Like in 4, but sort by the distance from the origin to a starting node.
startvar = 11: Like in 10, but sort by the distance from the origin to an ending node.
startvar = 12: Like in 10, but sort by the distance from the origin to a middle point.
startvar = 13: Apply the code kmeans which creates a number of clusters (the same as the
number of vehicles), where the closest nodes to every cluster’s middle point are put into
the cluster. Arcs with both the nodes in one cluster are allocated to the corresponding
vehicle. If the nodes belong to different clusters, the arc is allocated to the cluster with
the highest number.
startvar = 14: Like in 13, but if the nodes belong to different clusters, the arc is allocated
to the cluster with the lowest number.
startvar = 15: Like in 13, but if the nodes belong to different clusters, the arc is allocated
randomly to one of this clusters.
startvar = 16: Like in 13, but if the nodes belong to different clusters, the arc is allocated
so that the distance to the center of the cluster is minimized.

If one uses startvar = 0, one can make multiple runs one after another to continue to
improve the solution. Running three times with 30 iterations gives almost the same effect
as one run with 90 iterations. The difference is that the temperature in simulated annealing
is reset after each run.

1.3.2 changealloc

This function changes the allocation of arcs to vehicles (the vector vehdo).

It is controlled by the parameters movevar and moalloc:
movevar = 0: Do not change the allocation.
movevar = 1: Swap two random links.
movevar = 2: Change moalloc random links.
movevar = 3: Move a link from a vehicle with the largest number of links to a vehicle with
the lowest number of links.
movevar = 4: Move an arc between two random vehicles that have both nodes in common.
movevar = 5: Swap between two random vehicles that have both nodes in common.

5



movevar = 6: Move an arc, when one node is in common.
movevar = 7: Swap an arc, when one node is in common.

1.3.3 changeorder

This function changes the order. It is controlled by parameters chordvar and moord :
chordvar = 1: Swap two random elements in the vector order.
chordvar = 2: Create a completely new order.
chordvar = 3: Shift the vector order by moord steps to the right.
chordvar = 4: Shift the vector order by moord steps to the left.
chordvar = 5: Swap the one has the most with the one that has the least.

1.3.4 improvesol

This function improves the solution as follows. Find a cycle in a tour, check if the cycle
contains a node in another tour, move the cycle to that tour.

It is controlled by the parameter impvar :
impvar = 0: Do not move cycles.
impvar = 1: Move cycles, one random try.
impvar = 2: Move cycles, terminate when there is no improvement.
impvar = 3: Move cycles, try all combinations.

1.3.5 cyclemove

Executed if impvar > 0. Invoked from improvesol. Performs the movement of the cycle.

It is controlled by the parameter cymvar :
cymvar = 0: Do nothing.
cymvar = 1: Try to move a random cycle between two random vehicles.
cymvar = 2: Try to move a cycle from a long tour to a short one.
cymvar = 3: Try to move a cycle between two given vehicles (if impvar = 3).
cymvar = 3: Try to move a cycle from a costly tour to a cheap one.

1.4 Contact

If the program should not work as it should in any way, the user is asked to send information
so that the error can be recreated (and corrected) to kaj.holmberg@liu.se. Please send the
parameter file with the settings that makes the program fail, and details of the problem
that has been run.

6


	Information about snowplan
	Starting Snowplan
	Parameters
	Program function
	startalloc
	changealloc
	changeorder
	improvesol
	cyclemove

	Contact


