How to use this material.
The videos are recordings of me speaking while I go through a clean copy (well...) of the manuscript I was planning on using when doing the lectures on the white board. I choose this approach since I believe it mimics the regular lecture as closely as I'm able to at this point (and I don't want to refuse anyone to rejoice in my handwriting...). Considering that you now have the option of pausing the lecture, I do keep a slightly higher tempo at points where we're just going through rather mundane standard calculations. I hope that you do pause and try to follow and redo the calculations yourself.This goes for everything in the videos for that matter. If you know that you learn better by taking notes, treat these as you would a regular lecture by taking notes while the video is playing (and pause if necessary to keep up).
I'm not sure that this approach is the best one, so feel free to let me know what you think. Would it have been better with typeset slides (more similar to the lecture notes below)? Any thoughts are welcome, just send me an e-mail at johan.thim@liu.se. I might not be able to change a lot for this course (but you never know) but the feedback is important if this type of teaching continues.
For those of you who speak swedish, there's a swedish alternative below as well. These differs a bit (both in content and form) but but versions covers a lecture set for the course.
Video material
- Lecture 01: Introduction, Periodic Functions and Series
- Lecture 02: Linear Algebra
- Tutorial 01: Fourier coefficients (with white background instead)
- Lecture 03: Function Series and Convergence
- Tutorial 02: Convergence, Fourier series, Dirichlet's Theorem (with white background instead)
- Lecture 04: Stronger Types of Convergence
- Tutorial 03: Uniform convergence of series (with white background instead)
- Lecture 05: Uniqueness, Convergence in Mean, Completeness
- Tutorial 04: Uniqueness, Parseval's formula (with white background instead)
- Lecture 06: The Fourier Transform
- Tutorial 05: The Fourier Transform (with white background instead)
- Lecture 07: Inversion, Plancherel and Convolution
- Lecture 08: Uniqueness
- Tutorial 06: The Fourier Transform II (with white background instead)
- Lecture 09: The Unilateral Laplace Transform
- Tutorial 07: The Laplace Transform (with white background instead)
- Lecture 10: Convolution, Inversion and Applications
- Tutorial 08: The Laplace Transform (with white background instead)
- Lecture 11: The Unilateral Z transform
- Tutorial 09: The Z transform (with white background instead)
- Lecture 12: Inversion, Convolution and Bilateral Transforms
- Tutorial 10: The Z transform II (with white background instead)
(some) Video material in Swedish
This is an experiment with the lectures above translated to Swedish. I guess this might cause some confusion about the meaning of certain terms, so it's up to you if you wish try it out.- Föreläsning 01: Periodiska funktioner and serier (med vit bakgrund)
- Föreläsning 02: Linjär algebra (med vit bakgrund)
- Föreläsning 03: Konvergens och Dirichlets sats (med vit bakgrund)
- Föreläsning 04: Likformig konvergens (med vit bakgrund)
- Föreläsning 05: Entydighet och slutenhet (med vit bakgrund)
- Föreläsning 06: Fouriertransformen (med vit bakgrund)
- Föreläsning 07: Inversion, faltning och Plancherels sats (med vit bakgrund)
- Föreläsning 08: Fejers sats och entydighet (med vit bakgrund)
- Föreläsning 09: Den enkelsidiga Laplacetransformen (med vit bakgrund)
- Föreläsning 10: Faltning, inversion, entydighet och gränsvärdessatser (med vit bakgrund)
- Föreläsning 11: Den enkelsidiga Z-transformen (med vit bakgrund)
- Föreläsning 12: Z-transform (forts.) och andra diskreta transformer (med vit bakgrund)
Sidansvarig: johan.thim@liu.se
Senast uppdaterad: 2024-03-24