MAI0063: Complex analysis, 8 hp - Ph.D. course, spring 2012

Course leader: Lars Alexandersson
Literature: Mats Andersson, Topics in Complex Analysis, Springer, chapter 1, 2.1-2.2, 3.1-3.4, 4, 5.1-5.2
Content: Integral representations of analytic functions; power series expansions and residues; global Cauchy theorems. Conformal mappings; the Riemann sphere and projective space. Approximation with rationals; Mittag-Leffler's theorem and the inhomogeneous Cauchy-Riemann equation; analytic continuation; simply connected domains. Harmonic functions; subharmonic functions. Weierstrass' theorem; zeros and growth
Organization: Lectures and problem sessions. Presentations
Examination: Active participation in problem sessions. Assigned problems. Presentation of a topic related to the course
Prerequisites: Graduate courses in integration theory and functional analysis (specific details). Some undergraduate course in complex analysis
Schedule: In Kompakta rummet, unless otherwise stated. Problem sessions are marked * and presentations +
- Vecka 3
- Tis 17/1 10-12 - kap 1
- Ons 18/1 08-10
- Vecka 4
- Tis 24/1 10-12
- * Fre 27/1 13-16, Determinanten
- Vecka 5
- Tis 31/1 10-12 - kap 2
- Ons 1/2 08-10
- Vecka 6
- * Fre 10/2 13-16, Determinanten
- Vecka 7
- Tis 14/2 10-12 - kap 3
- Ons 15/2 08-11
- Vecka 8
- * Tor 23/2 08-11, Determinanten
- Vecka 9
- Tis 28/2 10-12 - kap 4
- Ons 29/2 08-11
- Vecka 10
- -
- Vecka 11
- * Tis 13/3 13-16, Determinanten
- Fre 16/3 08-10 - kap 5
- Vecka 12
- Fre 23/3 08-10
- Vecka 13
- * Tis 27/3 13-16, Åskådliga rummet
- Vecka 14
- -
- Vecka 15
- -
- Vecka 16
- + Fre 20/4 08-10 Marcus Kardell: A. Univalent functions; Andreas Rejbrand: B. Picard's theorems
- Vecka 17
- + Fre 27/4 09-10 Michail Krimpogiannis: E. Boundary values of harmonic functions
- Vecka 18
- + Fre 4/5 08-10 Jonna Gill: C. Analytic functionals and the Fourier-Laplace transform; Anna Orlof: D. Mergelyan's theorem
Senast uppdaterad: 2019-11-29